scuffed-code/icu4c/source/test/intltest/transtst.cpp

542 lines
17 KiB
C++
Raw Normal View History

/*
**********************************************************************
* Copyright (C) 1999, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/10/99 aliu Creation.
**********************************************************************
*/
#include "transtst.h"
#include "utypes.h"
#include "translit.h"
#include "rbt.h"
#include "unifilt.h"
#include "cpdtrans.h"
#define CASE(id,test) case id: \
name = #test; \
if (exec) { \
logln(#test "---"); \
logln((UnicodeString)""); \
test(); \
} \
break;
void
TransliteratorTest::runIndexedTest(int32_t index, bool_t exec,
char* &name, char* par) {
switch (index) {
CASE(0,TestInstantiation)
CASE(1,TestSimpleRules)
CASE(2,TestRuleBasedInverse)
CASE(3,TestKeyboard)
CASE(4,TestKeyboard2)
CASE(5,TestKeyboard3)
CASE(6,TestArabic)
CASE(7,TestCompoundKana)
CASE(8,TestCompoundHex)
CASE(9,TestFiltering)
default: name = ""; break;
}
}
void TransliteratorTest::TestInstantiation() {
int32_t n = Transliterator::countAvailableIDs();
for (int32_t i=0; i<n; ++i) {
UnicodeString id = Transliterator::getAvailableID(i);
if (id.length() < 1) {
errln(UnicodeString("FAIL: getAvailableID(") +
i + ") returned empty string");
continue;
}
Transliterator* t = Transliterator::createInstance(id);
if (t == 0) {
errln(UnicodeString("FAIL: Couldn't create ") + id);
// When createInstance fails, it deletes the failing
// entry from the available ID list. We detect this
// here by looking for a change in countAvailableIDs.
int nn = Transliterator::countAvailableIDs();
if (nn == (n - 1)) {
n = nn;
--i; // Compensate for deleted entry
}
} else {
logln(UnicodeString("OK: ") + id);
}
delete t;
}
// Now test the failure path
UnicodeString id("<Not a valid Transliterator ID>");
Transliterator* t = Transliterator::createInstance(id);
if (t != 0) {
errln("FAIL: " + id + " returned a transliterator");
delete t;
} else {
logln("OK: Bogus ID handled properly");
}
}
void TransliteratorTest::TestSimpleRules() {
/* Example: rules 1. ab>x|y
* 2. yc>z
*
* []|eabcd start - no match, copy e to tranlated buffer
* [e]|abcd match rule 1 - copy output & adjust cursor
* [ex|y]cd match rule 2 - copy output & adjust cursor
* [exz]|d no match, copy d to transliterated buffer
* [exzd]| done
*/
expect(UnicodeString("ab>x|y\n") +
"yc>z",
"eabcd", "exzd"); /* Another set of rules:
* 1. ab>x|yzacw
* 2. za>q
* 3. qc>r
* 4. cw>n
*
* []|ab Rule 1
* [x|yzacw] No match
* [xy|zacw] Rule 2
* [xyq|cw] Rule 4
* [xyqn]| Done
*/
expect(UnicodeString("ab>x|yzacw\n") +
"za>q\n" +
"qc>r\n" +
"cw>n",
"ab", "xyqn");
/* Test categories
*/
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t(
"<ID>",
UnicodeString("dummy=").append((UChar)0xE100) + "\n" +
"vowel=[aeiouAEIOU]\n" +
"lu=[:Lu:]\n" +
"{vowel}[{lu}>!\n" +
"{vowel}>&\n" +
"!]{lu}>^\n" +
"{lu}>*\n" +
"a>ERROR",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
expect(t, "abcdefgABCDEFGU", "&bcd&fg!^**!^*&");
}
/**
* Create some inverses and confirm that they work. We have to be
* careful how we do this, since the inverses will not be true
* inverses -- we can't throw any random string at the composition
* of the transliterators and expect the identity function. F x
* F' != I. However, if we are careful about the input, we will
* get the expected results.
*/
void TransliteratorTest::TestRuleBasedInverse() {
UnicodeString RULES =
UnicodeString("abc>zyx\n") +
"ab>yz\n" +
"bc>zx\n" +
"ca>xy\n" +
"a>x\n" +
"b>y\n" +
"c>z\n" +
"abc<zyx\n" +
"ab<yz\n" +
"bc<zx\n" +
"ca<xy\n" +
"a<x\n" +
"b<y\n" +
"c<z\n" +
"";
const char* DATA[] = {
// Careful here -- random strings will not work. If we keep
// the left side to the domain and the right side to the range
// we will be okay though (left, abc; right xyz).
"a", "x",
"abcacab", "zyxxxyy",
"caccb", "xyzzy",
};
int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator fwd("<ID>", RULES, status);
RuleBasedTransliterator rev("<ID>", RULES,
RuleBasedTransliterator::REVERSE, status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
for (int32_t i=0; i<DATA_length; i+=2) {
expect(fwd, DATA[i], DATA[i+1]);
expect(rev, DATA[i+1], DATA[i]);
}
}
/**
* Basic test of keyboard.
*/
void TransliteratorTest::TestKeyboard() {
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>",
UnicodeString("psch>Y\n")
+"ps>y\n"
+"ch>x\n"
+"a>A\n",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
const char* DATA[] = {
// insertion, buffer
"a", "A",
"p", "Ap",
"s", "Aps",
"c", "Apsc",
"a", "AycA",
"psch", "AycAY",
0, "AycAY", // null means finishKeyboardTransliteration
};
keyboardAux(t, DATA, sizeof(DATA)/sizeof(DATA[0]));
}
/**
* Basic test of keyboard with cursor.
*/
void TransliteratorTest::TestKeyboard2() {
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>",
UnicodeString("ych>Y\n")
+"ps>|y\n"
+"ch>x\n"
+"a>A\n",
status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
const char* DATA[] = {
// insertion, buffer
"a", "A",
"p", "Ap",
"s", "Ay",
"c", "Ayc",
"a", "AycA",
"p", "AycAp",
"s", "AycAy",
"c", "AycAyc",
"h", "AycAY",
0, "AycAY", // null means finishKeyboardTransliteration
};
keyboardAux(t, DATA, sizeof(DATA)/sizeof(DATA[0]));
}
/**
* Test keyboard transliteration with back-replacement.
*/
void TransliteratorTest::TestKeyboard3() {
// We want th>z but t>y. Furthermore, during keyboard
// transliteration we want t>y then yh>z if t, then h are
// typed.
UnicodeString RULES("t>|y\n"
"yh>z\n");
const char* DATA[] = {
// Column 1: characters to add to buffer (as if typed)
// Column 2: expected appearance of buffer after
// keyboard xliteration.
"a", "a",
"b", "ab",
"t", "aby",
"c", "abyc",
"t", "abycy",
"h", "abycz",
0, "abycz", // null means finishKeyboardTransliteration
};
UErrorCode status = U_ZERO_ERROR;
RuleBasedTransliterator t("<ID>", RULES, status);
if (U_FAILURE(status)) {
errln("FAIL: RBT constructor failed");
return;
}
keyboardAux(t, DATA, sizeof(DATA)/sizeof(DATA[0]));
}
void TransliteratorTest::keyboardAux(const Transliterator& t,
const char* DATA[], int32_t DATA_length) {
UErrorCode status = U_ZERO_ERROR;
int32_t index[3] = {0, 0, 0};
UnicodeString s;
for (int32_t i=0; i<DATA_length; i+=2) {
UnicodeString log;
if (DATA[i] != 0) {
log = s + " + "
+ DATA[i]
+ " -> ";
t.keyboardTransliterate(s, index, DATA[i], status);
} else {
log = s + " => ";
t.finishKeyboardTransliteration(s, index);
}
// Show the start index '{' and the cursor '|'
UnicodeString a, b, c;
s.extractBetween(0, index[Transliterator::START], a);
s.extractBetween(index[Transliterator::START],
index[Transliterator::CURSOR], b);
s.extractBetween(index[Transliterator::CURSOR],
s.length(), c);
log.append(a).
append('{').
append(b).
append('|').
append(c);
if (s == DATA[i+1] && U_SUCCESS(status)) {
logln(log);
} else {
errln(UnicodeString("FAIL: ") + log + ", expected " + DATA[i+1]);
}
}
}
void TransliteratorTest::TestArabic() {
/*
const char* DATA[] = {
"Arabic", "\u062a\u062a\u0645\u062a\u0639\u0020"+
"\u0627\u0644\u0644\u063a\u0629\u0020"+
"\u0627\u0644\u0639\u0631\u0628\u0628\u064a\u0629\u0020"+
"\u0628\u0628\u0646\u0638\u0645\u0020"+
"\u0643\u062a\u0627\u0628\u0628\u064a\u0629\u0020"+
"\u062c\u0645\u064a\u0644\u0629",
};
*/
UChar ar_raw[] = {
0x062a, 0x062a, 0x0645, 0x062a, 0x0639, 0x0020, 0x0627,
0x0644, 0x0644, 0x063a, 0x0629, 0x0020, 0x0627, 0x0644,
0x0639, 0x0631, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
0x0628, 0x0628, 0x0646, 0x0638, 0x0645, 0x0020, 0x0643,
0x062a, 0x0627, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
0x062c, 0x0645, 0x064a, 0x0644, 0x0629, 0
};
UnicodeString ar(ar_raw);
Transliterator *t = Transliterator::createInstance("Latin-Arabic");
if (t == 0) {
errln("FAIL: createInstance failed");
return;
}
expect(*t, "Arabic", ar);
delete t;
}
/**
* Compose the Kana transliterator forward and reverse and try
* some strings that should come out unchanged.
*/
void TransliteratorTest::TestCompoundKana() {
Transliterator* kana = Transliterator::createInstance("Latin-Kana");
Transliterator* rkana = Transliterator::createInstance("Kana-Latin");
Transliterator* trans[] = { kana, rkana };
if (kana == 0 || rkana == 0) {
errln("FAIL: construction failed");
delete kana;
delete rkana;
return;
}
Transliterator* t = new CompoundTransliterator("<ID>", trans, 2);
expect(*t, "aaaaa", "aaaaa");
delete t;
delete kana;
delete rkana;
}
/**
* Compose the hex transliterators forward and reverse.
*/
void TransliteratorTest::TestCompoundHex() {
Transliterator* a = Transliterator::createInstance("Unicode-Hex");
Transliterator* b = Transliterator::createInstance("Hex-Unicode");
Transliterator* transab[] = { a, b };
Transliterator* transba[] = { b, a };
if (a == 0 || b == 0) {
errln("FAIL: construction failed");
delete a;
delete b;
return;
}
// Do some basic tests of b
expect(*b, "\\u0030\\u0031", "01");
Transliterator* ab = new CompoundTransliterator("ab", transab, 2);
UnicodeString s("abcde");
expect(*ab, s, s);
UnicodeString str(s);
a->transliterate(str);
Transliterator* ba = new CompoundTransliterator("ba", transba, 2);
expect(*ba, str, str);
delete ab;
delete ba;
delete a;
delete b;
}
/**
* Used by TestFiltering().
*/
class TestFilter : public UnicodeFilter {
virtual UnicodeFilter* clone() const {
return new TestFilter(*this);
}
virtual bool_t isIn(UChar c) const {
return c != (UChar)'c';
}
};
/**
* Do some basic tests of filtering.
*/
void TransliteratorTest::TestFiltering() {
Transliterator* hex = Transliterator::createInstance("Unicode-Hex");
if (hex == 0) {
errln("FAIL: createInstance(Unicode-Hex) failed");
return;
}
hex->adoptFilter(new TestFilter());
UnicodeString s("abcde");
UnicodeString out;
hex->transliterate(s, out);
UnicodeString exp("\\u0061\\u0062c\\u0064\\u0065");
if (out == exp) {
logln(UnicodeString("Ok: \"") + exp + "\"");
} else {
logln(UnicodeString("FAIL: \"") + out + "\", wanted \"" + exp + "\"");
}
delete hex;
}
//======================================================================
// Support methods
//======================================================================
void TransliteratorTest::expect(const UnicodeString& rules,
const UnicodeString& source,
const UnicodeString& expectedResult) {
UErrorCode status = U_ZERO_ERROR;
Transliterator *t = new RuleBasedTransliterator("<ID>", rules, status);
if (U_FAILURE(status)) {
errln("FAIL: Transliterator constructor failed");
} else {
expect(*t, source, expectedResult);
}
delete t;
}
void TransliteratorTest::expect(const Transliterator& t,
const UnicodeString& source,
const UnicodeString& expectedResult,
const Transliterator& reverseTransliterator) {
expect(t, source, expectedResult);
expect(reverseTransliterator, expectedResult, source);
}
void TransliteratorTest::expect(const Transliterator& t,
const UnicodeString& source,
const UnicodeString& expectedResult) {
UnicodeString result;
t.transliterate(source, result);
expectAux(t.getID() + ":String", source, result, expectedResult);
UnicodeString rsource(source);
t.transliterate(rsource);
expectAux(t.getID() + ":Replaceable", source, rsource, expectedResult);
// Test keyboard (incremental) transliteration -- this result
// must be the same after we finalize (see below).
rsource.remove();
int32_t index[3] = { 0, 0, 0 };
UnicodeString log;
for (int32_t i=0; i<source.length(); ++i) {
if (i != 0) {
log.append(" + ");
}
log.append(source.charAt(i)).append(" -> ");
UErrorCode status = U_ZERO_ERROR;
t.keyboardTransliterate(rsource, index, source.charAt(i), status);
// Append the string buffer with a vertical bar '|' where
// the committed index is.
UnicodeString left, right;
rsource.extractBetween(0, index[Transliterator::CURSOR], left);
rsource.extractBetween(index[Transliterator::CURSOR], rsource.length(), right);
log.append(left).append((UChar)'|').append(right);
}
// As a final step in keyboard transliteration, we must call
// transliterate to finish off any pending partial matches that
// were waiting for more input.
t.finishKeyboardTransliteration(rsource, index);
log.append(" => ").append(rsource);
expectAux(t.getID() + ":Keyboard", log,
rsource == expectedResult,
expectedResult);
}
void TransliteratorTest::expectAux(const UnicodeString& tag,
const UnicodeString& source,
const UnicodeString& result,
const UnicodeString& expectedResult) {
expectAux(tag, source + " -> " + result,
result == expectedResult,
expectedResult);
}
void TransliteratorTest::expectAux(const UnicodeString& tag,
const UnicodeString& summary, bool_t pass,
const UnicodeString& expectedResult) {
if (pass) {
logln(UnicodeString("(")+tag+") " + escape(summary));
} else {
errln(UnicodeString("FAIL: (")+tag+") "
+ escape(summary)
+ ", expected " + escape(expectedResult));
}
}
static UChar toHexString(int32_t i) { return i + (i < 10 ? '0' : ('A' - 10)); }
UnicodeString
TransliteratorTest::escape(const UnicodeString& s) {
UnicodeString buf;
for (int32_t i=0; i<s.size(); ++i)
{
UChar c = s[(UTextOffset)i];
if (' ' <= c && c <= (UChar)0x7F) {
buf += c;
} else {
buf += '\\'; buf += 'u';
buf += toHexString((c & 0xF000) >> 12);
buf += toHexString((c & 0x0F00) >> 8);
buf += toHexString((c & 0x00F0) >> 4);
buf += toHexString(c & 0x000F);
}
}
return buf;
}