scuffed-code/icu4c/source/i18n/uspoof_conf.cpp

599 lines
23 KiB
C++
Raw Normal View History

/*
******************************************************************************
*
* Copyright (C) 2008-2009, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
* file name: uspoof_conf.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2009Jan05 (refactoring earlier files)
* created by: Andy Heninger
*
* Internal classes for compililing confusable data into its binary (runtime) form.
*/
#include "unicode/utypes.h"
#include "unicode/uspoof.h"
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/unorm.h"
#include "unicode/uregex.h"
#include "unicode/ustring.h"
#include "cmemory.h"
#include "uspoof_impl.h"
#include "uhash.h"
#include "uvector.h"
#include "uassert.h"
#include "uarrsort.h"
#include "uspoof_conf.h"
U_NAMESPACE_USE
//---------------------------------------------------------------------
//
// buildConfusableData Compile the source confusable data, as defined by
// the Unicode data file confusables.txt, into the binary
// structures used by the confusable detector.
//
// The binary structures are described in uspoof_impl.h
//
// 1. parse the data, building 4 hash tables, one each for the SL, SA, ML and MA
// tables. Each maps from a UChar32 to a String.
//
// 2. Sort all of the strings encountered by length, since they will need to
// be stored in that order in the final string table.
//
// 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the
// list because that will be the ordering of our runtime table.
//
// 4. Generate the run time string table. This is generated before the key & value
// tables because we need the string indexes when building those tables.
//
// 5. Build the run-time key and value tables. These are parallel tables, and are built
// at the same time
//
SPUString::SPUString(UnicodeString *s) {
fStr = s;
fStrTableIndex = 0;
}
SPUString::~SPUString() {
delete fStr;
}
SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) {
fVec = new UVector(status);
fHash = uhash_open(uhash_hashUnicodeString, // key hash function
uhash_compareUnicodeString, // Key Comparator
NULL, // Value Comparator
&status);
}
SPUStringPool::~SPUStringPool() {
int i;
for (i=fVec->size()-1; i>=0; i--) {
SPUString *s = static_cast<SPUString *>(fVec->elementAt(i));
delete s;
}
delete fVec;
uhash_close(fHash);
}
int32_t SPUStringPool::size() {
return fVec->size();
}
SPUString *SPUStringPool::getByIndex(int32_t index) {
SPUString *retString = (SPUString *)fVec->elementAt(index);
return retString;
}
// Comparison function for ordering strings in the string pool.
// Compare by length first, then, within a group of the same length,
// by code point order.
// Conforms to the type signature for a USortComparator in uvector.h
static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) {
const SPUString *sL = static_cast<const SPUString *>(left.pointer);
const SPUString *sR = static_cast<const SPUString *>(right.pointer);
int32_t lenL = sL->fStr->length();
int32_t lenR = sR->fStr->length();
if (lenL < lenR) {
return -1;
} else if (lenL > lenR) {
return 1;
} else {
return sL->fStr->compare(*(sR->fStr));
}
}
void SPUStringPool::sort(UErrorCode &status) {
fVec->sort(SPUStringCompare, status);
}
SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) {
SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src));
if (hashedString != NULL) {
delete src;
} else {
hashedString = new SPUString(src);
uhash_put(fHash, src, hashedString, &status);
fVec->addElement(hashedString, status);
}
return hashedString;
}
ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) :
fSpoofImpl(spImpl),
fInput(NULL),
fSLTable(NULL),
fSATable(NULL),
fMLTable(NULL),
fMATable(NULL),
fKeySet(NULL),
fKeyVec(NULL),
fValueVec(NULL),
fStringTable(NULL),
fStringLengthsTable(NULL),
stringPool(NULL),
fParseLine(NULL),
fParseHexNum(NULL),
fLineNum(0)
{
if (U_FAILURE(status)) {
return;
}
fSLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status);
fSATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status);
fMLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status);
fMATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status);
fKeySet = new UnicodeSet();
fKeyVec = new UVector(status);
fValueVec = new UVector(status);
stringPool = new SPUStringPool(status);
}
ConfusabledataBuilder::~ConfusabledataBuilder() {
uprv_free(fInput);
uregex_close(fParseLine);
uregex_close(fParseHexNum);
uhash_close(fSLTable);
uhash_close(fSATable);
uhash_close(fMLTable);
uhash_close(fMATable);
delete fKeySet;
delete fKeyVec;
delete fStringTable;
delete fStringLengthsTable;
delete fValueVec;
delete stringPool;
}
void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables,
int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
ConfusabledataBuilder builder(spImpl, status);
builder.build(confusables, confusablesLen, status);
if (U_FAILURE(status) && errorType != NULL) {
*errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE;
pe->line = builder.fLineNum;
}
}
void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen,
UErrorCode &status) {
// Convert the user input data from UTF-8 to UChar (UTF-16)
int32_t inputLen = 0;
if (U_FAILURE(status)) {
return;
}
u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status);
if (status != U_BUFFER_OVERFLOW_ERROR) {
return;
}
status = U_ZERO_ERROR;
fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar)));
if (fInput == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status);
// Regular Expression to parse a line from Confusables.txt. The expression will match
// any line. What was matched is determined by examining which capture groups have a match.
// Capture Group 1: the source char
// Capture Group 2: the replacement chars
// Capture Group 3-6 the table type, SL, SA, ML, or MA
// Capture Group 7: A blank or comment only line.
// Capture Group 8: A syntactically invalid line. Anything that didn't match before.
// Example Line from the confusables.txt source file:
// "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... "
fParseLine = uregex_openC(
"(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char
"[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s)
"(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued)
"\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type
"[ \\t]*(?:#.*?)?$" // Match any trailing #comment
"|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment
"|^(.*?)$", // OR match any line, which catches illegal lines.
0, NULL, &status);
// Regular expression for parsing a hex number out of a space-separated list of them.
// Capture group 1 gets the number, with spaces removed.
fParseHexNum = uregex_openC("\\s*([0-9A-F]+)", 0, NULL, &status);
// Zap any Byte Order Mark at the start of input. Changing it to a space is benign
// given the syntax of the input.
if (*fInput == 0xfeff) {
*fInput = 0x20;
}
// Parse the input, one line per iteration of this loop.
uregex_setText(fParseLine, fInput, inputLen, &status);
while (uregex_findNext(fParseLine, &status)) {
fLineNum++;
if (uregex_start(fParseLine, 7, &status) >= 0) {
// this was a blank or comment line.
continue;
}
if (uregex_start(fParseLine, 8, &status) >= 0) {
// input file syntax error.
status = U_PARSE_ERROR;
return;
}
// We have a good input line. Extract the key character and mapping string, and
// put them into the appropriate mapping table.
UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status),
uregex_end(fParseLine, 1, &status), status);
int32_t mapStringStart = uregex_start(fParseLine, 2, &status);
int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart;
uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status);
UnicodeString *mapString = new UnicodeString();
if (mapString == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
while (uregex_findNext(fParseHexNum, &status)) {
UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status),
uregex_end(fParseHexNum, 1, &status), status);
mapString->append(c);
}
U_ASSERT(mapString->length() >= 1);
// Put the map (value) string into the string pool
// This a little like a Java intern() - any duplicates will be eliminated.
SPUString *smapString = stringPool->addString(mapString, status);
// Add the UChar32 -> string mapping to the appropriate table.
UHashtable *table = uregex_start(fParseLine, 3, &status) >= 0 ? fSLTable :
uregex_start(fParseLine, 4, &status) >= 0 ? fSATable :
uregex_start(fParseLine, 5, &status) >= 0 ? fMLTable :
uregex_start(fParseLine, 6, &status) >= 0 ? fMATable :
NULL;
U_ASSERT(table != NULL);
uhash_iput(table, keyChar, smapString, &status);
fKeySet->add(keyChar);
if (U_FAILURE(status)) {
return;
}
}
// Input data is now all parsed and collected.
// Now create the run-time binary form of the data.
//
// This is done in two steps. First the data is assembled into vectors and strings,
// for ease of construction, then the contents of these collections are dumped
// into the actual raw-bytes data storage.
// Build up the string array, and record the index of each string therein
// in the (build time only) string pool.
// Strings of length one are not entered into the strings array.
// At the same time, build up the string lengths table, which records the
// position in the string table of the first string of each length >= 4.
// (Strings in the table are sorted by length)
stringPool->sort(status);
fStringTable = new UnicodeString();
fStringLengthsTable = new UVector(status);
int32_t previousStringLength = 0;
int32_t previousStringIndex = 0;
int32_t poolSize = stringPool->size();
int32_t i;
for (i=0; i<poolSize; i++) {
SPUString *s = stringPool->getByIndex(i);
int32_t strLen = s->fStr->length();
int32_t strIndex = fStringTable->length();
U_ASSERT(strLen >= previousStringLength);
if (strLen == 1) {
// strings of length one do not get an entry in the string table.
// Keep the single string character itself here, which is the same
// convention that is used in the final run-time string table index.
s->fStrTableIndex = s->fStr->charAt(0);
} else {
if ((strLen > previousStringLength) && (previousStringLength >= 4)) {
fStringLengthsTable->addElement(previousStringIndex, status);
fStringLengthsTable->addElement(previousStringLength, status);
}
s->fStrTableIndex = strIndex;
fStringTable->append(*(s->fStr));
}
previousStringLength = strLen;
previousStringIndex = strIndex;
}
// Make the final entry to the string lengths table.
// (it holds an entry for the _last_ string of each length, so adding the
// final one doesn't happen in the main loop because no longer string was encountered.)
if (previousStringLength >= 4) {
fStringLengthsTable->addElement(previousStringIndex, status);
fStringLengthsTable->addElement(previousStringLength, status);
}
// Construct the compile-time Key and Value tables
//
// For each key code point, check which mapping tables it applies to,
// and create the final data for the key & value structures.
//
// The four logical mapping tables are conflated into one combined table.
// If multiple logical tables have the same mapping for some key, they
// share a single entry in the combined table.
// If more than one mapping exists for the same key code point, multiple
// entries will be created in the table
for (int32_t range=0; range<fKeySet->getRangeCount(); range++) {
// It is an oddity of the UnicodeSet API that simply enumerating the contained
// code points requires a nested loop.
for (UChar32 keyChar=fKeySet->getRangeStart(range);
keyChar <= fKeySet->getRangeEnd(range); keyChar++) {
addKeyEntry(keyChar, fSLTable, USPOOF_SL_TABLE_FLAG, status);
addKeyEntry(keyChar, fSATable, USPOOF_SA_TABLE_FLAG, status);
addKeyEntry(keyChar, fMLTable, USPOOF_ML_TABLE_FLAG, status);
addKeyEntry(keyChar, fMATable, USPOOF_MA_TABLE_FLAG, status);
}
}
// Put the assembled data into the flat runtime array
outputData(status);
// All of the intermediate allocated data belongs to the ConfusabledataBuilder
// object (this), and is deleted in the destructor.
return;
}
//
// outputData The confusable data has been compiled and stored in intermediate
// collections and strings. Copy it from there to the final flat
// binary array.
//
// Note that as each section is added to the output data, the
// expand (reserveSpace() function will likely relocate it in memory.
// Be careful with pointers.
//
void ConfusabledataBuilder::outputData(UErrorCode &status) {
U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE);
// The Key Table
// While copying the keys to the runtime array,
// also sanity check that they are sorted.
int32_t numKeys = fKeyVec->size();
int32_t *keys =
static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status));
if (U_FAILURE(status)) {
return;
}
int i;
int32_t previousKey = 0;
for (i=0; i<numKeys; i++) {
int32_t key = fKeyVec->elementAti(i);
U_ASSERT((key & 0x00ffffff) >= (previousKey & 0x00ffffff));
U_ASSERT((key & 0xff000000) != 0);
keys[i] = key;
previousKey = key;
}
SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData;
rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData);
rawData->fCFUKeysSize = numKeys;
fSpoofImpl->fSpoofData->fCFUKeys = keys;
// The Value Table, parallels the key table
int32_t numValues = fValueVec->size();
U_ASSERT(numKeys == numValues);
uint16_t *values =
static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status));
if (U_FAILURE(status)) {
return;
}
for (i=0; i<numValues; i++) {
uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i));
U_ASSERT(value < 0xffff);
values[i] = static_cast<uint16_t>(value);
}
rawData = fSpoofImpl->fSpoofData->fRawData;
rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData);
rawData->fCFUStringIndexSize = numValues;
fSpoofImpl->fSpoofData->fCFUValues = values;
// The Strings Table.
uint32_t stringsLength = fStringTable->length();
// Reserve an extra space so the string will be nul-terminated. This is
// only a convenience, for when debugging; it is not needed otherwise.
UChar *strings =
static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status));
if (U_FAILURE(status)) {
return;
}
fStringTable->extract(strings, stringsLength+1, status);
rawData = fSpoofImpl->fSpoofData->fRawData;
U_ASSERT(rawData->fCFUStringTable == 0);
rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData);
rawData->fCFUStringTableLen = stringsLength;
fSpoofImpl->fSpoofData->fCFUStrings = strings;
// The String Lengths Table
// While copying into the runtime array do some sanity checks on the values
// Each complete entry contains two fields, an index and an offset.
// Lengths should increase with each entry.
// Offsets should be less than the size of the string table.
int32_t lengthTableLength = fStringLengthsTable->size();
uint16_t *stringLengths =
static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(lengthTableLength*sizeof(uint16_t), status));
if (U_FAILURE(status)) {
return;
}
int32_t destIndex = 0;
uint32_t previousLength = 0;
for (i=0; i<lengthTableLength; i+=2) {
uint32_t offset = static_cast<uint32_t>(fStringLengthsTable->elementAti(i));
uint32_t length = static_cast<uint32_t>(fStringLengthsTable->elementAti(i+1));
U_ASSERT(offset < stringsLength);
U_ASSERT(length < 40);
U_ASSERT(length > previousLength);
stringLengths[destIndex++] = static_cast<uint16_t>(offset);
stringLengths[destIndex++] = static_cast<uint16_t>(length);
previousLength = length;
}
rawData = fSpoofImpl->fSpoofData->fRawData;
rawData->fCFUStringLengths = (int32_t)((char *)stringLengths - (char *)rawData);
// Note: StringLengthsSize in the raw data is the number of complete entries,
// each consisting of a pair of 16 bit values, hence the divide by 2.
rawData->fCFUStringLengthsSize = lengthTableLength / 2;
fSpoofImpl->fSpoofData->fCFUStringLengths =
reinterpret_cast<SpoofStringLengthsElement *>(stringLengths);
}
// addKeyEntry Construction of the confusable Key and Mapping Values tables.
// This is an intermediate point in the building process.
// We already have the mappings in the hash tables fSLTable, etc.
// This function builds corresponding run-time style table entries into
// fKeyVec and fValueVec
void ConfusabledataBuilder::addKeyEntry(
UChar32 keyChar, // The key character
UHashtable *table, // The table, one of SATable, MATable, etc.
int32_t tableFlag, // One of USPOOF_SA_TABLE_FLAG, etc.
UErrorCode &status) {
SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(table, keyChar));
if (targetMapping == NULL) {
// No mapping for this key character.
// (This function is called for all four tables for each key char that
// is seen anywhere, so this no entry cases are very much expected.)
return;
}
// Check whether there is already an entry with the correct mapping.
// If so, simply set the flag in the keyTable saying that the existing entry
// applies to the table that we're doing now.
UBool keyHasMultipleValues = FALSE;
int32_t i;
for (i=fKeyVec->size()-1; i>=0 ; i--) {
int32_t key = fKeyVec->elementAti(i);
if ((key & 0x0ffffff) != keyChar) {
// We have now checked all existing key entries for this key char (if any)
// without finding one with the same mapping.
break;
}
UnicodeString mapping = getMapping(i);
if (mapping == *(targetMapping->fStr)) {
// The run time entry we are currently testing has the correct mapping.
// Set the flag in it indicating that it applies to the new table also.
key |= tableFlag;
fKeyVec->setElementAt(key, i);
return;
}
keyHasMultipleValues = TRUE;
}
// Need to add a new entry to the binary data being built for this mapping.
// Includes adding entries to both the key table and the parallel values table.
int32_t newKey = keyChar | tableFlag;
if (keyHasMultipleValues) {
newKey |= USPOOF_KEY_MULTIPLE_VALUES;
}
int32_t adjustedMappingLength = targetMapping->fStr->length() - 1;
if (adjustedMappingLength>3) {
adjustedMappingLength = 3;
}
newKey |= adjustedMappingLength << USPOOF_KEY_LENGTH_SHIFT;
int32_t newData = targetMapping->fStrTableIndex;
fKeyVec->addElement(newKey, status);
fValueVec->addElement(newData, status);
// If the preceding key entry is for the same key character (but with a different mapping)
// set the multiple-values flag on it.
if (keyHasMultipleValues) {
int32_t previousKeyIndex = fKeyVec->size() - 2;
int32_t previousKey = fKeyVec->elementAti(previousKeyIndex);
previousKey |= USPOOF_KEY_MULTIPLE_VALUES;
fKeyVec->setElementAt(previousKey, previousKeyIndex);
}
}
UnicodeString ConfusabledataBuilder::getMapping(int32_t index) {
int32_t key = fKeyVec->elementAti(index);
int32_t value = fValueVec->elementAti(index);
int32_t length = USPOOF_KEY_LENGTH_FIELD(key);
int32_t lastIndexWithLen;
switch (length) {
case 0:
return UnicodeString(static_cast<UChar>(value));
case 1:
case 2:
return UnicodeString(*fStringTable, value, length+1);
case 3:
length = 0;
int32_t i;
for (i=0; i<fStringLengthsTable->size(); i+=2) {
lastIndexWithLen = fStringLengthsTable->elementAti(i);
if (value <= lastIndexWithLen) {
length = fStringLengthsTable->elementAti(i+1);
break;
}
}
U_ASSERT(length>=3);
return UnicodeString(*fStringTable, value, length);
default:
U_ASSERT(FALSE);
}
return UnicodeString();
}
#endif
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS