scuffed-code/icu4c/source/i18n/calendar.cpp

2910 lines
94 KiB
C++
Raw Normal View History

1999-08-16 21:50:52 +00:00
/*
*******************************************************************************
2003-06-03 01:58:48 +00:00
* Copyright (C) 1997-2003, International Business Machines Corporation and *
* others. All Rights Reserved. *
1999-08-16 21:50:52 +00:00
*******************************************************************************
*
* File CALENDAR.CPP
*
* Modification History:
*
* Date Name Description
* 02/03/97 clhuang Creation.
* 04/22/97 aliu Cleaned up, fixed memory leak, made
* setWeekCountData() more robust.
* Moved platform code to TPlatformUtilities.
* 05/01/97 aliu Made equals(), before(), after() arguments const.
* 05/20/97 aliu Changed logic of when to compute fields and time
* to fix bugs.
* 08/12/97 aliu Added equivalentTo. Misc other fixes.
* 07/28/98 stephen Sync up with JDK 1.2
* 09/02/98 stephen Sync with JDK 1.2 8/31 build (getActualMin/Max)
* 03/17/99 stephen Changed adoptTimeZone() - now fAreFieldsSet is
* set to FALSE to force update of time.
*******************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/resbund.h"
#include "unicode/gregocal.h"
#include "gregoimp.h"
#include "buddhcal.h"
#include "japancal.h"
#include "unicode/calendar.h"
#include "cpputils.h"
#include "iculserv.h"
#include "ucln_in.h"
#include "cstring.h"
1999-08-16 21:50:52 +00:00
U_NAMESPACE_BEGIN
// ------------------------------------------
//
// Registration
//
//-------------------------------------------
//#define U_DEBUG_CALSVC 1
//
#if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
#include <stdio.h>
/**
* convert a UCalendarDateFields into a string - for debugging
* @param f field enum
* @return static string to the field name
* @internal
*/
static const char* fldName(UCalendarDateFields f) {
switch (f) {
#define FIELD_NAME_STR(x) case x: return (#x+5)
FIELD_NAME_STR( UCAL_ERA );
FIELD_NAME_STR( UCAL_YEAR );
FIELD_NAME_STR( UCAL_MONTH );
FIELD_NAME_STR( UCAL_WEEK_OF_YEAR );
FIELD_NAME_STR( UCAL_WEEK_OF_MONTH );
FIELD_NAME_STR( UCAL_DATE );
FIELD_NAME_STR( UCAL_DAY_OF_YEAR );
FIELD_NAME_STR( UCAL_DAY_OF_WEEK );
FIELD_NAME_STR( UCAL_DAY_OF_WEEK_IN_MONTH );
FIELD_NAME_STR( UCAL_AM_PM );
FIELD_NAME_STR( UCAL_HOUR );
FIELD_NAME_STR( UCAL_HOUR_OF_DAY );
FIELD_NAME_STR( UCAL_MINUTE );
FIELD_NAME_STR( UCAL_SECOND );
FIELD_NAME_STR( UCAL_MILLISECOND );
FIELD_NAME_STR( UCAL_ZONE_OFFSET );
FIELD_NAME_STR( UCAL_DST_OFFSET );
FIELD_NAME_STR( UCAL_YEAR_WOY );
FIELD_NAME_STR( UCAL_DOW_LOCAL );
FIELD_NAME_STR( UCAL_EXTENDED_YEAR );
FIELD_NAME_STR( UCAL_JULIAN_DAY );
FIELD_NAME_STR( UCAL_MILLISECONDS_IN_DAY );
#undef FIELD_NAME_STR
default:
return "??";
}
}
#endif
static ICULocaleService* gService = NULL;
// -------------------------------------
/**
* a Calendar Factory which creates the "basic" calendar types, that is, those
* shipped with ICU.
*/
class BasicCalendarFactory : public LocaleKeyFactory {
public:
/**
* @param calendarType static const string (caller owns storage - will be aliased) to calendar type
*/
BasicCalendarFactory(const char *calendarType)
: LocaleKeyFactory(LocaleKeyFactory::INVISIBLE), fType(calendarType), fID(calendarType,"") { }
virtual ~BasicCalendarFactory() {}
protected:
virtual UBool isSupportedID( const UnicodeString& id, UErrorCode& /* status */) const { return (id == fID); }
virtual void updateVisibleIDs(Hashtable& result, UErrorCode& status) const
{
if (U_SUCCESS(status)) {
const UnicodeString& id = fID;
result.put(id, (void*)this, status);
}
}
virtual UObject* create(const ICUServiceKey& key, const ICUService* /*service*/, UErrorCode& status) const {
const LocaleKey& lkey = (LocaleKey&)key;
Locale curLoc; // current locale
Locale canLoc; // Canonical locale
lkey.currentLocale(curLoc);
lkey.canonicalLocale(canLoc);
UnicodeString str;
key.currentID(str);
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "BasicCalendarFactory[%s] - cur %s, can %s\n", fType, (const char*)curLoc.getName(), (const char*)canLoc.getName());
#endif
if(str != fID) { // Do we handle this type?
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "BasicCalendarFactory[%s] - not handling %s.\n", fType, (const char*) curLoc.getName() );
#endif
return NULL;
}
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "BasicCalendarFactory %p: creating %s type for %s\n",
this, fType, (const char*)curLoc.getName());
fflush(stderr);
#endif
if(!fType || !*fType || !uprv_strcmp(fType,"gregorian")) { // Gregorian (default)
return new GregorianCalendar(canLoc, status);
} else if(!uprv_strcmp(fType, "japanese")) {
return new JapaneseCalendar(canLoc, status);
} else if(!uprv_strcmp(fType, "buddhist")) {
return new BuddhistCalendar(canLoc, status);
} else {
status = U_UNSUPPORTED_ERROR;
return NULL;
}
}
private:
const char *fType;
const UnicodeString fID;
};
/**
* A factory which looks up the DefaultCalendar resource to determine which class of calendar to use
*/
class DefaultCalendarFactory : public ICUResourceBundleFactory {
public:
DefaultCalendarFactory(): ICUResourceBundleFactory() { }
protected:
virtual UObject* create(const ICUServiceKey& key, const ICUService* /*service*/, UErrorCode& status) const {
LocaleKey &lkey = (LocaleKey&)key;
Locale loc;
lkey.currentLocale(loc);
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "DefaultCalendar factory %p: looking up %s\n",
this, (const char*)loc.getName());
#endif
UErrorCode resStatus = U_ZERO_ERROR;
UResourceBundle *rb = ures_open(NULL, (const char*)loc.getName(), &resStatus);
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "... ures_open -> %s\n", u_errorName(resStatus));
#endif
if(U_FAILURE(resStatus) ||
(resStatus == U_USING_DEFAULT_WARNING) || (resStatus==U_USING_FALLBACK_WARNING)) { //Don't want to handle fallback data.
ures_close(rb);
status = resStatus; // propagate err back to caller
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "... exitting (NULL)\n");
#endif
return NULL;
}
UnicodeString myString = ures_getUnicodeStringByKey(rb, Calendar::kDefaultCalendar, &status);
#ifdef U_DEBUG_CALSVC
int32_t len = 0;
UErrorCode debugStatus = U_ZERO_ERROR;
const UChar *defCal = ures_getStringByKey(rb, Calendar::kDefaultCalendar, &len, &debugStatus);
fprintf(stderr, "... get string(%d) -> %s\n", len, u_errorName(debugStatus));
#endif
ures_close(rb);
if(U_FAILURE(status)) {
return NULL;
}
#ifdef U_DEBUG_CALSVC
{
char defCalStr[200];
if(len > 199) {
len = 199;
}
u_UCharsToChars(defCal, defCalStr, len);
defCalStr[len]=0;
fprintf(stderr, "DefaultCalendarFactory: looked up %s, got DefaultCalendar= %s\n", (const char*)loc.getName(), defCalStr);
}
#endif
return myString.clone();
}
};
// -------------------------------------
class CalendarService : public ICULocaleService {
public:
CalendarService()
: ICULocaleService("Calendar")
{
UErrorCode status = U_ZERO_ERROR;
registerFactory(new DefaultCalendarFactory(), status);
}
virtual UObject* cloneInstance(UObject* instance) const {
if(instance->getDynamicClassID() == UnicodeString::getStaticClassID()) {
return ((UnicodeString*)instance)->clone();
} else {
#ifdef U_DEBUG_CALSVC_F
UErrorCode status2 = U_ZERO_ERROR;
fprintf(stderr, "Cloning a %s calendar with tz=%ld\n", ((Calendar*)instance)->getType(), ((Calendar*)instance)->get(UCAL_ZONE_OFFSET, status2));
#endif
return ((Calendar*)instance)->clone();
}
}
virtual UObject* handleDefault(const ICUServiceKey& key, UnicodeString* /*actualID*/, UErrorCode& status) const {
LocaleKey& lkey = (LocaleKey&)key;
//int32_t kind = lkey.kind();
Locale loc;
lkey.canonicalLocale(loc);
#ifdef U_DEBUG_CALSVC
Locale loc2;
lkey.currentLocale(loc2);
fprintf(stderr, "CalSvc:handleDefault for currentLoc %s, canloc %s\n", (const char*)loc.getName(), (const char*)loc2.getName());
#endif
Calendar *nc = new GregorianCalendar(loc, status);
#ifdef U_DEBUG_CALSVC
UErrorCode status2 = U_ZERO_ERROR;
fprintf(stderr, "New default calendar has tz=%d\n", ((Calendar*)nc)->get(UCAL_ZONE_OFFSET, status2));
#endif
return nc;
}
virtual UBool isDefault() const {
return countFactories() == 1;
}
};
// -------------------------------------
static ICULocaleService*
getService(void)
{
UBool needInit;
{
Mutex mutex;
needInit = (UBool)(gService == NULL);
}
if (needInit) {
UErrorCode status = U_ZERO_ERROR;
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "Spinning up Calendar Service\n");
#endif
ICULocaleService * newservice = new CalendarService();
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "Registering classes..\n");
#endif
// Register all basic instances.
newservice->registerFactory(new BasicCalendarFactory("japanese"),status);
newservice->registerFactory(new BasicCalendarFactory("buddhist"),status);
newservice->registerFactory(new BasicCalendarFactory("gregorian"),status);
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "Done..\n");
#endif
if(U_FAILURE(status)) {
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "err (%s) registering classes, deleting service.....\n", u_errorName(status));
#endif
delete newservice;
newservice = NULL;
}
if (newservice) {
Mutex mutex;
if (gService == NULL) {
gService = newservice;
newservice = NULL;
}
}
if (newservice) {
delete newservice;
} else {
// we won the contention - we can register the cleanup.
ucln_i18n_registerCleanup();
}
}
return gService;
}
// -------------------------------------
static const int32_t kCalendarLimits[UCAL_FIELD_COUNT][4] = {
// Minimum Greatest min Least max Greatest max
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // ERA
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // YEAR
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // MONTH
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // WEEK_OF_YEAR
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // WEEK_OF_MONTH
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // DAY_OF_MONTH
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // DAY_OF_YEAR
{ 1, 1, 7, 7 }, // DAY_OF_WEEK
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // DAY_OF_WEEK_IN_MONTH
{ 0, 0, 1, 1 }, // AM_PM
{ 0, 0, 11, 11 }, // HOUR
{ 0, 0, 23, 23 }, // HOUR_OF_DAY
{ 0, 0, 59, 59 }, // MINUTE
{ 0, 0, 59, 59 }, // SECOND
{ 0, 0, 999, 999 }, // MILLISECOND
{-12*kOneHour, -12*kOneHour, 12*kOneHour, 12*kOneHour }, // ZONE_OFFSET
{ 0, 0, 1*kOneHour, 1*kOneHour }, // DST_OFFSET
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // YEAR_WOY
{ 1, 1, 7, 7 }, // DOW_LOCAL
{/*N/A*/-1, /*N/A*/-1, /*N/A*/-1, /*N/A*/-1}, // EXTENDED_YEAR
{ -0x7F000000, -0x7F000000, 0x7F000000, 0x7F000000 }, // JULIAN_DAY
{ 0, 0, 24*kOneHour-1, 24*kOneHour-1 } // MILLISECONDS_IN_DAY
};
1999-08-16 21:50:52 +00:00
// Resource bundle tags read by this class
const char Calendar::kDateTimeElements[] = "DateTimeElements";
const char Calendar::kDefaultCalendar[] = "DefaultCalendar";
1999-08-16 21:50:52 +00:00
// Data flow in Calendar
// ---------------------
// The current time is represented in two ways by Calendar: as UTC
// milliseconds from the epoch start (1 January 1970 0:00 UTC), and as local
// fields such as MONTH, HOUR, AM_PM, etc. It is possible to compute the
// millis from the fields, and vice versa. The data needed to do this
// conversion is encapsulated by a TimeZone object owned by the Calendar.
// The data provided by the TimeZone object may also be overridden if the
// user sets the ZONE_OFFSET and/or DST_OFFSET fields directly. The class
// keeps track of what information was most recently set by the caller, and
// uses that to compute any other information as needed.
// If the user sets the fields using set(), the data flow is as follows.
// This is implemented by the Calendar subclass's computeTime() method.
// During this process, certain fields may be ignored. The disambiguation
// algorithm for resolving which fields to pay attention to is described
// above.
// local fields (YEAR, MONTH, DATE, HOUR, MINUTE, etc.)
// |
// | Using Calendar-specific algorithm
// V
// local standard millis
// |
// | Using TimeZone or user-set ZONE_OFFSET / DST_OFFSET
// V
// UTC millis (in time data member)
// If the user sets the UTC millis using setTime(), the data flow is as
// follows. This is implemented by the Calendar subclass's computeFields()
// method.
// UTC millis (in time data member)
// |
// | Using TimeZone getOffset()
// V
// local standard millis
// |
// | Using Calendar-specific algorithm
// V
// local fields (YEAR, MONTH, DATE, HOUR, MINUTE, etc.)
// In general, a round trip from fields, through local and UTC millis, and
// back out to fields is made when necessary. This is implemented by the
// complete() method. Resolving a partial set of fields into a UTC millis
// value allows all remaining fields to be generated from that value. If
// the Calendar is lenient, the fields are also renormalized to standard
// ranges when they are regenerated.
// -------------------------------------
Calendar::Calendar(UErrorCode& success)
: UObject(),
fIsTimeSet(FALSE),
1999-08-16 21:50:52 +00:00
fAreFieldsSet(FALSE),
fAreAllFieldsSet(FALSE),
fNextStamp(kMinimumUserStamp),
fTime(0),
1999-08-16 21:50:52 +00:00
fLenient(TRUE),
fZone(0)
1999-08-16 21:50:52 +00:00
{
clear();
fZone = TimeZone::createDefault();
setWeekCountData(Locale::getDefault(), success);
}
// -------------------------------------
Calendar::Calendar(TimeZone* zone, const Locale& aLocale, UErrorCode& success)
: UObject(),
fIsTimeSet(FALSE),
1999-08-16 21:50:52 +00:00
fAreFieldsSet(FALSE),
fAreAllFieldsSet(FALSE),
fNextStamp(kMinimumUserStamp),
fTime(0),
1999-08-16 21:50:52 +00:00
fLenient(TRUE),
fZone(0)
1999-08-16 21:50:52 +00:00
{
if(zone == 0) {
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because timezone cannot be 0\n",
__FILE__, __LINE__);
#endif
success = U_ILLEGAL_ARGUMENT_ERROR;
return;
1999-08-16 21:50:52 +00:00
}
clear();
fZone = zone;
setWeekCountData(aLocale, success);
}
// -------------------------------------
Calendar::Calendar(const TimeZone& zone, const Locale& aLocale, UErrorCode& success)
: UObject(),
fIsTimeSet(FALSE),
1999-08-16 21:50:52 +00:00
fAreFieldsSet(FALSE),
fAreAllFieldsSet(FALSE),
fNextStamp(kMinimumUserStamp),
fTime(0),
1999-08-16 21:50:52 +00:00
fLenient(TRUE),
fZone(0)
1999-08-16 21:50:52 +00:00
{
clear();
fZone = zone.clone();
setWeekCountData(aLocale, success);
}
// -------------------------------------
Calendar::~Calendar()
{
delete fZone;
}
// -------------------------------------
Calendar::Calendar(const Calendar &source)
: UObject(source)
1999-08-16 21:50:52 +00:00
{
fZone = 0;
*this = source;
}
// -------------------------------------
Calendar &
Calendar::operator=(const Calendar &right)
{
if (this != &right) {
uprv_arrayCopy(right.fFields, fFields, UCAL_FIELD_COUNT);
uprv_arrayCopy(right.fIsSet, fIsSet, UCAL_FIELD_COUNT);
uprv_arrayCopy(right.fStamp, fStamp, UCAL_FIELD_COUNT);
1999-08-16 21:50:52 +00:00
fTime = right.fTime;
fIsTimeSet = right.fIsTimeSet;
fAreAllFieldsSet = right.fAreAllFieldsSet;
fAreFieldsSet = right.fAreFieldsSet;
fLenient = right.fLenient;
delete fZone;
fZone = right.fZone->clone();
fFirstDayOfWeek = right.fFirstDayOfWeek;
fMinimalDaysInFirstWeek = right.fMinimalDaysInFirstWeek;
fNextStamp = right.fNextStamp;
}
return *this;
}
// -------------------------------------
Calendar*
Calendar::createInstance(UErrorCode& success)
{
return createInstance(TimeZone::createDefault(), Locale::getDefault(), success);
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
Calendar*
Calendar::createInstance(const TimeZone& zone, UErrorCode& success)
{
return createInstance(zone, Locale::getDefault(), success);
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
Calendar*
Calendar::createInstance(const Locale& aLocale, UErrorCode& success)
{
return createInstance(TimeZone::createDefault(), aLocale, success);
1999-08-16 21:50:52 +00:00
}
// ------------------------------------- Adopting
// Note: this is the bottleneck that actually calls the service routines.
1999-08-16 21:50:52 +00:00
Calendar*
Calendar::createInstance(TimeZone* zone, const Locale& aLocale, UErrorCode& success)
{
UObject* u = getService()->get(aLocale, LocaleKey::KIND_ANY, success);
Calendar* c = NULL;
if(U_FAILURE(success) || !u) {
delete zone;
if(U_SUCCESS(success)) { // Propagate some kind of err
success = U_INTERNAL_PROGRAM_ERROR;
}
return NULL;
}
if(u->getDynamicClassID() == UnicodeString::getStaticClassID()) {
// It's a unicode string telling us what type of calendar to load ("gregorian", etc)
char tmp[200];
const UnicodeString& str = *(UnicodeString*)u;
// Extract a char* out of it..
int32_t len = str.length();
int32_t actLen = sizeof(tmp)-1;
if(len > actLen) {
len = actLen;
}
str.extract(0,len,tmp);
tmp[len]=0;
#ifdef U_DEBUG_CALSVC
// fprintf(stderr, "createInstance(%s) told to look at %s..\n", (const char*)aLocale.getName(), tmp);
#endif
// Create a Locale over this string
Locale l(tmp);
delete u;
u = NULL;
c = (Calendar*)getService()->get(l, LocaleKey::KIND_ANY, success);
if(U_FAILURE(success) || !c) {
delete zone;
if(U_SUCCESS(success)) {
success = U_INTERNAL_PROGRAM_ERROR; // Propagate some err
}
return NULL;
}
if(c->getDynamicClassID() == UnicodeString::getStaticClassID()) {
// recursed! Second lookup returned a UnicodeString.
// Perhaps DefaultCalendar{} was set to another locale.
success = U_MISSING_RESOURCE_ERROR; // requested a calendar type which could NOT be found.
delete c;
delete zone;
return NULL;
}
#ifdef U_DEBUG_CALSVC
fprintf(stderr, "setting to locale %s\n", (const char*)aLocale.getName());
#endif
c->setWeekCountData(aLocale, success); // set the correct locale (this was an indirected calendar)
} else {
// a calendar was returned - we assume the factory did the right thing.
c = (Calendar*)u;
}
// Now, reset calendar to default state:
c->adoptTimeZone(zone); // Set the correct time zone
c->setTimeInMillis(getNow(), success); // let the new calendar have the current time.
return c;
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
Calendar*
Calendar::createInstance(const TimeZone& zone, const Locale& aLocale, UErrorCode& success)
{
Calendar* c = createInstance(aLocale, success);
if(U_SUCCESS(success) && c) {
c->setTimeZone(zone);
}
return c;
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
UBool
1999-08-16 21:50:52 +00:00
Calendar::operator==(const Calendar& that) const
{
UErrorCode status = U_ZERO_ERROR;
return isEquivalentTo(that) &&
1999-08-16 21:50:52 +00:00
getTimeInMillis(status) == that.getTimeInMillis(status) &&
U_SUCCESS(status);
}
UBool
Calendar::isEquivalentTo(const Calendar& other) const
{
return getDynamicClassID() == other.getDynamicClassID() &&
fLenient == other.fLenient &&
fFirstDayOfWeek == other.fFirstDayOfWeek &&
fMinimalDaysInFirstWeek == other.fMinimalDaysInFirstWeek &&
*fZone == *other.fZone;
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
UBool
1999-08-16 21:50:52 +00:00
Calendar::equals(const Calendar& when, UErrorCode& status) const
{
return (this == &when ||
getTime(status) == when.getTime(status));
}
// -------------------------------------
UBool
1999-08-16 21:50:52 +00:00
Calendar::before(const Calendar& when, UErrorCode& status) const
{
return (this != &when &&
getTimeInMillis(status) < when.getTimeInMillis(status));
}
// -------------------------------------
UBool
1999-08-16 21:50:52 +00:00
Calendar::after(const Calendar& when, UErrorCode& status) const
{
return (this != &when &&
getTimeInMillis(status) > when.getTimeInMillis(status));
}
// -------------------------------------
const Locale*
Calendar::getAvailableLocales(int32_t& count)
{
return Locale::getAvailableLocales(count);
}
// -------------------------------------
UDate
Calendar::getNow()
{
return (UDate)uprv_getUTCtime() * U_MILLIS_PER_SECOND; // return as milliseconds
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
/**
* Gets this Calendar's current time as a long.
* @return the current time as UTC milliseconds from the epoch.
*/
double
Calendar::getTimeInMillis(UErrorCode& status) const
{
if(U_FAILURE(status))
1999-08-16 21:50:52 +00:00
return 0.0;
if ( ! fIsTimeSet)
((Calendar*)this)->updateTime(status);
/* Test for buffer overflows */
if(U_FAILURE(status)) {
return 0.0;
}
1999-08-16 21:50:52 +00:00
return fTime;
}
// -------------------------------------
/**
* Sets this Calendar's current time from the given long value.
* @param date the new time in UTC milliseconds from the epoch.
*/
void
Calendar::setTimeInMillis( double millis, UErrorCode& status ) {
if(U_FAILURE(status))
1999-08-16 21:50:52 +00:00
return;
fIsTimeSet = TRUE;
fTime = millis;
fAreFieldsSet = FALSE;
computeFields(status);
/* Test for buffer overflows */
if(U_FAILURE(status)) {
return;
}
1999-08-16 21:50:52 +00:00
fAreFieldsSet = TRUE;
fAreAllFieldsSet = TRUE;
}
// -------------------------------------
int32_t
Calendar::get(UCalendarDateFields field, UErrorCode& status) const
1999-08-16 21:50:52 +00:00
{
// field values are only computed when actually requested; for more on when computation
// of various things happens, see the "data flow in Calendar" description at the top
// of this file
if (U_SUCCESS(status)) ((Calendar*)this)->complete(status); // Cast away const
return U_SUCCESS(status) ? fFields[field] : 0;
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
void
Calendar::set(UCalendarDateFields field, int32_t value)
1999-08-16 21:50:52 +00:00
{
fIsTimeSet = FALSE;
fFields[field] = value;
fStamp[field] = fNextStamp++;
fAreFieldsSet = FALSE;
fIsSet[field] = TRUE; // Remove later
}
// -------------------------------------
void
Calendar::set(int32_t year, int32_t month, int32_t date)
{
set(UCAL_YEAR, year);
set(UCAL_MONTH, month);
set(UCAL_DATE, date);
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
void
Calendar::set(int32_t year, int32_t month, int32_t date, int32_t hour, int32_t minute)
{
set(UCAL_YEAR, year);
set(UCAL_MONTH, month);
set(UCAL_DATE, date);
set(UCAL_HOUR_OF_DAY, hour);
set(UCAL_MINUTE, minute);
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
void
Calendar::set(int32_t year, int32_t month, int32_t date, int32_t hour, int32_t minute, int32_t second)
{
set(UCAL_YEAR, year);
set(UCAL_MONTH, month);
set(UCAL_DATE, date);
set(UCAL_HOUR_OF_DAY, hour);
set(UCAL_MINUTE, minute);
set(UCAL_SECOND, second);
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
void
Calendar::clear()
{
for (int32_t i=0; i<UCAL_FIELD_COUNT; ++i) {
1999-08-16 21:50:52 +00:00
fFields[i] = 0; // Must do this; other code depends on it
fIsSet[i] = FALSE;
fStamp[i] = kUnset;
}
fAreFieldsSet = FALSE;
fAreAllFieldsSet = FALSE;
fIsTimeSet = FALSE;
}
// -------------------------------------
void
Calendar::clear(UCalendarDateFields field)
1999-08-16 21:50:52 +00:00
{
fFields[field] = 0;
fStamp[field] = kUnset;
fAreFieldsSet = FALSE;
fAreAllFieldsSet = FALSE;
fIsSet[field] = FALSE; // Remove later
fIsTimeSet = FALSE;
}
// -------------------------------------
UBool
Calendar::isSet(UCalendarDateFields field) const
1999-08-16 21:50:52 +00:00
{
return fStamp[field] != kUnset;
}
int32_t Calendar::newestStamp(UCalendarDateFields first, UCalendarDateFields last, int32_t bestStampSoFar) const
{
int32_t bestStamp = bestStampSoFar;
for (int32_t i=(int32_t)first; i<=(int32_t)last; ++i) {
if (fStamp[i] > bestStamp) {
bestStamp = fStamp[i];
}
}
return bestStamp;
}
1999-08-16 21:50:52 +00:00
// -------------------------------------
void
Calendar::complete(UErrorCode& status)
{
if (!fIsTimeSet) {
1999-08-16 21:50:52 +00:00
updateTime(status);
/* Test for buffer overflows */
if(U_FAILURE(status)) {
return;
}
}
1999-08-16 21:50:52 +00:00
if (!fAreFieldsSet) {
computeFields(status); // fills in unset fields
/* Test for buffer overflows */
if(U_FAILURE(status)) {
return;
}
1999-08-16 21:50:52 +00:00
fAreFieldsSet = TRUE;
fAreAllFieldsSet = TRUE;
}
}
//-------------------------------------------------------------------------
// Protected utility methods for use by subclasses. These are very handy
// for implementing add, roll, and computeFields.
//-------------------------------------------------------------------------
/**
* Adjust the specified field so that it is within
* the allowable range for the date to which this calendar is set.
* For example, in a Gregorian calendar pinning the {@link #DAY_OF_MONTH DAY_OF_MONTH}
* field for a calendar set to April 31 would cause it to be set
* to April 30.
* <p>
* <b>Subclassing:</b>
* <br>
* This utility method is intended for use by subclasses that need to implement
* their own overrides of {@link #roll roll} and {@link #add add}.
* <p>
* <b>Note:</b>
* <code>pinField</code> is implemented in terms of
* {@link #getActualMinimum getActualMinimum}
* and {@link #getActualMaximum getActualMaximum}. If either of those methods uses
* a slow, iterative algorithm for a particular field, it would be
* unwise to attempt to call <code>pinField</code> for that field. If you
* really do need to do so, you should override this method to do
* something more efficient for that field.
* <p>
* @param field The calendar field whose value should be pinned.
*
* @see #getActualMinimum
* @see #getActualMaximum
* @stable ICU 2.0
*/
void Calendar::pinField(UCalendarDateFields field, UErrorCode& status) {
int32_t max = getActualMaximum(field, status);
int32_t min = getActualMinimum(field, status);
if (fFields[field] > max) {
set(field, max);
} else if (fFields[field] < min) {
set(field, min);
}
}
void Calendar::computeFields(UErrorCode &ec)
{
if (U_FAILURE(ec)) {
return;
}
// Compute local wall millis
double localMillis = internalGetTime();
int32_t rawOffset, dstOffset;
getTimeZone().getOffset(localMillis, FALSE, rawOffset, dstOffset, ec);
localMillis += rawOffset;
// Mark fields as set. Do this before calling handleComputeFields().
uint32_t mask = //fInternalSetMask;
(1 << ERA) |
(1 << UCAL_YEAR) |
(1 << UCAL_MONTH) |
(1 << UCAL_DAY_OF_MONTH) | // = UCAL_DATE
(1 << UCAL_DAY_OF_YEAR) |
(1 << UCAL_EXTENDED_YEAR);
for (int32_t i=0; i<UCAL_FIELD_COUNT; ++i) {
if ((mask & 1) == 0) {
fStamp[i] = kInternallySet;
fIsSet[i] = TRUE; // Remove later
} else {
fStamp[i] = kUnset;
fIsSet[i] = FALSE;
}
mask >>= 1;
}
// We used to check for and correct extreme millis values (near
// Long.MIN_VALUE or Long.MAX_VALUE) here. Such values would cause
// overflows from positive to negative (or vice versa) and had to
// be manually tweaked. We no longer need to do this because we
// have limited the range of supported dates to those that have a
// Julian day that fits into an int. This allows us to implement a
// JULIAN_DAY field and also removes some inelegant code. - Liu
// 11/6/00
int32_t days = (int32_t)Math::floorDivide(localMillis, kOneDay);
internalSet(UCAL_JULIAN_DAY,days + kEpochStartAsJulianDay);
#if defined (U_DEBUG_CAL)
//fprintf(stderr, "%s:%d- Hmm! Jules @ %d, as per %.0lf millis\n",
//__FILE__, __LINE__, fFields[UCAL_JULIAN_DAY], localMillis);
#endif
// In some cases we will have to call this method again below to
// adjust for DST pushing us into the next Julian day.
computeGregorianAndDOWFields(fFields[UCAL_JULIAN_DAY], ec);
int32_t millisInDay = (int32_t) (localMillis - (days * kOneDay));
if (millisInDay < 0) millisInDay += (int32_t)kOneDay;
// Adjust our millisInDay for DST. dstOffset will be zero if DST
// is not in effect at this time of year, or if our zone does not
// use DST.
millisInDay += dstOffset;
// If DST has pushed us into the next day, we must call
// computeGregorianAndDOWFields() again. This happens in DST between
// 12:00 am and 1:00 am every day. The first call to
// computeGregorianAndDOWFields() will give the wrong day, since the
// Standard time is in the previous day.
if (millisInDay >= (int32_t)kOneDay) {
millisInDay -= (int32_t)kOneDay; // ASSUME dstOffset < 24:00
// We don't worry about overflow of JULIAN_DAY because the
// allowable range of JULIAN_DAY has slop at the ends (that is,
// the max is less that 0x7FFFFFFF and the min is greater than
// -0x80000000).
computeGregorianAndDOWFields(++fFields[UCAL_JULIAN_DAY], ec);
}
// Call framework method to have subclass compute its fields.
// These must include, at a minimum, MONTH, DAY_OF_MONTH,
// EXTENDED_YEAR, YEAR, DAY_OF_YEAR. This method will call internalSet(),
// which will update stamp[].
handleComputeFields(fFields[UCAL_JULIAN_DAY], ec);
// Compute week-related fields, based on the subclass-computed
// fields computed by handleComputeFields().
computeWeekFields(ec);
// Compute time-related fields. These are indepent of the date and
// of the subclass algorithm. They depend only on the local zone
// wall milliseconds in day.
fFields[UCAL_MILLISECONDS_IN_DAY] = millisInDay;
fFields[UCAL_MILLISECOND] = millisInDay % 1000;
millisInDay /= 1000;
fFields[UCAL_SECOND] = millisInDay % 60;
millisInDay /= 60;
fFields[UCAL_MINUTE] = millisInDay % 60;
millisInDay /= 60;
fFields[UCAL_HOUR_OF_DAY] = millisInDay;
fFields[UCAL_AM_PM] = millisInDay / 12; // Assume AM == 0
fFields[UCAL_HOUR] = millisInDay % 12;
fFields[UCAL_ZONE_OFFSET] = rawOffset;
fFields[UCAL_DST_OFFSET] = dstOffset;
}
/**
* Compute the Gregorian calendar year, month, and day of month from
* the given Julian day. These values are not stored in fields, but in
* member variables gregorianXxx. Also compute the DAY_OF_WEEK and
* DOW_LOCAL fields.
*/
void Calendar::computeGregorianAndDOWFields(int32_t julianDay, UErrorCode &ec)
{
computeGregorianFields(julianDay, ec);
// Compute day of week: JD 0 = Monday
int32_t dow = julianDayToDayOfWeek(julianDay);
internalSet(UCAL_DAY_OF_WEEK,dow);
// Calculate 1-based localized day of week
int32_t dowLocal = dow - getFirstDayOfWeek() + 1;
if (dowLocal < 1) {
dowLocal += 7;
}
internalSet(UCAL_DOW_LOCAL,dowLocal);
fFields[UCAL_DOW_LOCAL] = dowLocal;
}
/**
* Compute the Gregorian calendar year, month, and day of month from the
* Julian day. These values are not stored in fields, but in member
* variables gregorianXxx. They are used for time zone computations and by
* subclasses that are Gregorian derivatives. Subclasses may call this
* method to perform a Gregorian calendar millis->fields computation.
* To perform a Gregorian calendar fields->millis computation, call
* computeGregorianMonthStart().
* @see #computeGregorianMonthStart
*/
void Calendar::computeGregorianFields(int32_t julianDay, UErrorCode & /* ec */) {
int32_t gregorianDayOfWeekUnused;
Grego::dayToFields(julianDay - kEpochStartAsJulianDay, fGregorianYear, fGregorianMonth, fGregorianDayOfMonth, gregorianDayOfWeekUnused, fGregorianDayOfYear);
}
/**
* Compute the fields WEEK_OF_YEAR, YEAR_WOY, WEEK_OF_MONTH,
* DAY_OF_WEEK_IN_MONTH, and DOW_LOCAL from EXTENDED_YEAR, YEAR,
* DAY_OF_WEEK, and DAY_OF_YEAR. The latter fields are computed by the
* subclass based on the calendar system.
*
* <p>The YEAR_WOY field is computed simplistically. It is equal to YEAR
* most of the time, but at the year boundary it may be adjusted to YEAR-1
* or YEAR+1 to reflect the overlap of a week into an adjacent year. In
* this case, a simple increment or decrement is performed on YEAR, even
* though this may yield an invalid YEAR value. For instance, if the YEAR
* is part of a calendar system with an N-year cycle field CYCLE, then
* incrementing the YEAR may involve incrementing CYCLE and setting YEAR
* back to 0 or 1. This is not handled by this code, and in fact cannot be
* simply handled without having subclasses define an entire parallel set of
* fields for fields larger than or equal to a year. This additional
* complexity is not warranted, since the intention of the YEAR_WOY field is
* to support ISO 8601 notation, so it will typically be used with a
* proleptic Gregorian calendar, which has no field larger than a year.
*/
void Calendar::computeWeekFields(UErrorCode &ec) {
if(U_FAILURE(ec)) {
return;
}
int32_t eyear = fFields[UCAL_EXTENDED_YEAR];
int32_t year = fFields[UCAL_YEAR];
int32_t dayOfWeek = fFields[UCAL_DAY_OF_WEEK];
int32_t dayOfYear = fFields[UCAL_DAY_OF_YEAR];
// WEEK_OF_YEAR start
// Compute the week of the year. For the Gregorian calendar, valid week
// numbers run from 1 to 52 or 53, depending on the year, the first day
// of the week, and the minimal days in the first week. For other
// calendars, the valid range may be different -- it depends on the year
// length. Days at the start of the year may fall into the last week of
// the previous year; days at the end of the year may fall into the
// first week of the next year. ASSUME that the year length is less than
// 7000 days.
int32_t yearOfWeekOfYear = year;
int32_t relDow = (dayOfWeek + 7 - getFirstDayOfWeek()) % 7; // 0..6
int32_t relDowJan1 = (dayOfWeek - dayOfYear + 7001 - getFirstDayOfWeek()) % 7; // 0..6
int32_t woy = (dayOfYear - 1 + relDowJan1) / 7; // 0..53
if ((7 - relDowJan1) >= getMinimalDaysInFirstWeek()) {
++woy;
}
// Adjust for weeks at the year end that overlap into the previous or
// next calendar year.
if (woy == 0) {
// We are the last week of the previous year.
// Check to see if we are in the last week; if so, we need
// to handle the case in which we are the first week of the
// next year.
int32_t prevDoy = dayOfYear + handleGetYearLength(eyear - 1);
woy = weekNumber(prevDoy, dayOfWeek);
yearOfWeekOfYear--;
} else {
int32_t lastDoy = handleGetYearLength(eyear);
// Fast check: For it to be week 1 of the next year, the DOY
// must be on or after L-5, where L is yearLength(), then it
// cannot possibly be week 1 of the next year:
// L-5 L
// doy: 359 360 361 362 363 364 365 001
// dow: 1 2 3 4 5 6 7
if (dayOfYear >= (lastDoy - 5)) {
int32_t lastRelDow = (relDow + lastDoy - dayOfYear) % 7;
if (lastRelDow < 0) {
lastRelDow += 7;
}
if (((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) &&
((dayOfYear + 7 - relDow) > lastDoy)) {
woy = 1;
yearOfWeekOfYear++;
}
}
}
fFields[UCAL_WEEK_OF_YEAR] = woy;
fFields[UCAL_YEAR_WOY] = yearOfWeekOfYear;
// WEEK_OF_YEAR end
int32_t dayOfMonth = fFields[UCAL_DAY_OF_MONTH];
fFields[UCAL_WEEK_OF_MONTH] = weekNumber(dayOfMonth, dayOfWeek);
fFields[UCAL_DAY_OF_WEEK_IN_MONTH] = (dayOfMonth-1) / 7 + 1;
#if defined (U_DEBUG_CAL)
if(fFields[UCAL_DAY_OF_WEEK_IN_MONTH]==0) fprintf(stderr, "%s:%d: DOWIM %d on %g\n",
__FILE__, __LINE__,fFields[UCAL_DAY_OF_WEEK_IN_MONTH], fTime);
#endif
}
int32_t Calendar::weekNumber(int32_t desiredDay, int32_t dayOfPeriod, int32_t dayOfWeek)
{
// Determine the day of the week of the first day of the period
// in question (either a year or a month). Zero represents the
// first day of the week on this calendar.
int32_t periodStartDayOfWeek = (dayOfWeek - getFirstDayOfWeek() - dayOfPeriod + 1) % 7;
if (periodStartDayOfWeek < 0) periodStartDayOfWeek += 7;
// Compute the week number. Initially, ignore the first week, which
// may be fractional (or may not be). We add periodStartDayOfWeek in
// order to fill out the first week, if it is fractional.
int32_t weekNo = (desiredDay + periodStartDayOfWeek - 1)/7;
// If the first week is long enough, then count it. If
// the minimal days in the first week is one, or if the period start
// is zero, we always increment weekNo.
if ((7 - periodStartDayOfWeek) >= getMinimalDaysInFirstWeek()) ++weekNo;
return weekNo;
}
void Calendar::handleComputeFields(int32_t /* julianDay */, UErrorCode &/* status */)
{
internalSet(UCAL_MONTH, getGregorianMonth());
internalSet(UCAL_DAY_OF_MONTH, getGregorianDayOfMonth());
internalSet(UCAL_DAY_OF_YEAR, getGregorianDayOfYear());
int32_t eyear = getGregorianYear();
internalSet(UCAL_EXTENDED_YEAR, eyear);
int32_t era = GregorianCalendar::AD;
if (eyear < 1) {
era = GregorianCalendar::BC;
eyear = 1 - eyear;
}
internalSet(UCAL_ERA, era);
internalSet(UCAL_YEAR, eyear);
}
1999-08-16 21:50:52 +00:00
// -------------------------------------
void Calendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status)
{
if (amount == 0) {
return; // Nothing to do
}
complete(status);
if(U_FAILURE(status)) {
return;
}
switch (field) {
case UCAL_DAY_OF_MONTH:
case UCAL_AM_PM:
case UCAL_MINUTE:
case UCAL_SECOND:
case UCAL_MILLISECOND:
case UCAL_MILLISECONDS_IN_DAY:
case UCAL_ERA:
// These are the standard roll instructions. These work for all
// simple cases, that is, cases in which the limits are fixed, such
// as the hour, the day of the month, and the era.
{
int32_t min = getActualMinimum(field,status);
int32_t max = getActualMaximum(field,status);
int32_t gap = max - min + 1;
int32_t value = internalGet(field) + amount;
value = (value - min) % gap;
if (value < 0) {
value += gap;
}
value += min;
set(field, value);
return;
}
case UCAL_HOUR:
case UCAL_HOUR_OF_DAY:
// Rolling the hour is difficult on the ONSET and CEASE days of
// daylight savings. For example, if the change occurs at
// 2 AM, we have the following progression:
// ONSET: 12 Std -> 1 Std -> 3 Dst -> 4 Dst
// CEASE: 12 Dst -> 1 Dst -> 1 Std -> 2 Std
// To get around this problem we don't use fields; we manipulate
// the time in millis directly.
{
// Assume min == 0 in calculations below
double start = getTimeInMillis(status);
int32_t oldHour = internalGet(field);
int32_t max = getMaximum(field);
int32_t newHour = (oldHour + amount) % (max + 1);
if (newHour < 0) {
newHour += max + 1;
}
setTimeInMillis(start + kOneHour * (newHour - oldHour),status);
return;
}
case UCAL_MONTH:
// Rolling the month involves both pinning the final value
// and adjusting the DAY_OF_MONTH if necessary. We only adjust the
// DAY_OF_MONTH if, after updating the MONTH field, it is illegal.
// E.g., <jan31>.roll(MONTH, 1) -> <feb28> or <feb29>.
{
int32_t max = getActualMaximum(UCAL_MONTH, status);
int32_t mon = (internalGet(UCAL_MONTH) + amount) % (max+1);
if (mon < 0) {
mon += (max + 1);
}
set(UCAL_MONTH, mon);
// Keep the day of month in range. We don't want to spill over
// into the next month; e.g., we don't want jan31 + 1 mo -> feb31 ->
// mar3.
pinField(UCAL_DAY_OF_MONTH,status);
return;
}
case UCAL_YEAR:
case UCAL_YEAR_WOY:
case UCAL_EXTENDED_YEAR:
// Rolling the year can involve pinning the DAY_OF_MONTH.
set(field, internalGet(field) + amount);
pinField(UCAL_MONTH,status);
pinField(UCAL_DAY_OF_MONTH,status);
return;
case UCAL_WEEK_OF_MONTH:
{
// This is tricky, because during the roll we may have to shift
// to a different day of the week. For example:
// s m t w r f s
// 1 2 3 4 5
// 6 7 8 9 10 11 12
// When rolling from the 6th or 7th back one week, we go to the
// 1st (assuming that the first partial week counts). The same
// thing happens at the end of the month.
// The other tricky thing is that we have to figure out whether
// the first partial week actually counts or not, based on the
// minimal first days in the week. And we have to use the
// correct first day of the week to delineate the week
// boundaries.
// Here's our algorithm. First, we find the real boundaries of
// the month. Then we discard the first partial week if it
// doesn't count in this locale. Then we fill in the ends with
// phantom days, so that the first partial week and the last
// partial week are full weeks. We then have a nice square
// block of weeks. We do the usual rolling within this block,
// as is done elsewhere in this method. If we wind up on one of
// the phantom days that we added, we recognize this and pin to
// the first or the last day of the month. Easy, eh?
// Normalize the DAY_OF_WEEK so that 0 is the first day of the week
// in this locale. We have dow in 0..6.
int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
if (dow < 0) dow += 7;
// Find the day of the week (normalized for locale) for the first
// of the month.
int32_t fdm = (dow - internalGet(UCAL_DAY_OF_MONTH) + 1) % 7;
if (fdm < 0) fdm += 7;
// Get the first day of the first full week of the month,
// including phantom days, if any. Figure out if the first week
// counts or not; if it counts, then fill in phantom days. If
// not, advance to the first real full week (skip the partial week).
int32_t start;
if ((7 - fdm) < getMinimalDaysInFirstWeek())
start = 8 - fdm; // Skip the first partial week
else
start = 1 - fdm; // This may be zero or negative
// Get the day of the week (normalized for locale) for the last
// day of the month.
int32_t monthLen = getActualMaximum(UCAL_DAY_OF_MONTH, status);
int32_t ldm = (monthLen - internalGet(UCAL_DAY_OF_MONTH) + dow) % 7;
// We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
// Get the limit day for the blocked-off rectangular month; that
// is, the day which is one past the last day of the month,
// after the month has already been filled in with phantom days
// to fill out the last week. This day has a normalized DOW of 0.
int32_t limit = monthLen + 7 - ldm;
// Now roll between start and (limit - 1).
int32_t gap = limit - start;
int32_t day_of_month = (internalGet(UCAL_DAY_OF_MONTH) + amount*7 -
start) % gap;
if (day_of_month < 0) day_of_month += gap;
day_of_month += start;
// Finally, pin to the real start and end of the month.
if (day_of_month < 1) day_of_month = 1;
if (day_of_month > monthLen) day_of_month = monthLen;
// Set the DAY_OF_MONTH. We rely on the fact that this field
// takes precedence over everything else (since all other fields
// are also set at this point). If this fact changes (if the
// disambiguation algorithm changes) then we will have to unset
// the appropriate fields here so that DAY_OF_MONTH is attended
// to.
set(UCAL_DAY_OF_MONTH, day_of_month);
return;
}
case UCAL_WEEK_OF_YEAR:
{
// This follows the outline of WEEK_OF_MONTH, except it applies
// to the whole year. Please see the comment for WEEK_OF_MONTH
// for general notes.
// Normalize the DAY_OF_WEEK so that 0 is the first day of the week
// in this locale. We have dow in 0..6.
int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
if (dow < 0) dow += 7;
// Find the day of the week (normalized for locale) for the first
// of the year.
int32_t fdy = (dow - internalGet(UCAL_DAY_OF_YEAR) + 1) % 7;
if (fdy < 0) fdy += 7;
// Get the first day of the first full week of the year,
// including phantom days, if any. Figure out if the first week
// counts or not; if it counts, then fill in phantom days. If
// not, advance to the first real full week (skip the partial week).
int32_t start;
if ((7 - fdy) < getMinimalDaysInFirstWeek())
start = 8 - fdy; // Skip the first partial week
else
start = 1 - fdy; // This may be zero or negative
// Get the day of the week (normalized for locale) for the last
// day of the year.
int32_t yearLen = getActualMaximum(UCAL_DAY_OF_YEAR,status);
int32_t ldy = (yearLen - internalGet(UCAL_DAY_OF_YEAR) + dow) % 7;
// We know yearLen >= DAY_OF_YEAR so we skip the += 7 step here.
// Get the limit day for the blocked-off rectangular year; that
// is, the day which is one past the last day of the year,
// after the year has already been filled in with phantom days
// to fill out the last week. This day has a normalized DOW of 0.
int32_t limit = yearLen + 7 - ldy;
// Now roll between start and (limit - 1).
int32_t gap = limit - start;
int32_t day_of_year = (internalGet(UCAL_DAY_OF_YEAR) + amount*7 -
start) % gap;
if (day_of_year < 0) day_of_year += gap;
day_of_year += start;
// Finally, pin to the real start and end of the month.
if (day_of_year < 1) day_of_year = 1;
if (day_of_year > yearLen) day_of_year = yearLen;
// Make sure that the year and day of year are attended to by
// clearing other fields which would normally take precedence.
// If the disambiguation algorithm is changed, this section will
// have to be updated as well.
set(UCAL_DAY_OF_YEAR, day_of_year);
clear(UCAL_MONTH);
return;
}
case UCAL_DAY_OF_YEAR:
{
// Roll the day of year using millis. Compute the millis for
// the start of the year, and get the length of the year.
double delta = amount * kOneDay; // Scale up from days to millis
double min2 = internalGet(UCAL_DAY_OF_YEAR)-1;
min2 *= kOneDay;
min2 = internalGetTime() - min2;
// double min2 = internalGetTime() - (internalGet(UCAL_DAY_OF_YEAR) - 1.0) * kOneDay;
double newtime;
double yearLength = getActualMaximum(UCAL_DAY_OF_YEAR,status);
double oneYear = yearLength;
oneYear *= kOneDay;
newtime = uprv_fmod((internalGetTime() + delta - min2), oneYear);
if (newtime < 0) newtime += oneYear;
setTimeInMillis(newtime + min2, status);
return;
}
case UCAL_DAY_OF_WEEK:
case UCAL_DOW_LOCAL:
{
// Roll the day of week using millis. Compute the millis for
// the start of the week, using the first day of week setting.
// Restrict the millis to [start, start+7days).
double delta = amount * kOneDay; // Scale up from days to millis
// Compute the number of days before the current day in this
// week. This will be a value 0..6.
int32_t leadDays = internalGet(field);
leadDays -= (field == UCAL_DAY_OF_WEEK) ? getFirstDayOfWeek() : 1;
if (leadDays < 0) leadDays += 7;
double min2 = internalGetTime() - leadDays * kOneDay;
double newtime = uprv_fmod((internalGetTime() + delta - min2), kOneWeek);
if (newtime < 0) newtime += kOneWeek;
setTimeInMillis(newtime + min2, status);
return;
}
case UCAL_DAY_OF_WEEK_IN_MONTH:
{
// Roll the day of week in the month using millis. Determine
// the first day of the week in the month, and then the last,
// and then roll within that range.
double delta = amount * kOneWeek; // Scale up from weeks to millis
// Find the number of same days of the week before this one
// in this month.
int32_t preWeeks = (internalGet(UCAL_DAY_OF_MONTH) - 1) / 7;
// Find the number of same days of the week after this one
// in this month.
int32_t postWeeks = (getActualMaximum(UCAL_DAY_OF_MONTH,status) -
internalGet(UCAL_DAY_OF_MONTH)) / 7;
// From these compute the min and gap millis for rolling.
double min2 = internalGetTime() - preWeeks * kOneWeek;
double gap2 = kOneWeek * (preWeeks + postWeeks + 1); // Must add 1!
// Roll within this range
double newtime = uprv_fmod((internalGetTime() + delta - min2), gap2);
if (newtime < 0) newtime += gap2;
setTimeInMillis(newtime + min2, status);
return;
}
case UCAL_JULIAN_DAY:
set(field, internalGet(field) + amount);
return;
default:
// Other fields cannot be rolled by this method
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because of roll on non-rollable field %s\n",
__FILE__, __LINE__,fldName(field));
#endif
status = U_ILLEGAL_ARGUMENT_ERROR;
}
}
void Calendar::add(EDateFields field, int32_t amount, UErrorCode& status)
{
Calendar::add((UCalendarDateFields)field, amount, status);
}
// -------------------------------------
void Calendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status)
{
if (amount == 0) {
return; // Do nothing!
}
// We handle most fields in the same way. The algorithm is to add
// a computed amount of millis to the current millis. The only
// wrinkle is with DST -- for some fields, like the DAY_OF_MONTH,
// we don't want the HOUR to shift due to changes in DST. If the
// result of the add operation is to move from DST to Standard, or
// vice versa, we need to adjust by an hour forward or back,
// respectively. For such fields we set keepHourInvariant to TRUE.
// We only adjust the DST for fields larger than an hour. For
// fields smaller than an hour, we cannot adjust for DST without
// causing problems. for instance, if you add one hour to April 5,
// 1998, 1:00 AM, in PST, the time becomes "2:00 AM PDT" (an
// illegal value), but then the adjustment sees the change and
// compensates by subtracting an hour. As a result the time
// doesn't advance at all.
// For some fields larger than a day, such as a UCAL_MONTH, we pin the
// UCAL_DAY_OF_MONTH. This allows <March 31>.add(UCAL_MONTH, 1) to be
// <April 30>, rather than <April 31> => <May 1>.
double delta = amount; // delta in ms
UBool keepHourInvariant = TRUE;
switch (field) {
case UCAL_ERA:
set(field, get(field, status) + amount);
pinField(UCAL_ERA, status);
return;
case UCAL_YEAR:
case UCAL_EXTENDED_YEAR:
case UCAL_YEAR_WOY:
case UCAL_MONTH:
set(field, get(field, status) + amount);
pinField(UCAL_DAY_OF_MONTH, status);
return;
case UCAL_WEEK_OF_YEAR:
case UCAL_WEEK_OF_MONTH:
case UCAL_DAY_OF_WEEK_IN_MONTH:
delta *= kOneWeek;
break;
case UCAL_AM_PM:
delta *= 12 * kOneHour;
break;
case UCAL_DAY_OF_MONTH:
case UCAL_DAY_OF_YEAR:
case UCAL_DAY_OF_WEEK:
case UCAL_DOW_LOCAL:
case UCAL_JULIAN_DAY:
delta *= kOneDay;
break;
case UCAL_HOUR_OF_DAY:
case UCAL_HOUR:
delta *= kOneHour;
keepHourInvariant = FALSE;
break;
case UCAL_MINUTE:
delta *= kOneMinute;
keepHourInvariant = FALSE;
break;
case UCAL_SECOND:
delta *= kOneSecond;
keepHourInvariant = FALSE;
break;
case UCAL_MILLISECOND:
case UCAL_MILLISECONDS_IN_DAY:
keepHourInvariant = FALSE;
break;
default:
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because field %s not addable",
__FILE__, __LINE__, fldName(field));
#endif
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
// throw new IllegalArgumentException("Calendar.add(" + fieldName(field) +
// ") not supported");
}
// In order to keep the hour invariant (for fields where this is
// appropriate), record the DST_OFFSET before and after the add()
// operation. If it has changed, then adjust the millis to
// compensate.
int32_t dst = 0;
int32_t hour = 0;
if (keepHourInvariant) {
dst = get(UCAL_DST_OFFSET, status);
hour = internalGet(UCAL_HOUR_OF_DAY);
}
setTimeInMillis(getTimeInMillis(status) + delta, status);
if (keepHourInvariant) {
dst -= get(UCAL_DST_OFFSET, status);
if (dst != 0) {
// We have done an hour-invariant adjustment but the
// DST offset has altered. We adjust millis to keep
// the hour constant. In cases such as midnight after
// a DST change which occurs at midnight, there is the
// danger of adjusting into a different day. To avoid
// this we make the adjustment only if it actually
// maintains the hour.
double t = internalGetTime();
setTimeInMillis(t + dst, status);
if (get(UCAL_HOUR_OF_DAY, status) != hour) {
setTimeInMillis(t, status);
}
}
}
}
1999-08-16 21:50:52 +00:00
// -------------------------------------
int32_t Calendar::fieldDifference(UDate when, EDateFields field, UErrorCode& status) {
return fieldDifference(when, (UCalendarDateFields) field, status);
}
int32_t Calendar::fieldDifference(UDate targetMs, UCalendarDateFields field, UErrorCode& ec) {
if (U_FAILURE(ec)) return 0;
int32_t min = 0;
double startMs = getTimeInMillis(ec);
// Always add from the start millis. This accomodates
// operations like adding years from February 29, 2000 up to
// February 29, 2004. If 1, 1, 1, 1 is added to the year
// field, the DOM gets pinned to 28 and stays there, giving an
// incorrect DOM difference of 1. We have to add 1, reset, 2,
// reset, 3, reset, 4.
if (startMs < targetMs) {
int32_t max = 1;
// Find a value that is too large
while (U_SUCCESS(ec)) {
setTimeInMillis(startMs, ec);
add(field, max, ec);
double ms = getTimeInMillis(ec);
if (ms == targetMs) {
return max;
} else if (ms > targetMs) {
break;
} else {
max <<= 1;
if (max < 0) {
// Field difference too large to fit into int32_t
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because field %s's max too large for int32_t\n",
__FILE__, __LINE__, fldName(field));
#endif
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
}
}
// Do a binary search
while ((max - min) > 1 && U_SUCCESS(ec)) {
int32_t t = (min + max) / 2;
setTimeInMillis(startMs, ec);
add(field, t, ec);
double ms = getTimeInMillis(ec);
if (ms == targetMs) {
return t;
} else if (ms > targetMs) {
max = t;
} else {
min = t;
}
}
} else if (startMs > targetMs) {
int32_t max = -1;
// Find a value that is too small
while (U_SUCCESS(ec)) {
setTimeInMillis(startMs, ec);
add(field, max, ec);
double ms = getTimeInMillis(ec);
if (ms == targetMs) {
return max;
} else if (ms < targetMs) {
break;
} else {
max <<= 1;
if (max == 0) {
// Field difference too large to fit into int32_t
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because field %s's max too large for int32_t\n",
__FILE__, __LINE__, fldName(field));
#endif
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
}
}
// Do a binary search
while ((min - max) > 1 && U_SUCCESS(ec)) {
int32_t t = (min + max) / 2;
setTimeInMillis(startMs, ec);
add(field, t, ec);
double ms = getTimeInMillis(ec);
if (ms == targetMs) {
return t;
} else if (ms < targetMs) {
max = t;
} else {
min = t;
}
}
}
// Set calendar to end point
setTimeInMillis(startMs, ec);
add(field, min, ec);
/* Test for buffer overflows */
if(U_FAILURE(ec)) {
return 0;
}
return min;
}
// -------------------------------------
1999-08-16 21:50:52 +00:00
void
Calendar::adoptTimeZone(TimeZone* zone)
{
// Do nothing if passed-in zone is NULL
if (zone == NULL) return;
1999-08-16 21:50:52 +00:00
// fZone should always be non-null
if (fZone != NULL) delete fZone;
1999-08-16 21:50:52 +00:00
fZone = zone;
// if the zone changes, we need to recompute the time fields
fAreFieldsSet = FALSE;
}
// -------------------------------------
void
Calendar::setTimeZone(const TimeZone& zone)
{
adoptTimeZone(zone.clone());
}
// -------------------------------------
const TimeZone&
Calendar::getTimeZone() const
{
return *fZone;
}
// -------------------------------------
TimeZone*
Calendar::orphanTimeZone()
{
TimeZone *z = fZone;
// we let go of the time zone; the new time zone is the system default time zone
fZone = TimeZone::createDefault();
return z;
}
// -------------------------------------
void
Calendar::setLenient(UBool lenient)
1999-08-16 21:50:52 +00:00
{
fLenient = lenient;
}
// -------------------------------------
UBool
1999-08-16 21:50:52 +00:00
Calendar::isLenient() const
{
return fLenient;
}
// -------------------------------------
void
Calendar::setFirstDayOfWeek(UCalendarDaysOfWeek value)
1999-08-16 21:50:52 +00:00
{
if (fFirstDayOfWeek != value &&
value >= UCAL_SUNDAY && value <= UCAL_SATURDAY) {
fFirstDayOfWeek = value;
fAreFieldsSet = FALSE;
}
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
Calendar::EDaysOfWeek
1999-08-16 21:50:52 +00:00
Calendar::getFirstDayOfWeek() const
{
return (Calendar::EDaysOfWeek)fFirstDayOfWeek;
1999-08-16 21:50:52 +00:00
}
UCalendarDaysOfWeek
Calendar::getFirstDayOfWeek(UErrorCode & /*status*/) const
{
return fFirstDayOfWeek;
}
1999-08-16 21:50:52 +00:00
// -------------------------------------
void
Calendar::setMinimalDaysInFirstWeek(uint8_t value)
{
// Values less than 1 have the same effect as 1; values greater
// than 7 have the same effect as 7. However, we normalize values
// so operator== and so forth work.
if (value < 1) {
value = 1;
} else if (value > 7) {
value = 7;
}
if (fMinimalDaysInFirstWeek != value) {
fMinimalDaysInFirstWeek = value;
fAreFieldsSet = FALSE;
}
1999-08-16 21:50:52 +00:00
}
// -------------------------------------
uint8_t
Calendar::getMinimalDaysInFirstWeek() const
{
return fMinimalDaysInFirstWeek;
}
// ------------------------------------- limits
int32_t
Calendar::getMinimum(EDateFields field) const {
return getLimit((UCalendarDateFields) field,U_CAL_LIMIT_MINIMUM);
}
int32_t
Calendar::getMinimum(UCalendarDateFields field) const
{
return getLimit(field,U_CAL_LIMIT_MINIMUM);
}
// -------------------------------------
int32_t
Calendar::getMaximum(EDateFields field) const
{
return getLimit((UCalendarDateFields) field,U_CAL_LIMIT_MAXIMUM);
}
int32_t
Calendar::getMaximum(UCalendarDateFields field) const
{
return getLimit(field,U_CAL_LIMIT_MAXIMUM);
}
1999-08-16 21:50:52 +00:00
// -------------------------------------
int32_t
Calendar::getGreatestMinimum(EDateFields field) const
{
return getLimit((UCalendarDateFields)field,U_CAL_LIMIT_GREATEST_MINIMUM);
}
int32_t
Calendar::getGreatestMinimum(UCalendarDateFields field) const
{
return getLimit(field,U_CAL_LIMIT_GREATEST_MINIMUM);
}
// -------------------------------------
int32_t
Calendar::getLeastMaximum(EDateFields field) const
{
return getLimit((UCalendarDateFields) field,U_CAL_LIMIT_LEAST_MAXIMUM);
}
int32_t
Calendar::getLeastMaximum(UCalendarDateFields field) const
{
return getLimit( field,U_CAL_LIMIT_LEAST_MAXIMUM);
}
// -------------------------------------
int32_t
Calendar::getActualMinimum(EDateFields field, UErrorCode& status) const
{
return getActualMinimum((UCalendarDateFields) field, status);
}
int32_t Calendar::getLimit(UCalendarDateFields field, ELimitType limitType) const {
switch (field) {
case UCAL_DAY_OF_WEEK:
case UCAL_AM_PM:
case UCAL_HOUR:
case UCAL_HOUR_OF_DAY:
case UCAL_MINUTE:
case UCAL_SECOND:
case UCAL_MILLISECOND:
case UCAL_ZONE_OFFSET:
case UCAL_DST_OFFSET:
case UCAL_DOW_LOCAL:
case UCAL_JULIAN_DAY:
case UCAL_MILLISECONDS_IN_DAY:
return kCalendarLimits[field][limitType];
default:
return handleGetLimit(field, limitType);
}
}
1999-08-16 21:50:52 +00:00
int32_t
Calendar::getActualMinimum(UCalendarDateFields field, UErrorCode& status) const
1999-08-16 21:50:52 +00:00
{
int32_t fieldValue = getGreatestMinimum(field);
int32_t endValue = getMinimum(field);
// if we know that the minimum value is always the same, just return it
if (fieldValue == endValue) {
return fieldValue;
}
// clone the calendar so we don't mess with the real one, and set it to
// accept anything for the field values
Calendar *work = (Calendar*)this->clone();
work->setLenient(TRUE);
// now try each value from getLeastMaximum() to getMaximum() one by one until
// we get a value that normalizes to another value. The last value that
// normalizes to itself is the actual minimum for the current date
int32_t result = fieldValue;
do {
work->set(field, fieldValue);
if (work->get(field, status) != fieldValue) {
break;
}
else {
result = fieldValue;
fieldValue--;
}
} while (fieldValue >= endValue);
delete work;
/* Test for buffer overflows */
if(U_FAILURE(status)) {
return 0;
}
1999-08-16 21:50:52 +00:00
return result;
}
// -------------------------------------
/**
* Ensure that each field is within its valid range by calling {@link
* #validateField(int)} on each field that has been set. This method
* should only be called if this calendar is not lenient.
* @see #isLenient
* @see #validateField(int)
* @draft ICU 2.8
*/
void Calendar::validateFields(UErrorCode &status) {
for (int32_t field = 0; U_SUCCESS(status) && (field < UCAL_FIELD_COUNT); field++) {
if (isSet((UCalendarDateFields)field)) {
validateField((UCalendarDateFields)field, status);
}
}
}
/**
* Validate a single field of this calendar. Subclasses should
* override this method to validate any calendar-specific fields.
* Generic fields can be handled by
* <code>Calendar.validateField()</code>.
* @see #validateField(int, int, int)
* @draft ICU 2.8
*/
void Calendar::validateField(UCalendarDateFields field, UErrorCode &status) {
int32_t y;
switch (field) {
case UCAL_DAY_OF_MONTH:
y = handleGetExtendedYear();
validateField(field, 1, handleGetMonthLength(y, internalGet(UCAL_MONTH)), status);
break;
case UCAL_DAY_OF_YEAR:
y = handleGetExtendedYear();
validateField(field, 1, handleGetYearLength(y), status);
break;
case UCAL_DAY_OF_WEEK_IN_MONTH:
if (internalGet(field) == 0) {
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because DOW in month cannot be 0\n",
__FILE__, __LINE__);
#endif
status = U_ILLEGAL_ARGUMENT_ERROR; // "DAY_OF_WEEK_IN_MONTH cannot be zero"
return;
}
validateField(field, getMinimum(field), getMaximum(field), status);
break;
default:
validateField(field, getMinimum(field), getMaximum(field), status);
break;
}
}
/**
* Validate a single field of this calendar given its minimum and
* maximum allowed value. If the field is out of range, throw a
* descriptive <code>IllegalArgumentException</code>. Subclasses may
* use this method in their implementation of {@link
* #validateField(int)}.
* @draft ICU 2.8
*/
void Calendar::validateField(UCalendarDateFields field, int32_t min, int32_t max, UErrorCode& status)
{
int32_t value = fFields[field];
if (value < min || value > max) {
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d: ILLEGAL ARG because of field %s out of range %d..%d at %d\n",
__FILE__, __LINE__,fldName(field),min,max,value);
#endif
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
}
// -------------------------
const UFieldResolutionTable* Calendar::getFieldResolutionTable() const {
return kDatePrecedence;
}
UCalendarDateFields Calendar::newerField(UCalendarDateFields defaultField, UCalendarDateFields alternateField) const
{
if (fStamp[alternateField] > fStamp[defaultField]) {
return alternateField;
}
return defaultField;
}
UCalendarDateFields Calendar::resolveFields(const UFieldResolutionTable* precedenceTable) {
int32_t bestField = -1;
for (int32_t g=0; precedenceTable[g][0][0] != -1 && bestField < 0; ++g) {
int32_t bestStamp = kUnset;
for (int32_t l=0; precedenceTable[g][l][0] != -1; ++l) {
int32_t lineStamp = kUnset;
// Skip over first entry if it is negative
for (int32_t i=((precedenceTable[g][l][0]>=kResolveRemap)?1:0); precedenceTable[g][l][i]!=-1; ++i) {
int32_t s = fStamp[precedenceTable[g][l][i]];
// If any field is unset then don't use this line
if (s == kUnset) {
goto linesInGroup;
} else if(s > lineStamp) {
lineStamp = s;
}
}
// Record new maximum stamp & field no.
if (lineStamp > bestStamp) {
bestStamp = lineStamp;
bestField = precedenceTable[g][l][0]; // First field refers to entire line
}
linesInGroup:
;
}
}
return (UCalendarDateFields)( (bestField>=kResolveRemap)?(bestField&(kResolveRemap-1)):bestField );
}
const int32_t Calendar::kResolveRemap = 32;
const UFieldResolutionTable Calendar::kDatePrecedence[] =
{
{
{ UCAL_DAY_OF_MONTH, -1 },
{ UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, -1 },
{ UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, -1 },
{ UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, -1 },
{ UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, -1 },
{ UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, -1 },
{ UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, -1 },
{ UCAL_DAY_OF_YEAR, -1 },
{ kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_YEAR, -1 }, // if YEAR is set over YEAR_WOY use DAY_OF_MONTH
{ kResolveRemap | UCAL_WEEK_OF_YEAR, UCAL_YEAR_WOY, -1 }, // if YEAR_WOY is set, calc based on WEEK_OF_YEAR
{ -1 }
},
{
{ UCAL_WEEK_OF_YEAR, -1 },
{ UCAL_WEEK_OF_MONTH, -1 },
{ UCAL_DAY_OF_WEEK_IN_MONTH, -1 },
{ kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, -1 },
{ kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, -1 },
{ -1 }
},
{{-1}}
};
const UFieldResolutionTable Calendar::kDOWPrecedence[] =
{
{
{ UCAL_DAY_OF_WEEK,-1, -1 },
{ UCAL_DOW_LOCAL,-1, -1 },
{-1}
},
{{-1}}
};
// precedence for calculating a year
const UFieldResolutionTable Calendar::kYearPrecedence[] =
{
{
{ UCAL_YEAR, -1 },
{ UCAL_EXTENDED_YEAR, -1 },
{ UCAL_YEAR_WOY, UCAL_WEEK_OF_YEAR, -1 }, // YEAR_WOY is useless without WEEK_OF_YEAR
{ -1 }
},
{{-1}}
};
// -------------------------
void Calendar::computeTime(UErrorCode& status) {
if (!isLenient()) {
validateFields(status);
}
// Compute the Julian day
int32_t julianDay = computeJulianDay();
double millis = Grego::julianDayToMillis(julianDay);
#if defined (U_DEBUG_CAL)
// int32_t julianInsanityCheck = (int32_t)Math::floorDivide(millis, kOneDay);
// julianInsanityCheck += kEpochStartAsJulianDay;
// if(1 || julianInsanityCheck != julianDay) {
// fprintf(stderr, "%s:%d- D'oh- computed jules %d, to mills (%s)%.lf, recomputed %d\n",
// __FILE__, __LINE__, julianDay, millis<0.0?"NEG":"", millis, julianInsanityCheck);
// }
#endif
int32_t millisInDay;
// We only use MILLISECONDS_IN_DAY if it has been set by the user.
// This makes it possible for the caller to set the calendar to a
// time and call clear(MONTH) to reset the MONTH to January. This
// is legacy behavior. Without this, clear(MONTH) has no effect,
// since the internally set JULIAN_DAY is used.
if (fStamp[UCAL_MILLISECONDS_IN_DAY] >= kMinimumUserStamp &&
newestStamp(UCAL_AM_PM, UCAL_MILLISECOND, kUnset) <= fStamp[UCAL_MILLISECONDS_IN_DAY]) {
millisInDay = internalGet(UCAL_MILLISECONDS_IN_DAY);
} else {
millisInDay = computeMillisInDay();
}
// Compute the time zone offset and DST offset. There are two potential
// ambiguities here. We'll assume a 2:00 am (wall time) switchover time
// for discussion purposes here.
// 1. The transition into DST. Here, a designated time of 2:00 am - 2:59 am
// can be in standard or in DST depending. However, 2:00 am is an invalid
// representation (the representation jumps from 1:59:59 am Std to 3:00:00 am DST).
// We assume standard time.
// 2. The transition out of DST. Here, a designated time of 1:00 am - 1:59 am
// can be in standard or DST. Both are valid representations (the rep
// jumps from 1:59:59 DST to 1:00:00 Std).
// Again, we assume standard time.
// We use the TimeZone object, unless the user has explicitly set the ZONE_OFFSET
// or DST_OFFSET fields; then we use those fields.
if (fStamp[UCAL_ZONE_OFFSET] >= kMinimumUserStamp ||
fStamp[UCAL_DST_OFFSET] >= kMinimumUserStamp) {
millisInDay -= internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET);
} else {
millisInDay -= computeZoneOffset(millis, millisInDay,status);
}
internalSetTime(millis + millisInDay);
}
/**
* Compute the milliseconds in the day from the fields. This is a
* value from 0 to 23:59:59.999 inclusive, unless fields are out of
* range, in which case it can be an arbitrary value. This value
* reflects local zone wall time.
* @stable ICU 2.0
*/
int32_t Calendar::computeMillisInDay() {
// Do the time portion of the conversion.
int32_t millisInDay = 0;
// Find the best set of fields specifying the time of day. There
// are only two possibilities here; the HOUR_OF_DAY or the
// AM_PM and the HOUR.
int32_t hourOfDayStamp = fStamp[UCAL_HOUR_OF_DAY];
int32_t hourStamp = (fStamp[UCAL_HOUR] > fStamp[UCAL_AM_PM])?fStamp[UCAL_HOUR]:fStamp[UCAL_AM_PM];
int32_t bestStamp = (hourStamp > hourOfDayStamp) ? hourStamp : hourOfDayStamp;
// Hours
if (bestStamp != kUnset) {
if (bestStamp == hourOfDayStamp) {
// Don't normalize here; let overflow bump into the next period.
// This is consistent with how we handle other fields.
millisInDay += internalGet(UCAL_HOUR_OF_DAY);
} else {
// Don't normalize here; let overflow bump into the next period.
// This is consistent with how we handle other fields.
millisInDay += internalGet(UCAL_HOUR);
millisInDay += 12 * internalGet(UCAL_AM_PM); // Default works for unset AM_PM
}
}
// We use the fact that unset == 0; we start with millisInDay
// == HOUR_OF_DAY.
millisInDay *= 60;
millisInDay += internalGet(UCAL_MINUTE); // now have minutes
millisInDay *= 60;
millisInDay += internalGet(UCAL_SECOND); // now have seconds
millisInDay *= 1000;
millisInDay += internalGet(MILLISECOND); // now have millis
return millisInDay;
}
/**
* This method can assume EXTENDED_YEAR has been set.
* @param millis milliseconds of the date fields
* @param millisInDay milliseconds of the time fields; may be out
* or range.
* @stable ICU 2.0
*/
int32_t Calendar::computeZoneOffset(double millis, int32_t millisInDay, UErrorCode &ec) {
int32_t rawOffset, dstOffset;
getTimeZone().getOffset(millis+millisInDay, TRUE, rawOffset, dstOffset, ec);
return rawOffset + dstOffset;
// Note: Because we pass in wall millisInDay, rather than
// standard millisInDay, we interpret "1:00 am" on the day
// of cessation of DST as "1:00 am Std" (assuming the time
// of cessation is 2:00 am).
}
int32_t Calendar::computeJulianDay()
{
// We want to see if any of the date fields is newer than the
// JULIAN_DAY. If not, then we use JULIAN_DAY. If so, then we do
// the normal resolution. We only use JULIAN_DAY if it has been
// set by the user. This makes it possible for the caller to set
// the calendar to a time and call clear(MONTH) to reset the MONTH
// to January. This is legacy behavior. Without this,
// clear(MONTH) has no effect, since the internally set JULIAN_DAY
// is used.
if (fStamp[UCAL_JULIAN_DAY] >= kMinimumUserStamp) {
int32_t bestStamp = newestStamp(UCAL_ERA, UCAL_DAY_OF_WEEK_IN_MONTH, kUnset);
bestStamp = newestStamp(UCAL_YEAR_WOY, UCAL_EXTENDED_YEAR, bestStamp);
if (bestStamp <= fStamp[UCAL_JULIAN_DAY]) {
return internalGet(UCAL_JULIAN_DAY);
}
}
UCalendarDateFields bestField = resolveFields(getFieldResolutionTable());
if (bestField < 0) {
bestField = UCAL_DAY_OF_MONTH;
}
return handleComputeJulianDay(bestField);
}
// -------------------------------------------
int32_t Calendar::handleComputeJulianDay(UCalendarDateFields bestField) {
UBool useMonth = (bestField == UCAL_DAY_OF_MONTH ||
bestField == UCAL_WEEK_OF_MONTH ||
bestField == UCAL_DAY_OF_WEEK_IN_MONTH);
int32_t year;
if (bestField == UCAL_WEEK_OF_YEAR) {
year = internalGet(UCAL_YEAR_WOY, handleGetExtendedYear());
internalSet(UCAL_EXTENDED_YEAR, year);
} else {
year = handleGetExtendedYear();
internalSet(UCAL_EXTENDED_YEAR, year);
}
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - bf= %s - y=%d\n", __FILE__, __LINE__, fldName(bestField), year);
#endif
// Get the Julian day of the day BEFORE the start of this year.
// If useMonth is true, get the day before the start of the month.
// give calendar subclass a chance to have a default 'first' month
int8_t month;
if(isSet(UCAL_MONTH)) {
month = (int8_t)internalGet(UCAL_MONTH);
} else {
month = (int8_t)getDefaultMonthInYear();
}
int32_t julianDay = handleComputeMonthStart(year, useMonth ? month : 0, useMonth);
if (bestField == UCAL_DAY_OF_MONTH) {
// give calendar subclass a chance to have a default 'first' dom
int32_t dayOfMonth;
if(isSet(UCAL_DAY_OF_MONTH)) {
dayOfMonth = internalGet(UCAL_DAY_OF_MONTH,1);
} else {
dayOfMonth = getDefaultDayInMonth(month);
}
return julianDay + dayOfMonth;
}
if (bestField == UCAL_DAY_OF_YEAR) {
return julianDay + internalGet(UCAL_DAY_OF_YEAR);
}
int32_t firstDayOfWeek = getFirstDayOfWeek(); // Localized fdw
// At this point julianDay is the 0-based day BEFORE the first day of
// January 1, year 1 of the given calendar. If julianDay == 0, it
// specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
// or Gregorian). (or it is before the month we are in, if useMonth is True)
// At this point we need to process the WEEK_OF_MONTH or
// WEEK_OF_YEAR, which are similar, or the DAY_OF_WEEK_IN_MONTH.
// First, perform initial shared computations. These locate the
// first week of the period.
// Get the 0-based localized DOW of day one of the month or year.
// Valid range 0..6.
int32_t first = julianDayToDayOfWeek(julianDay + 1) - firstDayOfWeek;
if (first < 0) {
first += 7;
}
int32_t dowLocal = getLocalDOW();
// Find the first target DOW (dowLocal) in the month or year.
// Actually, it may be just before the first of the month or year.
// It will be an integer from -5..7.
int32_t date = 1 - first + dowLocal;
if (bestField == UCAL_DAY_OF_WEEK_IN_MONTH) {
// Adjust the target DOW to be in the month or year.
if (date < 1) {
date += 7;
}
// The only trickiness occurs if the day-of-week-in-month is
// negative.
int32_t dim = internalGet(UCAL_DAY_OF_WEEK_IN_MONTH, 1);
if (dim >= 0) {
date += 7*(dim - 1);
} else {
// Move date to the last of this day-of-week in this month,
// then back up as needed. If dim==-1, we don't back up at
// all. If dim==-2, we back up once, etc. Don't back up
// past the first of the given day-of-week in this month.
// Note that we handle -2, -3, etc. correctly, even though
// values < -1 are technically disallowed.
int32_t m = internalGet(UCAL_MONTH, UCAL_JANUARY);
int32_t monthLength = handleGetMonthLength(year, m);
date += ((monthLength - date) / 7 + dim + 1) * 7;
}
} else {
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - bf= %s\n", __FILE__, __LINE__, fldName(bestField));
#endif
if(bestField == UCAL_WEEK_OF_YEAR) { // ------------------------------------- WOY -------------
if(!isSet(UCAL_YEAR_WOY) || // YWOY not set at all or
( (resolveFields(kYearPrecedence) != UCAL_YEAR_WOY) // YWOY doesn't have precedence
&& (fStamp[UCAL_YEAR_WOY]!=kInternallySet) ) ) { // (excluding where all fields are internally set - then YWOY is used)
// need to be sure to stay in 'real' year.
int32_t woy = internalGet(bestField);
int32_t nextJulianDay = handleComputeMonthStart(year+1, 0, FALSE); // jd of day before jan 1
int32_t nextFirst = julianDayToDayOfWeek(nextJulianDay + 1) - firstDayOfWeek;
if (nextFirst < 0) { // 0..6 ldow of Jan 1
nextFirst += 7;
}
if(woy==1) { // FIRST WEEK ---------------------------------
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - woy=%d, yp=%d, nj(%d)=%d, nf=%d", __FILE__, __LINE__,
internalGet(bestField), resolveFields(kYearPrecedence), year+1,
nextJulianDay, nextFirst);
fprintf(stderr, " next: %d DFW, min=%d \n", (7-nextFirst), getMinimalDaysInFirstWeek() );
#endif
// nextFirst is now the localized DOW of Jan 1 of y-woy+1
if((nextFirst > 0) && // Jan 1 starts on FDOW
(7-nextFirst) >= getMinimalDaysInFirstWeek()) { // or enough days in the week
// Jan 1 of (yearWoy+1) is in yearWoy+1 - recalculate JD to next year
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - was going to move JD from %d to %d [d%d]\n", __FILE__, __LINE__,
julianDay, nextJulianDay, (nextJulianDay-julianDay));
#endif
julianDay = nextJulianDay;
// recalculate 'first' [0-based local dow of jan 1]
first = julianDayToDayOfWeek(julianDay + 1) - firstDayOfWeek;
if (first < 0) {
first += 7;
}
// recalculate date.
date = 1 - first + dowLocal;
}
} else if(woy>=getLeastMaximum(bestField)) {
// could be in the last week- find out if this JD would overstep
int32_t testDate = date;
if ((7 - first) < getMinimalDaysInFirstWeek()) {
testDate += 7;
}
// Now adjust for the week number.
testDate += 7 * (woy - 1);
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - y=%d, y-1=%d doy%d, njd%d (C.F. %d)\n",
__FILE__, __LINE__, year, year-1, testDate, julianDay+testDate, nextJulianDay);
#endif
if(julianDay+testDate > nextJulianDay) { // is it past Dec 31? (nextJulianDay is day BEFORE year+1's Jan 1)
// Fire up the calculating engines.. retry YWOY = (year-1)
julianDay = handleComputeMonthStart(year-1, 0, FALSE); // jd before Jan 1 of previous year
first = julianDayToDayOfWeek(julianDay + 1) - firstDayOfWeek; // 0 based local dow of first week
if(first < 0) { // 0..6
first += 7;
}
date = 1 - first + dowLocal;
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - date now %d, jd%d, ywoy%d\n",
__FILE__, __LINE__, date, julianDay, year-1);
#endif
} /* correction needed */
} /* leastmaximum */
} /* resolvefields(year) != year_woy */
} /* bestfield != week_of_year */
// assert(bestField == WEEK_OF_MONTH || bestField == WEEK_OF_YEAR)
// Adjust for minimal days in first week
if ((7 - first) < getMinimalDaysInFirstWeek()) {
date += 7;
}
// Now adjust for the week number.
date += 7 * (internalGet(bestField) - 1);
}
return julianDay + date;
}
int32_t
Calendar::getDefaultMonthInYear()
{
return 0;
}
int32_t
Calendar::getDefaultDayInMonth(int32_t /*month*/)
{
return 1;
}
int32_t Calendar::getLocalDOW()
{
// Get zero-based localized DOW, valid range 0..6. This is the DOW
// we are looking for.
int32_t dowLocal = 0;
switch (resolveFields(kDOWPrecedence)) {
case DAY_OF_WEEK:
dowLocal = internalGet(UCAL_DAY_OF_WEEK) - fFirstDayOfWeek;
break;
case DOW_LOCAL:
dowLocal = internalGet(UCAL_DOW_LOCAL) - 1;
break;
default:
break;
}
dowLocal = dowLocal % 7;
if (dowLocal < 0) {
dowLocal += 7;
}
return dowLocal;
}
int32_t Calendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy)
{
// We have UCAL_YEAR_WOY and UCAL_WEEK_OF_YEAR - from those, determine
// what year we fall in, so that other code can set it properly.
// (code borrowed from computeWeekFields and handleComputeJulianDay)
//return yearWoy;
// First, we need a reliable DOW.
UCalendarDateFields bestField = resolveFields(kDatePrecedence); // !! Note: if subclasses have a different table, they should override handleGetExtendedYearFromWeekFields
// Now, a local DOW
int32_t dowLocal = getLocalDOW(); // 0..6
int32_t firstDayOfWeek = getFirstDayOfWeek(); // Localized fdw
int32_t jan1Start = handleComputeMonthStart(yearWoy, 0, FALSE);
int32_t nextJan1Start = handleComputeMonthStart(yearWoy+1, 0, FALSE); // next year's Jan1 start
// At this point julianDay is the 0-based day BEFORE the first day of
// January 1, year 1 of the given calendar. If julianDay == 0, it
// specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
// or Gregorian). (or it is before the month we are in, if useMonth is True)
// At this point we need to process the WEEK_OF_MONTH or
// WEEK_OF_YEAR, which are similar, or the DAY_OF_WEEK_IN_MONTH.
// First, perform initial shared computations. These locate the
// first week of the period.
// Get the 0-based localized DOW of day one of the month or year.
// Valid range 0..6.
int32_t first = julianDayToDayOfWeek(jan1Start + 1) - firstDayOfWeek;
if (first < 0) {
first += 7;
}
int32_t nextFirst = julianDayToDayOfWeek(nextJan1Start + 1) - firstDayOfWeek;
if (nextFirst < 0) {
nextFirst += 7;
}
int32_t minDays = getMinimalDaysInFirstWeek();
UBool jan1InPrevYear = FALSE; // January 1st in the year of WOY is the 1st week? (i.e. first week is < minimal )
UBool nextJan1InPrevYear = FALSE; // January 1st of Year of WOY + 1 is in the first week?
if((7 - first) < minDays) {
jan1InPrevYear = TRUE;
}
if((7 - nextFirst) < minDays) {
nextJan1InPrevYear = TRUE;
}
switch(bestField) {
case UCAL_WEEK_OF_YEAR:
if(woy == 1) {
if(jan1InPrevYear == TRUE) {
// the first week of January is in the previous year
// therefore WOY1 is always solidly within yearWoy
return yearWoy;
} else {
// First WOY is split between two years
if( dowLocal < first) { // we are prior to Jan 1
return yearWoy-1; // previous year
} else {
return yearWoy; // in this year
}
}
} else if(woy >= getLeastMaximum(bestField)) {
// we _might_ be in the last week..
int32_t jd = // Calculate JD of our target day:
jan1Start + // JD of Jan 1
(7-first) + // days in the first week (Jan 1.. )
(woy-1)*7 + // add the weeks of the year
dowLocal; // the local dow (0..6) of last week
if(jan1InPrevYear==FALSE) {
jd -= 7; // woy already includes Jan 1's week.
}
if( (jd+1) >= nextJan1Start ) {
// we are in week 52 or 53 etc. - actual year is yearWoy+1
return yearWoy+1;
} else {
// still in yearWoy;
return yearWoy;
}
} else {
// we're not possibly in the last week -must be ywoy
return yearWoy;
}
break;
case UCAL_DATE:
if((internalGet(UCAL_MONTH)==0) &&
(woy >= getLeastMaximum(UCAL_WEEK_OF_YEAR))) {
return yearWoy+1; // month 0, late woy = in the next year
} else if(woy==1) {
//if(nextJan1InPrevYear) {
if(internalGet(UCAL_MONTH)==0) {
return yearWoy;
} else {
return yearWoy-1;
}
//}
}
//(internalGet(UCAL_DATE) <= (7-first)) /* && in minDow */ ) {
//within 1st week and in this month..
//return yearWoy+1;
return yearWoy;
break;
default: // assume the year is appropriate
return yearWoy;
break;
}
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - forgot a return on field %s\n", __FILE__, __LINE__, fldName(bestField));
#endif
return yearWoy;
}
int32_t Calendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const
{
return handleComputeMonthStart(extendedYear, month+1, TRUE) -
handleComputeMonthStart(extendedYear, month, TRUE);
}
int32_t Calendar::handleGetYearLength(int32_t eyear) const {
return handleComputeMonthStart(eyear+1, 0, false) -
handleComputeMonthStart(eyear, 0, false);
}
1999-08-16 21:50:52 +00:00
int32_t
Calendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
1999-08-16 21:50:52 +00:00
{
int32_t result;
switch (field) {
case UCAL_DATE:
{
if(U_FAILURE(status)) return 0;
Calendar *cal = clone();
if(!cal) { status = U_MEMORY_ALLOCATION_ERROR; return 0; }
cal->prepareGetActual(field,FALSE,status);
result = handleGetMonthLength(cal->get(UCAL_EXTENDED_YEAR, status), cal->get(UCAL_MONTH, status));
delete cal;
}
break;
1999-08-16 21:50:52 +00:00
case UCAL_DAY_OF_YEAR:
{
if(U_FAILURE(status)) return 0;
Calendar *cal = clone();
if(!cal) { status = U_MEMORY_ALLOCATION_ERROR; return 0; }
cal->prepareGetActual(field,FALSE,status);
result = handleGetYearLength(cal->get(UCAL_EXTENDED_YEAR, status));
delete cal;
}
break;
case DAY_OF_WEEK:
case AM_PM:
case HOUR:
case HOUR_OF_DAY:
case MINUTE:
case SECOND:
case MILLISECOND:
case ZONE_OFFSET:
case DST_OFFSET:
case DOW_LOCAL:
case JULIAN_DAY:
case MILLISECONDS_IN_DAY:
// These fields all have fixed minima/maxima
result = getMaximum(field);
break;
default:
// For all other fields, do it the hard way....
result = getActualHelper(field, getLeastMaximum(field), getMaximum(field),status);
break;
1999-08-16 21:50:52 +00:00
}
return result;
}
/**
* Prepare this calendar for computing the actual minimum or maximum.
* This method modifies this calendar's fields; it is called on a
* temporary calendar.
*
* <p>Rationale: The semantics of getActualXxx() is to return the
* maximum or minimum value that the given field can take, taking into
* account other relevant fields. In general these other fields are
* larger fields. For example, when computing the actual maximum
* DATE, the current value of DATE itself is ignored,
* as is the value of any field smaller.
*
* <p>The time fields all have fixed minima and maxima, so we don't
* need to worry about them. This also lets us set the
* MILLISECONDS_IN_DAY to zero to erase any effects the time fields
* might have when computing date fields.
*
* <p>DAY_OF_WEEK is adjusted specially for the WEEK_OF_MONTH and
* WEEK_OF_YEAR fields to ensure that they are computed correctly.
* @internal
*/
void Calendar::prepareGetActual(UCalendarDateFields field, UBool isMinimum, UErrorCode &status)
{
set(UCAL_MILLISECONDS_IN_DAY, 0);
switch (field) {
case UCAL_YEAR:
case UCAL_YEAR_WOY:
case UCAL_EXTENDED_YEAR:
set(UCAL_DAY_OF_YEAR, getGreatestMinimum(UCAL_DAY_OF_YEAR));
break;
case UCAL_MONTH:
set(UCAL_DATE, getGreatestMinimum(UCAL_DATE));
break;
case UCAL_DAY_OF_WEEK_IN_MONTH:
// For dowim, the maximum occurs for the DOW of the first of the
// month.
set(UCAL_DATE, 1);
set(UCAL_DAY_OF_WEEK, get(UCAL_DAY_OF_WEEK, status)); // Make this user set
break;
case UCAL_WEEK_OF_MONTH:
case UCAL_WEEK_OF_YEAR:
// If we're counting weeks, set the day of the week to either the
// first or last localized DOW. We know the last week of a month
// or year will contain the first day of the week, and that the
// first week will contain the last DOW.
{
int32_t dow = fFirstDayOfWeek;
if (isMinimum) {
dow = (dow + 6) % 7; // set to last DOW
if (dow < UCAL_SUNDAY) {
dow += 7;
}
}
#if defined (U_DEBUG_CAL)
fprintf(stderr, "prepareGetActualHelper(WOM/WOY) - dow=%d\n", dow);
#endif
set(UCAL_DAY_OF_WEEK, dow);
}
break;
default:
;
}
// Do this last to give it the newest time stamp
set(field, getGreatestMinimum(field));
}
int32_t Calendar::getActualHelper(UCalendarDateFields field, int32_t startValue, int32_t endValue, UErrorCode &status) const
{
#if defined (U_DEBUG_CAL)
fprintf(stderr, "getActualHelper(%d,%d .. %d, %s)\n", field, startValue, endValue, u_errorName(status));
#endif
if (startValue == endValue) {
// if we know that the maximum value is always the same, just return it
return startValue;
}
int32_t delta = (endValue > startValue) ? 1 : -1;
1999-08-16 21:50:52 +00:00
// clone the calendar so we don't mess with the real one, and set it to
// accept anything for the field values
if(U_FAILURE(status)) return startValue;
Calendar *work = clone();
if(!work) { status = U_MEMORY_ALLOCATION_ERROR; return startValue; }
1999-08-16 21:50:52 +00:00
work->setLenient(TRUE);
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - getActualHelper - %s\n", __FILE__, __LINE__, u_errorName(status));
#endif
work->prepareGetActual(field, delta < 0, status);
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - getActualHelper - %s\n", __FILE__, __LINE__, u_errorName(status));
#endif
1999-08-16 21:50:52 +00:00
// now try each value from the start to the end one by one until
1999-08-16 21:50:52 +00:00
// we get a value that normalizes to another value. The last value that
// normalizes to itself is the actual maximum for the current date
int32_t result = startValue;
1999-08-16 21:50:52 +00:00
do {
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - getActualHelper - %s\n", __FILE__, __LINE__, u_errorName(status));
#endif
work->set(field, startValue);
#if defined (U_DEBUG_CAL)
fprintf(stderr, "%s:%d - getActualHelper - %s (set to %d)\n", __FILE__, __LINE__, u_errorName(status), startValue);
#endif
if (work->get(field, status) != startValue) {
#if defined (U_DEBUG_CAL)
fprintf(stderr, "getActualHelper(fld %d) - got %d (not %d), BREAK - %s\n", field, work->get(field,status), startValue, u_errorName(status));
#endif
1999-08-16 21:50:52 +00:00
break;
} else {
result = startValue;
startValue += delta;
#if defined (U_DEBUG_CAL)
fprintf(stderr, "getActualHelper(%d) result=%d (start), start += %d to %d\n", field, result, delta, startValue);
#endif
1999-08-16 21:50:52 +00:00
}
} while (result != endValue && U_SUCCESS(status));
1999-08-16 21:50:52 +00:00
delete work;
#if defined (U_DEBUG_CAL)
fprintf(stderr, "getActualHelper(%d) = %d\n", field, result);
#endif
1999-08-16 21:50:52 +00:00
return result;
}
1999-08-16 21:50:52 +00:00
// -------------------------------------
void
Calendar::setWeekCountData(const Locale& desiredLocale, UErrorCode& status)
{
// Read the week count data from the resource bundle. This should
// have the form:
//
// DateTimeElements:intvector {
// 1, // first day of week
// 1 // min days in week
1999-08-16 21:50:52 +00:00
// }
// Both have a range of 1..7
1999-08-16 21:50:52 +00:00
if (U_FAILURE(status)) return;
fFirstDayOfWeek = UCAL_SUNDAY;
fMinimalDaysInFirstWeek = 1;
UResourceBundle *resource = ures_open(NULL, desiredLocale.getName(), &status);
1999-08-16 21:50:52 +00:00
// If the resource data doesn't seem to be present at all, then use last-resort
// hard-coded data.
if (U_FAILURE(status))
1999-08-16 21:50:52 +00:00
{
status = U_USING_FALLBACK_WARNING;
ures_close(resource);
1999-08-16 21:50:52 +00:00
return;
}
//dateTimeElements = resource.getStringArray(kDateTimeElements, count, status);
UResourceBundle *dateTimeElements = ures_getByKey(resource, kDateTimeElements, NULL, &status); // TODO: should be per calendar?!
if (U_SUCCESS(status)) {
int32_t arrLen;
const int32_t *dateTimeElementsArr = ures_getIntVector(dateTimeElements, &arrLen, &status);
if(U_SUCCESS(status) && arrLen == 2
&& 1 <= dateTimeElementsArr[0] && dateTimeElementsArr[0] <= 7
&& 1 <= dateTimeElementsArr[1] && dateTimeElementsArr[1] <= 7)
{
fFirstDayOfWeek = (UCalendarDaysOfWeek)dateTimeElementsArr[0];
fMinimalDaysInFirstWeek = (uint8_t)dateTimeElementsArr[1];
}
else {
status = U_INVALID_FORMAT_ERROR;
}
1999-08-16 21:50:52 +00:00
}
ures_close(dateTimeElements);
ures_close(resource);
1999-08-16 21:50:52 +00:00
}
/**
* Recompute the time and update the status fields isTimeSet
* and areFieldsSet. Callers should check isTimeSet and only
* call this method if isTimeSet is false.
*/
void
Calendar::updateTime(UErrorCode& status)
{
computeTime(status);
if(U_FAILURE(status))
1999-08-16 21:50:52 +00:00
return;
// If we are lenient, we need to recompute the fields to normalize
// the values. Also, if we haven't set all the fields yet (i.e.,
// in a newly-created object), we need to fill in the fields. [LIU]
if (isLenient() || ! fAreAllFieldsSet)
fAreFieldsSet = FALSE;
fIsTimeSet = TRUE;
}
U_NAMESPACE_END
U_CFUNC UBool calendar_cleanup(void) {
if (gService) {
delete gService;
gService = NULL;
}
return TRUE;
}
#endif /* #if !UCONFIG_NO_FORMATTING */
1999-08-16 21:50:52 +00:00
//eof