scuffed-code/icu4c/source/i18n/caniter.cpp

479 lines
17 KiB
C++
Raw Normal View History

/*
*******************************************************************************
* Copyright (C) 1996-2000, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* $Source: /xsrl/Nsvn/icu/icu/source/i18n/Attic/caniter.cpp,v $
* $Date: 2002/03/12 23:21:52 $
* $Revision: 1.6 $
*
*****************************************************************************************
*/
#include "hash.h"
#include "uset.h"
#include "unormimp.h"
#include "caniter.h"
/**
* This class allows one to iterate through all the strings that are canonically equivalent to a given
* string. For example, here are some sample results:
Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
1: \u0041\u030A\u0064\u0307\u0327
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
2: \u0041\u030A\u0064\u0327\u0307
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
3: \u0041\u030A\u1E0B\u0327
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
4: \u0041\u030A\u1E11\u0307
= {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
5: \u00C5\u0064\u0307\u0327
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
6: \u00C5\u0064\u0327\u0307
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
7: \u00C5\u1E0B\u0327
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
8: \u00C5\u1E11\u0307
= {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
9: \u212B\u0064\u0307\u0327
= {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
10: \u212B\u0064\u0327\u0307
= {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
11: \u212B\u1E0B\u0327
= {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
12: \u212B\u1E11\u0307
= {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
*<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
* since it has not been optimized for that situation.
*@author M. Davis
*@draft
*/
#if 0
static UBool PROGRESS = FALSE;
#include "unicode/translit.h"
UErrorCode status = U_ZERO_ERROR;
// Just for testing - remove, not thread safe.
static const char* UToS(const UnicodeString &source) {
static char buffer[256];
buffer[source.extract(0, source.length(), buffer)] = 0;
return buffer;
}
static const UnicodeString &Tr(const UnicodeString &source) {
static Transliterator *NAME = Transliterator::createInstance("name", UTRANS_FORWARD, status);
static UnicodeString result;
result = source;
NAME->transliterate(result);
return result;
}
#endif
// public
/**
*@param source string to get results for
*/
CanonicalIterator::CanonicalIterator(UnicodeString source, UErrorCode status) :
pieces(NULL),
pieces_lengths(NULL),
current(NULL)
{
setSource(source, status);
}
CanonicalIterator::~CanonicalIterator() {
cleanPieces();
}
void CanonicalIterator::cleanPieces() {
int32_t i = 0;
if(pieces != NULL) {
for(i = 0; i < pieces_length; i++) {
if(pieces[i] != NULL) {
delete[] pieces[i];
}
}
delete[] pieces;
pieces = NULL;
if(pieces_lengths != NULL) {
delete[] pieces_lengths;
}
pieces_lengths = NULL;
if(current != NULL) {
delete[] current;
}
current = NULL;
}
}
/**
*@return gets the source: NOTE: it is the NFD form of source
*/
UnicodeString CanonicalIterator::getSource() {
return source;
}
/**
* Resets the iterator so that one can start again from the beginning.
*/
void CanonicalIterator::reset() {
done = FALSE;
for (int i = 0; i < current_length; ++i) {
current[i] = 0;
}
}
/**
*@return the next string that is canonically equivalent. The value null is returned when
* the iteration is done.
*/
UnicodeString CanonicalIterator::next() {
int32_t i = 0;
if (done) return "";
// construct return value
buffer.truncate(0); //buffer.setLength(0); // delete old contents
for (i = 0; i < pieces_length; ++i) {
buffer.append(pieces[i][current[i]]);
}
//String result = buffer.toString(); // not needed
// find next value for next time
for (i = current_length - 1; ; --i) {
if (i < 0) {
done = TRUE;
break;
}
current[i]++;
if (current[i] < pieces_lengths[i]) break; // got sequence
current[i] = 0;
}
return buffer;
}
/**
*@param set the source string to iterate against. This allows the same iterator to be used
* while changing the source string, saving object creation.
*/
void CanonicalIterator::setSource(UnicodeString newSource, UErrorCode status) {
Normalizer::normalize(newSource, UNORM_NFD, 0, source, status);
done = FALSE;
cleanPieces();
UnicodeString *list = new UnicodeString[source.length()];
int32_t list_length = 0;
UChar32 cp = 0;
int32_t start = 0;
// i should initialy be the number of code units at the
// start of the string
int32_t i = UTF16_CHAR_LENGTH(source.char32At(0));
//int32_t i = 1;
// find the segments
// This code iterates through the source string and
// extracts segments that end up on a codepoint that
// doesn't start any decompositions. (Analysis is done
// on the NFD form - see above).
for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
cp = source.char32At(i);
if (unorm_isCanonSafeStart(cp)) {
source.extract(start, i-start, list[list_length++]); // add up to i
start = i;
} else {
cp++; /* ### TODO remove, this is just a breakpoint place */
}
}
source.extract(start, i-start, list[list_length++]); // add last one
// allocate the arrays, and find the strings that are CE to each segment
pieces = new UnicodeString*[list_length];
pieces_length = list_length;
pieces_lengths = new int32_t[list_length];
current = new int32_t[list_length];
current_length = list_length;
for (i = 0; i < current_length; i++) {
current[i] = 0;
}
// for each segment, get all the combinations that can produce
// it after NFD normalization
for (i = 0; i < pieces_length; ++i) {
//if (PROGRESS) printf("SEGMENT\n");
pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
}
delete[] list;
}
/**
* Dumb recursive implementation of permutation.
* TODO: optimize
* @param source the string to find permutations for
* @return the results in a set.
*/
Hashtable *CanonicalIterator::permute(UnicodeString &source, UErrorCode status) {
//if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
int32_t i = 0;
Hashtable *result = new Hashtable(FALSE, status);
result->setValueDeleter(uhash_deleteUnicodeString);
// optimization:
// if zero or one character, just return a set with it
// we check for length < 2 to keep from counting code points all the time
//if (source.length() <= 2 && UTF16_CHAR_LENGTH(source.char32At(0)) <= 1) {
if (source.length() < 2 || (source.length() == 2 && UTF16_CHAR_LENGTH(source.char32At(0)) > 1)) {
UnicodeString *toPut = new UnicodeString(source);
result->put(source, toPut, status);
return result;
}
// otherwise iterate through the string, and recursively permute all the other characters
UChar32 cp;
for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) {
cp = source.char32At(i);
const UHashElement *ne = NULL;
int32_t el = -1;
UnicodeString subPermuteString = source;
// see what the permutations of the characters before and after this one are
//Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
Hashtable *subpermute = permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), status);
// The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
// of source at this point.
// prefix this character to all of them
ne = subpermute->nextElement(el);
while (ne != NULL) {
UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
UnicodeString *chStr = new UnicodeString(cp);
chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
//if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr));
result->put(*chStr, chStr, status);
ne = subpermute->nextElement(el);
}
delete subpermute;
}
return result;
}
// privates
// we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
UnicodeString* CanonicalIterator::getEquivalents(UnicodeString segment, int32_t &result_len, UErrorCode status) { //private String[] getEquivalents(String segment)
Hashtable *result = new Hashtable(FALSE, status);
Hashtable *basic = getEquivalents2(segment, status);
// now get all the permutations
// add only the ones that are canonically equivalent
// TODO: optimize by not permuting any class zero.
const UHashElement *ne = NULL;
int32_t el = -1;
//Iterator it = basic.iterator();
ne = basic->nextElement(el);
//while (it.hasNext())
while (ne != NULL) {
//String item = (String) it.next();
UnicodeString item = *((UnicodeString *)(ne->value.pointer));
Hashtable *permutations = permute(item, status);
const UHashElement *ne2 = NULL;
int32_t el2 = -1;
//Iterator it2 = permutations.iterator();
ne2 = permutations->nextElement(el2);
//while (it2.hasNext())
while (ne2 != NULL) {
//String possible = (String) it2.next();
UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
UnicodeString attempt;
Normalizer::normalize(*possible, UNORM_NFD, 0, attempt, status);
// TODO: check if operator == is semanticaly the same as attempt.equals(segment)
if (attempt==segment) {
//if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
// TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
result->put(*possible, possible, status); //add(possible);
} else {
//if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
}
ne2 = permutations->nextElement(el2);
}
delete permutations;
ne = basic->nextElement(el);
}
// convert into a String[] to clean up storage
//String[] finalResult = new String[result.size()];
UnicodeString *finalResult = new UnicodeString[result->count()];
//result.toArray(finalResult);
result_len = 0;
el = -1;
ne = result->nextElement(el);
while(ne != NULL) {
UnicodeString finResult = *((UnicodeString *)(ne->value.pointer));
finalResult[result_len++] = finResult;
ne = result->nextElement(el);
}
delete result;
return finalResult;
}
Hashtable *CanonicalIterator::getEquivalents2(UnicodeString segment, UErrorCode status) {
//Set result = new TreeSet();
Hashtable *result = new Hashtable(FALSE, status);
result->setValueDeleter(uhash_deleteUnicodeString);
//if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
//result.add(segment);
result->put(segment, new UnicodeString(segment), status);
//StringBuffer workingBuffer = new StringBuffer();
UnicodeString workingBuffer;
USerializedSet starts;
// cycle through all the characters
UChar32 cp, limit = 0;
int32_t i = 0, j = 0;
for (i = 0; i < segment.length(); i += UTF16_CHAR_LENGTH(cp)) {
// see if any character is at the start of some decomposition
cp = segment.char32At(i);
if (!unorm_getCanonStartSet(cp, &starts)) {
continue;
}
// if so, see which decompositions match
for(cp = limit; cp < limit || uset_getSerializedRange(&starts, j++, &cp, &limit); ++cp) {
const Hashtable *remainder = extract(cp, segment, i, workingBuffer, status);
if (remainder == NULL) continue;
// there were some matches, so add all the possibilities to the set.
//UnicodeString prefix = segment.substring(0, i) + UTF16.valueOf(cp2);
UnicodeString *prefix = new UnicodeString;
segment.extract(0, i, *prefix);
*prefix += cp;
const UHashElement *ne = NULL;
int32_t el = -1;
//Iterator it = remainder.iterator();
ne = remainder->nextElement(el);
while (ne != NULL) {
//String item = (String) it.next();
UnicodeString item = *((UnicodeString *)(ne->value.pointer));
//result.add(prefix + item);
*prefix += item;
result->put(*prefix, prefix, status);
//if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*prefix)));
ne = remainder->nextElement(el);
}
delete remainder;
}
}
return result;
}
/**
* See if the decomposition of cp2 is at segment starting at segmentPos
* (with canonical rearrangment!)
* If so, take the remainder, and return the equivalents
*/
const Hashtable *CanonicalIterator::extract(UChar32 comp, UnicodeString segment, int32_t segmentPos, UnicodeString buffer, UErrorCode status) {
//if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
//if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
//String decomp = Normalizer.normalize(UTF16.valueOf(comp), Normalizer.DECOMP, 0);
UnicodeString decomp;
Normalizer::normalize(comp, UNORM_NFD, 0, decomp, status);
// See if it matches the start of segment (at segmentPos)
UBool ok = FALSE;
UChar32 cp;
int32_t decompPos = 0;
UChar32 decompCp = decomp.char32At(0);
decompPos += UTF16_CHAR_LENGTH(decompCp); // adjust position to skip first char
//int decompClass = getClass(decompCp);
buffer.truncate(0); // initialize working buffer, shared among callees
int32_t i = 0;
for (i = segmentPos; i < segment.length(); i += UTF16_CHAR_LENGTH(cp)) {
cp = segment.char32At(i);
if (cp == decompCp) { // if equal, eat another cp from decomp
//if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))));
if (decompPos == decomp.length()) { // done, have all decomp characters!
//buffer.append(segment.substring(i + UTF16.getCharCount(cp))); // add remaining segment chars
buffer.append(segment, i+UTF16_CHAR_LENGTH(cp), segment.length()-i-UTF16_CHAR_LENGTH(cp));
ok = TRUE;
break;
}
decompCp = decomp.char32At(decompPos);
decompPos += UTF16_CHAR_LENGTH(decompCp);
//decompClass = getClass(decompCp);
} else {
//if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp))));
// brute force approach
//UTF16.append(buffer, cp);
buffer.append(cp);
/* TODO: optimize
// since we know that the classes are monotonically increasing, after zero
// e.g. 0 5 7 9 0 3
// we can do an optimization
// there are only a few cases that work: zero, less, same, greater
// if both classes are the same, we fail
// if the decomp class < the segment class, we fail
segClass = getClass(cp);
if (decompClass <= segClass) return null;
*/
}
}
if (!ok) return NULL; // we failed, characters left over
//if (PROGRESS) printf("Matches\n");
if (buffer.length() == 0) {
Hashtable *result = new Hashtable(FALSE, status);
result->setValueDeleter(uhash_deleteUnicodeString);
result->put("", new UnicodeString(""), status);
return result; // succeed, but no remainder
}
//String remainder = buffer.toString();
UnicodeString remainder = buffer;
// brute force approach
// check to make sure result is canonically equivalent
//String trial = Normalizer.normalize(UTF16.valueOf(comp) + remainder, Normalizer.DECOMP, 0);
UnicodeString trial;
UnicodeString temp = remainder;
temp.insert(0, comp);
Normalizer::normalize(temp, UNORM_NFD, 0, trial, status);
//if (!segment.regionMatches(segmentPos, trial, 0, segment.length() - segmentPos)) return null;
if (segment.indexOf(trial, 0, segment.length() - segmentPos, segmentPos, segment.length() - segmentPos)==-1) {
return NULL;
}
// get the remaining combinations
return getEquivalents2(remainder, status);
}