scuffed-code/icu4c/source/i18n/regexcmp.cpp

1445 lines
52 KiB
C++
Raw Normal View History

//
// file: regexcmp.cpp
//
// Copyright (C) 2002, International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains the ICU regular expression compiler, which is responsible
// for processing a regular expression pattern into the compiled form that
// is used by the match finding engine.
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
#include "unicode/unistr.h"
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/uchriter.h"
#include "unicode/parsepos.h"
#include "unicode/parseerr.h"
#include "unicode/regex.h"
#include "uprops.h"
#include "cmemory.h"
#include "cstring.h"
#include "uvectr32.h"
#include "uassert.h"
#include "ucln_in.h"
#include "mutex.h"
#include "regeximp.h"
#include "regexcst.h" // Contains state table for the regex pattern parser.
// generated by a Perl script.
#include "regexcmp.h"
U_NAMESPACE_BEGIN
//----------------------------------------------------------------------------------------
//
// Unicode Sets for each of the character classes needed for parsing a regex pattern.
// (Initialized with hex values for portability to EBCDIC based machines.
// Really ugly, but there's no good way to avoid it.)
//
// The sets are referred to by name in the regexcst.txt, which is the
// source form of the state transition table. These names are converted
// to indicies in regexcst.h by the perl state table building script regexcst.pl.
// The indices are used to access the array gRuleSets.
//
//----------------------------------------------------------------------------------------
// "Rule Char" Characters are those with no special meaning, and therefore do not
// need to be escaped to appear as literals in a regexp. Expressed
// as the inverse of those needing escaping -- [^\*\?\+\[\(\)\{\}\^\$\|\\\.]
static const UChar gRuleSet_rule_char_pattern[] = {
// [ ^ \ * \ ? \ + \ [ \ ( / )
0x5b, 0x5e, 0x5c, 0x2a, 0x5c, 0x3f, 0x5c, 0x2b, 0x5c, 0x5b, 0x5c, 0x28, 0x5c, 0x29,
// \ { \ } \ ^ \ $ \ | \ \ \ . ]
0x5c, 0x7b,0x5c, 0x7d, 0x5c, 0x5e, 0x5c, 0x24, 0x5c, 0x7c, 0x5c, 0x5c, 0x5c, 0x2e, 0x5d, 0};
static const UChar gRuleSet_digit_char_pattern[] = {
// [ 0 - 9 ]
0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
static UnicodeSet *gRuleSets[10]; // Array of ptrs to the actual UnicodeSet objects.
static UnicodeSet *gUnescapeCharSet;
//
// Here are the backslash escape characters that ICU's unescape() function
// will handle.
//
static const UChar gUnescapeCharPattern[] = {
// [ a c e f n r t u U ]
0x5b, 0x61, 0x63, 0x65, 0x66, 0x6e, 0x72, 0x74, 0x75, 0x55, 0x5d, 0};
//
// White space characters that may appear within a pattern in free-form mode
//
static const UChar gRuleWhiteSpacePattern[] = {
/* "[[:Cf:][:WSpace:]]" */
91, 91, 58, 67, 102, 58, 93, 91, 58, 87,
83, 112, 97, 99, 101, 58, 93, 93, 0 };
//
// Unicode Set Definitions for Regular Expression \w
//
static const UChar gIsWordPattern[] = {
// [ \ p { L l } \ p { L u }
0x5b, 0x5c, 0x70, 0x7b, 0x4c, 0x6c, 0x7d, 0x5c, 0x70, 0x7b, 0x4c, 0x75, 0x7d,
// \ p { L t } \ p { L o }
0x5c, 0x70, 0x7b, 0x4c, 0x74, 0x7d, 0x5c, 0x70, 0x7b, 0x4c, 0x6f, 0x7d,
// \ p { N d } ]
0x5c, 0x70, 0x7b, 0x4e, 0x64, 0x7d, 0x5d, 0};
//
// Unicode Set Definitions for Regular Expression \s
//
static const UChar gIsSpacePattern[] = {
// [ \ t \ n \ f \ r \ p { Z } ]
0x5b, 0x5c, 0x74, 0x5c, 0x6e, 0x5c, 0x66, 0x5c, 0x72, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5d, 0};
static UnicodeSet *gPropSets[URX_LAST_SET];
//----------------------------------------------------------------------------------------
//
// ThreadSafeUnicodeSetInit Thread safe creation of a shared UnicodeSet.
//
//----------------------------------------------------------------------------------------
static void ThreadSafeUnicodeSetInit(UnicodeSet **pSet, const UChar *pattern, UErrorCode &status) {
if (*pSet == NULL) {
UnicodeSet *t = new UnicodeSet(pattern, status);
if (U_FAILURE(status)) {
delete t;
return;
}
if (t == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
Mutex lock;
if (*pSet == NULL) {
*pSet = t;
} else {
delete t;
}
}
}
//----------------------------------------------------------------------------------------
//
// Constructor.
//
//----------------------------------------------------------------------------------------
RegexCompile::RegexCompile(UErrorCode &status) : fParenStack(status)
{
fStatus = &status;
fScanIndex = 0;
fNextIndex = 0;
fPeekChar = -1;
fLineNum = 1;
fCharNum = 0;
fQuoteMode = FALSE;
fFreeForm = FALSE;
fMatchOpenParen = -1;
fMatchCloseParen = -1;
if (U_FAILURE(status)) {
return;
}
//
// Register the I18n library for cleanup,
// but only if we haven't initialized our globals yet.
if (gRuleSets[kRuleSet_rule_char-128] == NULL) {
ucln_i18n_registerCleanup();
}
//
// Set up the constant (static) Unicode Sets.
// TODO: something cleaner for that -128 constant.
//
ThreadSafeUnicodeSetInit(&gRuleSets[kRuleSet_rule_char-128], gRuleSet_rule_char_pattern, status);
ThreadSafeUnicodeSetInit(&gRuleSets[kRuleSet_white_space-128], gRuleWhiteSpacePattern, status);
ThreadSafeUnicodeSetInit(&gRuleSets[kRuleSet_digit_char-128], gRuleSet_digit_char_pattern, status);
ThreadSafeUnicodeSetInit(&gUnescapeCharSet, gUnescapeCharPattern, status);
ThreadSafeUnicodeSetInit(&gPropSets[URX_ISWORD_SET], gIsWordPattern, status);
ThreadSafeUnicodeSetInit(&gPropSets[URX_ISSPACE_SET], gIsSpacePattern, status);
}
//----------------------------------------------------------------------------------------
//
// Destructor
//
//----------------------------------------------------------------------------------------
RegexCompile::~RegexCompile() {
}
//----------------------------------------------------------------------------------------
//
// cleanup. Called (indirectly) by u_cleanup to free all cached memory
//
//----------------------------------------------------------------------------------------
void RegexCompile::cleanup() {
delete gRuleSets[kRuleSet_rule_char-128];
delete gRuleSets[kRuleSet_white_space-128];
delete gRuleSets[kRuleSet_digit_char-128];
delete gUnescapeCharSet;
gRuleSets[kRuleSet_rule_char-128] = NULL;
gRuleSets[kRuleSet_white_space-128] = NULL;
gRuleSets[kRuleSet_digit_char-128] = NULL;
gUnescapeCharSet = NULL;
int i;
for (i=0; i<URX_LAST_SET; i++) {
delete (UnicodeSet *)gPropSets[i];
gPropSets[i] = NULL;
}
return;
}
//---------------------------------------------------------------------------------
//
// Compile regex pattern. The state machine for rexexp pattern parsing is here.
// The state tables are hand-written in the file regexcst.txt,
// and converted to the form used here by a perl
// script regexcst.pl
//
//---------------------------------------------------------------------------------
void RegexCompile::compile(
RegexPattern &rxp, // User level pattern object to receive
// the compiled pattern.
const UnicodeString &pat, // Source pat to be compiled.
UParseError &pp, // Error position info
UErrorCode &e) // Error Code
{
fStatus = &e;
fRXPat = &rxp;
fParseErr = &pp;
fStackPtr = 0;
fStack[fStackPtr] = 0;
if (U_FAILURE(*fStatus)) {
return;
}
// There should be no pattern stuff in the RegexPattern object. They can not be reused.
U_ASSERT(fRXPat->fPattern.length() == 0);
// Prepare the RegexPattern object to receive the compiled pattern.
fRXPat->fPattern = pat;
fRXPat->fStaticSets = gPropSets;
// Initialize the pattern scanning state machine
fPatternLength = pat.length();
uint16_t state = 1;
const RegexTableEl *tableEl;
nextChar(fC); // Fetch the first char from the pattern string.
//
// Main loop for the regex pattern parsing state machine.
// Runs once per state transition.
// Each time through optionally performs, depending on the state table,
// - an advance to the the next pattern char
// - an action to be performed.
// - pushing or popping a state to/from the local state return stack.
// file regexcst.txt is the source for the state table. The logic behind
// recongizing the pattern syntax is there, not here.
//
for (;;) {
// Bail out if anything has gone wrong.
// Regex pattern parsing stops on the first error encountered.
if (U_FAILURE(*fStatus)) {
break;
}
U_ASSERT(state != 0);
// Find the state table element that matches the input char from the rule, or the
// class of the input character. Start with the first table row for this
// state, then linearly scan forward until we find a row that matches the
// character. The last row for each state always matches all characters, so
// the search will stop there, if not before.
//
tableEl = &gRuleParseStateTable[state];
REGEX_SCAN_DEBUG_PRINTF( "char, line, col = (\'%c\', %d, %d) state=%s ",
fC.fChar, fLineNum, fCharNum, RegexStateNames[state]);
for (;;) { // loop through table rows belonging to this state, looking for one
// that matches the current input char.
REGEX_SCAN_DEBUG_PRINTF( ".");
if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
// Table row specified an individual character, not a set, and
// the input character is not quoted, and
// the input character matched it.
break;
}
if (tableEl->fCharClass == 255) {
// Table row specified default, match anything character class.
break;
}
if (tableEl->fCharClass == 254 && fC.fQuoted) {
// Table row specified "quoted" and the char was quoted.
break;
}
if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) {
// Table row specified eof and we hit eof on the input.
break;
}
if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
fC.fQuoted == FALSE && // char is not escaped &&
fC.fChar != (UChar32)-1) { // char is not EOF
UnicodeSet *uniset = gRuleSets[tableEl->fCharClass-128];
if (uniset->contains(fC.fChar)) {
// Table row specified a character class, or set of characters,
// and the current char matches it.
break;
}
}
// No match on this row, advance to the next row for this state,
tableEl++;
}
REGEX_SCAN_DEBUG_PRINTF("\n");
//
// We've found the row of the state table that matches the current input
// character from the rules string.
// Perform any action specified by this row in the state table.
if (doParseActions((EParseAction)tableEl->fAction) == FALSE) {
// Break out of the state machine loop if the
// the action signalled some kind of error, or
// the action was to exit, occurs on normal end-of-rules-input.
break;
}
if (tableEl->fPushState != 0) {
fStackPtr++;
if (fStackPtr >= kStackSize) {
error(U_REGEX_INTERNAL_ERROR);
REGEX_SCAN_DEBUG_PRINTF( "RegexCompile::parse() - state stack overflow.\n");
fStackPtr--;
}
fStack[fStackPtr] = tableEl->fPushState;
}
if (tableEl->fNextChar) {
nextChar(fC);
}
// Get the next state from the table entry, or from the
// state stack if the next state was specified as "pop".
if (tableEl->fNextState != 255) {
state = tableEl->fNextState;
} else {
state = fStack[fStackPtr];
fStackPtr--;
if (fStackPtr < 0) {
// state stack underflow
// This will occur if the user pattern has mis-matched parentheses,
// with extra close parens.
//
fStackPtr++;
error(U_REGEX_MISMATCHED_PAREN);
}
}
}
//
// The pattern has now been read and processed, and the compiled code generated.
//
//
// Compute the number of digits requried for the largest capture group number.
//
fRXPat->fMaxCaptureDigits = 1;
int32_t n = 10;
for (;;) {
if (n > fRXPat->fNumCaptureGroups) {
break;
}
fRXPat->fMaxCaptureDigits++;
n *= 10;
}
//
// A stupid bit of non-sense to prevent code coverage testing from complaining
// about the pattern.dump() debug function. Go through the motions of dumping,
// even though, without the #define set, it will do nothing.
//
#ifndef REGEX_DUMP_DEBUG
static UBool phonyDumpDone = FALSE;
if (phonyDumpDone==FALSE) {
fRXPat->dump();
phonyDumpDone = TRUE;
}
#endif
}
//----------------------------------------------------------------------------------------
//
// doParseAction Do some action during regex pattern parsing.
// Called by the parse state machine.
//
//
//----------------------------------------------------------------------------------------
UBool RegexCompile::doParseActions(EParseAction action)
{
UBool returnVal = TRUE;
switch ((Regex_PatternParseAction)action) {
case doPatStart:
// Start of pattern compiles to:
//0 SAVE 2 Fall back to position of FAIL
//1 jmp 3
//2 FAIL Stop if we ever reach here.
//3 NOP Dummy, so start of pattern looks the same as
// the start of an ( grouping.
//4 NOP Resreved, will be replaced by a save if there are
// OR | operators at the top level
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fParenStack.push(-1, *fStatus); // Begin a Paren Stack Frame
fParenStack.push( 3, *fStatus); // Push location of first NOP
break;
case doPatFinish:
// We've scanned to the end of the pattern
// The end of pattern compiles to:
// URX_END
// which will stop the runtime match engine.
// Encountering end of pattern also behaves like a close paren,
// and forces fixups of the State Save at the beginning of the compiled pattern
// and of any OR operations at the top level.
//
handleCloseParen();
if (fParenStack.size() > 0) {
// Missing close paren in pattern.
error(U_REGEX_MISMATCHED_PAREN);
}
// add the END operation to the compiled pattern.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus);
// Terminate the pattern compilation state machine.
returnVal = FALSE;
break;
case doOrOperator:
// Scanning a '|', as in (A|B)
{
// Insert a SAVE operation at the start of the pattern section preceding
// this OR at this level. This SAVE will branch the match forward
// to the right hand side of the OR in the event that the left hand
// side fails to match and backtracks. Locate the position for the
// save from the location on the top of the parentheses stack.
int32_t savePosition = fParenStack.popi();
int32_t op = fRXPat->fCompiledPat->elementAti(savePosition);
U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
fRXPat->fCompiledPat->setElementAt(op, savePosition);
// Append an JMP operation into the compiled pattern. The operand for
// the OR will eventually be the location following the ')' for the
// group. This will be patched in later, when the ')' is encountered.
op = URX_BUILD(URX_JMP, 0);
fRXPat->fCompiledPat->addElement(op, *fStatus);
// Push the position of the newly added JMP op onto the parentheses stack.
// This registers if for fixup when this block's close paren is encountered.
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
// Append a NOP to the compiled pattern. This is the slot reserved
// for a SAVE in the event that there is yet another '|' following
// this one.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
}
break;
case doOpenCaptureParen:
// Open Paren.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - START_CAPTURE
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fNumCaptureGroups++;
int32_t cop = URX_BUILD(URX_START_CAPTURE, fRXPat->fNumCaptureGroups);
fRXPat->fCompiledPat->addElement(cop, *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs. Depending on what follows in the pattern, the
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
// address of the end of the parenthesized group.
fParenStack.push(-2, *fStatus); // Begin a new frame.
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
}
break;
case doOpenNonCaptureParen:
// Open non-caputuring (grouping only) Paren.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs.
fParenStack.push(-1, *fStatus); // Begin a new frame.
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
}
break;
case doOpenAtomicParen:
// Open Atomic Paren.
error(U_REGEX_UNIMPLEMENTED);
break;
case doOpenLookAhead:
// Open Paren.
error(U_REGEX_UNIMPLEMENTED);
break;
case doOpenLookAheadNeg:
// Open Paren.
error(U_REGEX_UNIMPLEMENTED);
break;
case doOpenLookBehind:
// Open Paren.
error(U_REGEX_UNIMPLEMENTED);
break;
case doOpenLookBehindNeg:
// Open Paren.
error(U_REGEX_UNIMPLEMENTED);
break;
case doCloseParen:
handleCloseParen();
if (fParenStack.size() <= 0) {
// Extra close paren, or missing open paren.
error(U_REGEX_MISMATCHED_PAREN);
}
break;
case doNOP:
break;
case doBadOpenParenType:
case doRuleError:
error(U_REGEX_RULE_SYNTAX);
returnVal = FALSE;
break;
case doMismatchedParenErr:
error(U_REGEX_MISMATCHED_PAREN);
returnVal = FALSE;
break;
case doPlus:
// Normal '+' compiles to
// 1. stuff to be repeated (already built)
// 2. state-save 4
// 3. jmp 1
// 4. ...
{
int32_t topLoc = blockTopLoc(FALSE); // location of item #1
// Locate the position in the compiled pattern where the match will continue
// after completing the + (4 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+2;
// Emit the STATE_SAVE
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
// Emit the JMP
int32_t jmpOp = URX_BUILD(URX_JMP, topLoc);
fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
}
break;
case doNGPlus:
// Non-greedy '+?' compiles to
// 1. stuff to be repeated (already built)
// 2. state-save 1
// 3. ...
{
int32_t topLoc = blockTopLoc(FALSE);
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc);
fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
}
break;
case doOpt:
// Normal (greedy) ? quantifier.
// Compiles to
// 1. state save 3
// 2. body of optional block
// 3. ...
// Insert the state save into the compiled pattern, and we're done.
{
int32_t saveStateLoc = blockTopLoc(TRUE);
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
}
break;
case doNGOpt:
// Non-greedy ?? quantifier
// compiles to
// 1. jmp 4
// 2. body of optional block
// 3 jmp 5
// 4. state save 2
// 5 ...
// This code is less than ideal, with two jmps instead of one, because we can only
// insert one instruction at the top of the block being iterated.
{
int32_t jmp1_loc = blockTopLoc(TRUE);
int32_t jmp2_loc = fRXPat->fCompiledPat->size();
int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1);
fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2);
fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus);
int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1);
fRXPat->fCompiledPat->addElement(save_op, *fStatus);
}
break;
case doStar:
// Normal (greedy) * quantifier.
// Compiles to
// 1. STATE_SAVE 3
// 2. body of stuff being iterated over
// 3. JMP 0
// 4. ...
//
{
// location of item #1, the STATE_SAVE
int32_t saveStateLoc = blockTopLoc(TRUE);
// Locate the position in the compiled pattern where the match will continue
// after completing the *. (4 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
// Put together the save state op store it into the compiled code.
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
// Append the URX_JMP operation to the compiled pattern. Its target
// is the locaton of the state-save, above.
int32_t jmpOp = URX_BUILD(URX_JMP, saveStateLoc);
fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
}
break;
case doNGStar:
// Non-greedy *? quantifier
// compiles to
// 1. JMP 3
// 2. body of stuff being iterated over
// 3. STATE_SAVE 2
// 4 ...
{
int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc);
int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1);
fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus);
}
break;
case doLiteralChar:
// We've just scanned a "normal" character from the pattern,
literalChar();
break;
case doDotAny:
// scanned a ".", match any single character.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOTANY, 0), *fStatus);
break;
case doCaret: // TODO: multi-line mode flag.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus);
break;
case doDollar: // TODO: multi-line mode flag.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
break;
case doBackslashA:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_A, 0), *fStatus);
break;
case doBackslashB:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_B, 1), *fStatus);
break;
case doBackslashb:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_B, 0), *fStatus);
break;
case doBackslashD:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus);
break;
case doBackslashd:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus);
break;
case doBackslashG:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus);
break;
case doBackslashS:
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET | URX_NEG_SET), *fStatus);
break;
case doBackslashs:
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus);
break;
case doBackslashW:
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET | URX_NEG_SET), *fStatus);
break;
case doBackslashw:
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus);
break;
case doBackslashX:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus);
break;
case doBackslashx: // \x{abcd} alternate hex format
// TODO: implement
error(U_REGEX_UNIMPLEMENTED);
break;
case doBackslashZ:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
break;
case doBackslashz:
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus);
break;
case doExit:
returnVal = FALSE;
break;
case doProperty:
{
UnicodeSet *theSet = scanProp();
compileSet(theSet);
}
break;
case doScanUnicodeSet:
{
UnicodeSet *theSet = scanSet();
compileSet(theSet);
}
break;
case doEnterQuoteMode:
// Just scanned a \Q. Put character scanner into quote mode.
fQuoteMode = TRUE;
break;
case doBackRef:
// TODO: implement back references.
error(U_REGEX_UNIMPLEMENTED);
break;
case doNamedChar: // \N{NAMED_CHAR}
// TODO: implement
error(U_REGEX_UNIMPLEMENTED);
break;
case doPossesiveStar:
case doPossesivePlus:
case doPossesiveOpt:
// TODO: implement
error(U_REGEX_UNIMPLEMENTED);
break;
case doMatchMode: // (?i) and similar
// TODO: implement
error(U_REGEX_UNIMPLEMENTED);
break;
case doNotImplementedError:
// TODO: get rid of this once everything is implemented.
error(U_REGEX_UNIMPLEMENTED);
break;
default:
error(U_REGEX_INTERNAL_ERROR);
returnVal = FALSE;
break;
}
return returnVal;
};
//------------------------------------------------------------------------------
//
// literalChar We've encountered a literal character from the pattern,
// or an escape sequence that reduces to a character.
// Add it to the string containing all literal chars/strings from
// the pattern.
// If we are in a pattern string already, add the new char to it.
// If we aren't in a pattern string, begin one now.
//
//------------------------------------------------------------------------------
void RegexCompile::literalChar() {
int32_t op; // An operation in the compiled pattern.
int32_t opType;
int32_t patternLoc; // A position in the compiled pattern.
int32_t stringLen;
// If the last thing compiled into the pattern was not a literal char,
// force this new literal char to begin a new string, and not append to the previous.
op = fRXPat->fCompiledPat->lastElementi();
opType = URX_TYPE(op);
if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR)) {
fixLiterals();
}
if (fStringOpStart == -1) {
// First char of a string in the pattern.
// Emit a OneChar op into the compiled pattern.
op = URX_BUILD(URX_ONECHAR, fC.fChar);
fRXPat->fCompiledPat->addElement(op, *fStatus);
// Also add it to the string pool, in case we get a second adjacent literal
// and want to change form ONE_CHAR to STRING
fStringOpStart = fRXPat->fLiteralText.length();
fRXPat->fLiteralText.append(fC.fChar);
return;
}
// We are adding onto an existing string
fRXPat->fLiteralText.append(fC.fChar);
// If the most recently emitted op is a URX_ONECHAR, change it to a string op.
op = fRXPat->fCompiledPat->lastElementi();
opType = URX_TYPE(op);
U_ASSERT(opType == URX_ONECHAR || opType == URX_STRING_LEN);
if (opType == URX_ONECHAR) {
op = URX_BUILD(URX_STRING, fStringOpStart);
patternLoc = fRXPat->fCompiledPat->size() - 1;
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
op = URX_BUILD(URX_STRING_LEN, 0);
fRXPat->fCompiledPat->addElement(op, *fStatus);
}
// The pattern contains a URX_SRING / URX_STRING_LEN. Update the
// string length to reflect the new char we just added to the string.
stringLen = fRXPat->fLiteralText.length() - fStringOpStart;
op = URX_BUILD(URX_STRING_LEN, stringLen);
patternLoc = fRXPat->fCompiledPat->size() - 1;
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
}
//------------------------------------------------------------------------------
//
// fixLiterals When compiling something that can follow a literal
// string in a pattern, we need to "fix" any preceding
// string, which will cause any subsequent literals to
// begin a new string, rather than appending to the
// old one.
//
// Optionally, split the last char of the string off into
// a single "ONE_CHAR" operation, so that quantifiers can
// apply to that char alone. Example: abc*
// The * needs to apply to the 'c' only.
//
//------------------------------------------------------------------------------
void RegexCompile::fixLiterals(UBool split) {
int32_t stringStart = fStringOpStart; // start index of the current literal string
int32_t op; // An op from/for the compiled pattern.
int32_t opType; // An opcode type from the compiled pattern.
int32_t stringLastCharIdx;
UChar32 lastChar;
int32_t stringNextToLastCharIdx;
UChar32 nextToLastChar;
int32_t stringLen;
fStringOpStart = -1;
if (!split) {
return;
}
// Split: We need to ensure that the last item in the compiled pattern does
// not refer to a literal string of more than one char. If it does,
// separate the last char from the rest of the string.
// If the last operation from the compiled pattern is not a string,
// nothing needs to be done
op = fRXPat->fCompiledPat->lastElementi();
opType = URX_TYPE(op);
if (opType != URX_STRING_LEN) {
return;
}
stringLen = URX_VAL(op);
//
// Find the position of the last code point in the string (might be a surrogate pair)
//
stringLastCharIdx = fRXPat->fLiteralText.length();
stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx);
// The string should always be at least two code points long, meaning that there
// should be something before the last char position that we just found.
U_ASSERT(stringLastCharIdx > stringStart);
stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
U_ASSERT(stringNextToLastCharIdx >= stringStart);
nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx);
if (stringNextToLastCharIdx > stringStart) {
// The length of string remaining after removing one char is two or more.
// Leave the string in the compiled pattern, shorten it by one char,
// and append a URX_ONECHAR op for the last char.
stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx);
op = URX_BUILD(URX_STRING_LEN, stringLen);
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
op = URX_BUILD(URX_ONECHAR, lastChar);
fRXPat->fCompiledPat->addElement(op, *fStatus);
} else {
// The original string consisted of exactly two characters. Replace
// the existing compiled URX_STRING/URX_STRING_LEN ops with a pair
// of URX_ONECHARs.
op = URX_BUILD(URX_ONECHAR, nextToLastChar);
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -2);
op = URX_BUILD(URX_ONECHAR, lastChar);
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
}
}
//------------------------------------------------------------------------------
//
// blockTopLoc() Find or create a location in the compiled pattern
// at the start of the operation or block that has
// just been compiled. Needed when a quantifier (* or
// whatever) appears, and we need to add an operation
// at the start of the thing being quantified.
//
// (Parenthesized Blocks) have a slot with a NOP that
// is reserved for this purpose. .* or similar don't
// and a slot needs to be added.
//
// parameter reserveLoc : TRUE - ensure that there is space to add an opcode
// at the returned location.
// FALSE - just return the address, reserve a location there.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
int32_t theLoc;
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
{
// The item just processed is a parenthesized block.
theLoc = fMatchOpenParen; // A slot is already reserved for us.
U_ASSERT(theLoc > 0);
uint32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
U_ASSERT(URX_TYPE(opAtTheLoc) == URX_NOP);
}
else {
// Item just compiled is a single thing, a ".", or a single char, or a set reference.
// No slot for STATE_SAVE was pre-reserved in the compiled code.
// We need to make space now.
fixLiterals(TRUE); // If last item was a string, separate the last char.
theLoc = fRXPat->fCompiledPat->size()-1;
if (reserveLoc) {
int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
int32_t prevType = URX_TYPE(opAtTheLoc);
int32_t nop = URX_BUILD(URX_NOP, 0);
fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
}
}
return theLoc;
}
//------------------------------------------------------------------------------
//
// handleCloseParen When compiling a close paren, we need to go back
// and fix up any JMP or SAVE operations within the
// parenthesized block that need to target the end
// of the block. The locations of these are kept on
// the paretheses stack.
//
// This function is called both when encountering a
// real ) and at the end of the pattern.
//
//-------------------------------------------------------------------------------
void RegexCompile::handleCloseParen() {
int32_t patIdx;
int32_t patOp;
if (fParenStack.size() <= 0) {
error(U_REGEX_MISMATCHED_PAREN);
return;
}
// Force any literal chars that may follow the close paren to start a new string,
// and not attach to any preceding it.
fixLiterals(FALSE);
// Fixup any operations within the just-closed parenthesized group
// that need to reference the end of the (block).
// (The first one on popped from the stack is an unused slot for
// alternation (OR) state save, but applying the fixup to it does no harm.)
for (;;) {
patIdx = fParenStack.popi();
if (patIdx < 0) {
break;
}
U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
patOp = fRXPat->fCompiledPat->elementAti(patIdx);
U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
patOp |= fRXPat->fCompiledPat->size(); // Set it now.
fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
fMatchOpenParen = patIdx;
}
// DO any additional fixups, depending on the specific kind of
// parentesized grouping this is
switch (patIdx) {
case -1:
// No additional fixups required.
// This is the case with most kinds of groupings.
break;
case -2:
// Capturing Parentheses.
// Insert a End Capture op into the pattern.
// Grab the group number from the start capture op
// and put it into the end-capture op.
{
int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
int32_t captureGroupNumber = URX_VAL(captureOp);
U_ASSERT(captureGroupNumber > 0);
int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, captureGroupNumber);
fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus);
}
break;
default:
U_ASSERT(FALSE);
}
// remember the next location in the compiled pattern.
// The compilation of Quantifiers will look at this to see whether its looping
// over a parenthesized block or a single item
fMatchCloseParen = fRXPat->fCompiledPat->size();
}
//----------------------------------------------------------------------------------------
//
// compileSet Compile the pattern operations for a reference to a
// UnicodeSet.
//
//----------------------------------------------------------------------------------------
void RegexCompile::compileSet(UnicodeSet *theSet)
{
if (theSet == NULL) {
return;
}
int32_t setSize = theSet->size();
UChar32 firstSetChar = theSet->charAt(0);
if (firstSetChar == -1) {
// Sets that contain only strings, but no individual chars,
// will end up here. TODO: figure out what to with sets containing strings.
setSize = 0;
}
switch (setSize) {
case 0:
{
// Set of no elements. Always fails to match.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus);
delete theSet;
}
break;
case 1:
{
// The set contains only a single code point. Put it into
// the compiled pattern as a single char operation rather
// than a set, and discard the set itself.
int32_t charToken = URX_BUILD(URX_ONECHAR, firstSetChar);
fRXPat->fCompiledPat->addElement(charToken, *fStatus);
delete theSet;
}
break;
default:
{
// The set contains two or more chars. (the normal case)
// Put it into the compiled pattern as a set.
int32_t setNumber = fRXPat->fSets->size();
fRXPat->fSets->addElement(theSet, *fStatus);
int32_t setOp = URX_BUILD(URX_SETREF, setNumber);
fRXPat->fCompiledPat->addElement(setOp, *fStatus);
}
}
}
//----------------------------------------------------------------------------------------
//
// Error Report a rule parse error.
// Only report it if no previous error has been recorded.
//
//----------------------------------------------------------------------------------------
void RegexCompile::error(UErrorCode e) {
if (U_SUCCESS(*fStatus)) {
*fStatus = e;
fParseErr->line = fLineNum;
fParseErr->offset = fCharNum;
fParseErr->preContext[0] = 0; // TODO: copy in some input pattern text
fParseErr->preContext[0] = 0;
}
}
//
// Assorted Unicode character constants.
// Numeric because there is no portable way to enter them as literals.
// (Think EBCDIC).
//
static const UChar chCR = 0x0d; // New lines, for terminating comments.
static const UChar chLF = 0x0a;
static const UChar chNEL = 0x85; // NEL newline variant
static const UChar chLS = 0x2028; // Unicode Line Separator
static const UChar chApos = 0x27; // single quote, for quoted chars.
static const UChar chPound = 0x23; // '#', introduces a comment.
static const UChar chE = 0x45; // 'E'
static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
static const UChar chLParen = 0x28;
static const UChar chRParen = 0x29;
static const UChar chLBracket = 0x5b;
static const UChar chRBracket = 0x5d;
static const UChar chRBrace = 0x7d;
static const UChar chLowerP = 0x70;
static const UChar chUpperP = 0x50;
//----------------------------------------------------------------------------------------
//
// nextCharLL Low Level Next Char from the regex pattern.
// Get a char from the string,
// keep track of input position for error reporting.
//
//----------------------------------------------------------------------------------------
UChar32 RegexCompile::nextCharLL() {
UChar32 ch;
UnicodeString &pattern = fRXPat->fPattern;
if (fPeekChar != -1) {
ch = fPeekChar;
fPeekChar = -1;
return ch;
}
if (fPatternLength==0 || fNextIndex >= fPatternLength) {
return (UChar32)-1;
}
ch = pattern.char32At(fNextIndex);
fNextIndex = pattern.moveIndex32(fNextIndex, 1);
if (ch == chCR ||
ch == chNEL ||
ch == chLS ||
ch == chLF && fLastChar != chCR) {
// Character is starting a new line. Bump up the line number, and
// reset the column to 0.
fLineNum++;
fCharNum=0;
if (fQuoteMode) {
error(U_REGEX_RULE_SYNTAX);
fQuoteMode = FALSE;
}
}
else {
// Character is not starting a new line. Except in the case of a
// LF following a CR, increment the column position.
if (ch != chLF) {
fCharNum++;
}
}
fLastChar = ch;
return ch;
}
//---------------------------------------------------------------------------------
//
// peekCharLL Low Level Character Scanning, sneak a peek at the next
// character without actually getting it.
//
//---------------------------------------------------------------------------------
UChar32 RegexCompile::peekCharLL() {
if (fPeekChar == -1) {
fPeekChar = nextCharLL();
}
return fPeekChar;
}
//---------------------------------------------------------------------------------
//
// nextChar for pattern scanning. At this level, we handle stripping
// out comments and processing some backslash character escapes.
// The rest of the pattern grammar is handled at the next level up.
//
//---------------------------------------------------------------------------------
void RegexCompile::nextChar(RegexPatternChar &c) {
// Unicode Character constants needed for the processing done by nextChar(),
// in hex because literals wont work on EBCDIC machines.
fScanIndex = fNextIndex;
c.fChar = nextCharLL();
c.fQuoted = FALSE;
if (fQuoteMode) {
c.fQuoted = TRUE;
if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) {
fQuoteMode = FALSE; // Exit quote mode,
nextCharLL(); // discard the E
nextChar(c); // recurse to get the real next char
}
}
else
{
// We are not in a 'quoted region' of the source.
//
if (fFreeForm && c.fChar == chPound) {
// Start of a comment. Consume the rest of it.
// The new-line char that terminates the comment is always returned.
// It will be treated as white-space, and serves to break up anything
// that might otherwise incorrectly clump together with a comment in
// the middle (a variable name, for example.)
for (;;) {
c.fChar = nextCharLL();
if (c.fChar == (UChar32)-1 || // EOF
c.fChar == chCR ||
c.fChar == chLF ||
c.fChar == chNEL ||
c.fChar == chLS) {break;}
}
}
if (c.fChar == (UChar32)-1) {
return;
}
//
// check for backslash escaped characters.
// Use UnicodeString::unescapeAt() to handle those that it can.
// Otherwise just return the '\', and let the pattern parser deal with it.
//
int32_t startX = fNextIndex; // start and end positions of the
int32_t endX = fNextIndex; // sequence following the '\'
if (c.fChar == chBackSlash) {
if (gUnescapeCharSet->contains(peekCharLL())) {
nextCharLL(); // get & discard the peeked char.
c.fQuoted = TRUE;
c.fChar = fRXPat->fPattern.unescapeAt(endX);
if (startX == endX) {
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
fCharNum += endX - startX;
fNextIndex = endX;
}
}
}
// putc(c.fChar, stdout);
}
//---------------------------------------------------------------------------------
//
// scanSet Construct a UnicodeSet from the text at the current scan
// position. Advance the scan position to the first character
// after the set.
//
// The scan position is normally under the control of the state machine
// that controls pattern parsing. UnicodeSets, however, are parsed by
// the UnicodeSet constructor, not by the Regex pattern parser.
//
//---------------------------------------------------------------------------------
UnicodeSet *RegexCompile::scanSet() {
UnicodeSet *uset = NULL;
ParsePosition pos;
int startPos;
int i;
if (U_FAILURE(*fStatus)) {
return NULL;
}
pos.setIndex(fScanIndex);
startPos = fScanIndex;
UErrorCode localStatus = U_ZERO_ERROR;
uset = new UnicodeSet(fRXPat->fPattern, pos,
localStatus);
if (U_FAILURE(localStatus)) {
// TODO: Get more accurate position of the error from UnicodeSet's return info.
// UnicodeSet appears to not be reporting correctly at this time.
REGEX_SCAN_DEBUG_PRINTF( "UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
error(localStatus);
delete uset;
return NULL;
}
// Advance the current scan postion over the UnicodeSet.
// Don't just set fScanIndex because the line/char positions maintained
// for error reporting would be thrown off.
i = pos.getIndex();
for (;;) {
if (fNextIndex >= i) {
break;
}
nextCharLL();
}
return uset;
};
//---------------------------------------------------------------------------------
//
// scanProp Construct a UnicodeSet from the text at the current scan
// position, which will be of the form \p{whaterver}
//
// The scan position will be at the 'p' or 'P'. On return
// the scan position should be just after the '}'
//
// Return a UnicodeSet, constructed from the \P pattern,
// or NULL if the pattern is invalid.
//
//---------------------------------------------------------------------------------
UnicodeSet *RegexCompile::scanProp() {
UnicodeSet *uset = NULL;
if (U_FAILURE(*fStatus)) {
return NULL;
}
U_ASSERT(fC.fChar == chLowerP || fC.fChar == chUpperP);
// enclose the \p{property} from the regex pattern source in [brackets]
UnicodeString setPattern;
setPattern.append(chLBracket);
setPattern.append(chBackSlash);
for (;;) {
setPattern.append(fC.fChar);
if (fC.fChar == chRBrace) {
break;
}
nextChar(fC);
if (fC.fChar == -1) {
// Hit the end of the input string without finding the closing '}'
*fStatus = U_REGEX_PROPERTY_SYNTAX;
return NULL;
}
}
setPattern.append(chRBracket);
// Build the UnicodeSet from the set pattern we just built up in a string.
uset = new UnicodeSet(setPattern, *fStatus);
if (U_FAILURE(*fStatus)) {
delete uset;
uset = NULL;
}
nextChar(fC); // Continue overall regex pattern processing with char after the '}'
return uset;
};
U_NAMESPACE_END
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS