scuffed-code/icu4c/source/i18n/ucol.cpp

1101 lines
35 KiB
C++
Raw Normal View History

1999-08-16 21:50:52 +00:00
/*
*******************************************************************************
* Copyright (C) 1996-1999, International Business Machines
* Corporation and others. All Rights Reserved.
1999-08-16 21:50:52 +00:00
*******************************************************************************
*/
#include "unicode/ucol.h"
1999-08-16 21:50:52 +00:00
#include "unicode/uloc.h"
#include "unicode/coll.h"
#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/ustring.h"
#include "unicode/normlzr.h"
1999-08-16 21:50:52 +00:00
#include "cpputils.h"
#define UCOL_LEVELTERMINATOR 0
#define UCOL_IGNORABLE 0x0000
#define UCOL_CHARINDEX 0x70000000 // need look up in .commit()
#define UCOL_EXPANDCHARINDEX 0x7E000000 // Expand index follows
#define UCOL_CONTRACTCHARINDEX 0x7F000000 // contract indexes follows
#define UCOL_UNMAPPED 0xFFFFFFFF // unmapped character values
#define UCOL_PRIMARYORDERINCREMENT 0x00010000 // primary strength increment
#define UCOL_SECONDARYORDERINCREMENT 0x00000100 // secondary strength increment
#define UCOL_TERTIARYORDERINCREMENT 0x00000001 // tertiary strength increment
#define UCOL_MAXIGNORABLE 0x00010000 // maximum ignorable char order value
#define UCOL_PRIMARYORDERMASK 0xffff0000 // mask off anything but primary order
#define UCOL_SECONDARYORDERMASK 0x0000ff00 // mask off anything but secondary order
#define UCOL_TERTIARYORDERMASK 0x000000ff // mask off anything but tertiary order
#define UCOL_SECONDARYRESETMASK 0x0000ffff // mask off secondary and tertiary order
#define UCOL_IGNORABLEMASK 0x0000ffff // mask off ignorable char order
#define UCOL_PRIMARYDIFFERENCEONLY 0xffff0000 // use only the primary difference
#define UCOL_SECONDARYDIFFERENCEONLY 0xffffff00 // use only the primary and secondary difference
#define UCOL_PRIMARYORDERSHIFT 16 // primary order shift
#define UCOL_SECONDARYORDERSHIFT 8 // secondary order shift
#define UCOL_SORTKEYOFFSET 1 // minimum sort key offset
#define UCOL_CONTRACTCHAROVERFLOW 0x7FFFFFFF // Indicates the char is a contract char
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
u_normalize(const UChar* source,
int32_t sourceLength,
UNormalizationMode mode,
int32_t option,
UChar* result,
int32_t resultLength,
UErrorCode* status)
{
if(U_FAILURE(*status)) return -1;
1999-08-16 21:50:52 +00:00
Normalizer::EMode normMode;
switch(mode) {
case UCOL_NO_NORMALIZATION:
normMode = Normalizer::NO_OP;
break;
case UCOL_DECOMP_CAN:
normMode = Normalizer::DECOMP;
break;
case UCOL_DECOMP_COMPAT:
normMode = Normalizer::DECOMP_COMPAT;
break;
case UCOL_DECOMP_CAN_COMP_COMPAT:
normMode = Normalizer::COMPOSE;
break;
case UCOL_DECOMP_COMPAT_COMP_CAN:
normMode = Normalizer::COMPOSE_COMPAT;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return -1;
1999-08-16 21:50:52 +00:00
}
int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
const UnicodeString src((UChar*)source, len, len);
UnicodeString dst(result, 0, resultLength);
Normalizer::normalize(src, normMode, option, dst, *status);
int32_t actualLen;
T_fillOutputParams(&dst, result, resultLength, &actualLen, status);
return actualLen;
}
U_CAPI UCollator*
1999-08-16 21:50:52 +00:00
ucol_open( const char *loc,
UErrorCode *status)
{
if(U_FAILURE(*status)) return 0;
1999-08-16 21:50:52 +00:00
Collator *col = 0;
if(loc == 0)
col = Collator::createInstance(*status);
else
col = Collator::createInstance(Locale(loc), *status);
1999-08-16 21:50:52 +00:00
if(col == 0) {
*status = U_MEMORY_ALLOCATION_ERROR;
1999-08-16 21:50:52 +00:00
return 0;
}
return (UCollator*)col;
}
U_CAPI UCollator*
1999-08-16 21:50:52 +00:00
ucol_openRules( const UChar *rules,
int32_t rulesLength,
UNormalizationMode mode,
UCollationStrength strength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return 0;
1999-08-16 21:50:52 +00:00
int32_t len = (rulesLength == -1 ? u_strlen(rules) : rulesLength);
const UnicodeString ruleString((UChar*)rules, len, len);
Normalizer::EMode normMode;
switch(mode) {
case UCOL_NO_NORMALIZATION:
normMode = Normalizer::NO_OP;
break;
case UCOL_DECOMP_CAN:
normMode = Normalizer::DECOMP;
break;
case UCOL_DECOMP_COMPAT:
normMode = Normalizer::DECOMP_COMPAT;
break;
case UCOL_DECOMP_CAN_COMP_COMPAT:
normMode = Normalizer::COMPOSE;
break;
case UCOL_DECOMP_COMPAT_COMP_CAN:
normMode = Normalizer::COMPOSE_COMPAT;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
1999-08-16 21:50:52 +00:00
}
RuleBasedCollator *col = 0;
col = new RuleBasedCollator(ruleString,
(Collator::ECollationStrength) strength,
normMode,
*status);
if(col == 0) {
*status = U_MEMORY_ALLOCATION_ERROR;
1999-08-16 21:50:52 +00:00
return 0;
}
return (UCollator*) col;
}
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_close(UCollator *coll)
{
delete (Collator*)coll;
}
U_CAPI UBool
1999-08-16 21:50:52 +00:00
ucol_greater( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
== UCOL_GREATER);
}
U_CAPI UBool
1999-08-16 21:50:52 +00:00
ucol_greaterOrEqual( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
!= UCOL_LESS);
}
U_CAPI UBool
1999-08-16 21:50:52 +00:00
ucol_equal( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
== UCOL_EQUAL);
}
U_CAPI UCollationStrength
1999-08-16 21:50:52 +00:00
ucol_getStrength(const UCollator *coll)
{
return (UCollationStrength) ((Collator*)coll)->getStrength();
}
2000-11-20 19:17:17 +00:00
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_setStrength( UCollator *coll,
UCollationStrength strength)
{
((Collator*)coll)->setStrength((Collator::ECollationStrength)strength);
}
U_CAPI UNormalizationMode
1999-08-16 21:50:52 +00:00
ucol_getNormalization(const UCollator* coll)
{
switch(((Collator*)coll)->getDecomposition()) {
case Normalizer::NO_OP:
return UCOL_NO_NORMALIZATION;
case Normalizer::COMPOSE:
return UCOL_DECOMP_COMPAT_COMP_CAN;
case Normalizer::COMPOSE_COMPAT:
return UCOL_DECOMP_CAN_COMP_COMPAT;
case Normalizer::DECOMP:
return UCOL_DECOMP_CAN;
1999-08-16 21:50:52 +00:00
case Normalizer::DECOMP_COMPAT:
return UCOL_DECOMP_COMPAT;
1999-08-16 21:50:52 +00:00
}
return UCOL_NO_NORMALIZATION;
1999-08-16 21:50:52 +00:00
}
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_setNormalization( UCollator *coll,
UNormalizationMode mode)
{
Normalizer::EMode normMode;
switch(mode) {
case UCOL_NO_NORMALIZATION:
normMode = Normalizer::NO_OP;
break;
case UCOL_DECOMP_CAN:
normMode = Normalizer::DECOMP;
break;
case UCOL_DECOMP_COMPAT:
normMode = Normalizer::DECOMP_COMPAT;
break;
case UCOL_DECOMP_COMPAT_COMP_CAN:
normMode = Normalizer::COMPOSE;
break;
case UCOL_DECOMP_CAN_COMP_COMPAT:
normMode = Normalizer::COMPOSE_COMPAT;
break;
default:
/* Shouldn't get here. */
/* *status = U_ILLEGAL_ARGUMENT_ERROR; */
return;
1999-08-16 21:50:52 +00:00
}
((Collator*)coll)->setDecomposition(normMode);
}
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
ucol_getDisplayName( const char *objLoc,
const char *dispLoc,
UChar *result,
int32_t resultLength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return -1;
1999-08-16 21:50:52 +00:00
UnicodeString dst(result, resultLength, resultLength);
Collator::getDisplayName(Locale(objLoc), Locale(dispLoc), dst);
1999-08-16 21:50:52 +00:00
int32_t actLen;
T_fillOutputParams(&dst, result, resultLength, &actLen, status);
return actLen;
}
U_CAPI const char*
1999-08-16 21:50:52 +00:00
ucol_getAvailable(int32_t index)
{
return uloc_getAvailable(index);
}
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
ucol_countAvailable()
{
return uloc_countAvailable();
}
U_CAPI const UChar*
1999-08-16 21:50:52 +00:00
ucol_getRules( const UCollator *coll,
int32_t *length)
{
const UnicodeString& rules = ((RuleBasedCollator*)coll)->getRules();
*length = rules.length();
1999-08-16 21:50:52 +00:00
return rules.getUChars();
}
2000-11-20 19:17:17 +00:00
static uint8_t utf16fixup[32] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0x20, 0xf8, 0xf8, 0xf8, 0xf8
};
// This will get the next CE(s)?
// Should be part macro, part function
#include <stdio.h>
#include "unicode/normlzr.h"
#include "ucmp32.h"
#include "tcoldata.h"
#include "tables.h"
2000-11-20 19:17:17 +00:00
#define UCOL_MAX_BUFFER 1000
struct collIterate {
UChar *string; // Original string
2000-11-20 19:17:17 +00:00
UChar *len; // Original string length
UChar *pos; // This is position in the string
uint32_t *toReturn; // This is the CE from CEs buffer that should be returned
uint32_t *CEpos; // This is the position to which we have stored processed CEs
uint32_t CEs[1024]; // This is where we store CEs
};
2000-11-20 19:17:17 +00:00
void init_collIterate(const UChar *string, int32_t len, collIterate *s) {
s->string = s->pos = (UChar *)string;
s->len = (UChar *)string+len;
s->CEpos = s->toReturn = s->CEs;
}
int32_t ucol_getNextCE(const UCollator *coll, collIterate *source, UErrorCode *status) {
if (U_FAILURE(*status) || (source->pos>=source->len && source->CEpos <= source->toReturn)) {
return CollationElementIterator::NULLORDER;
}
if (source->CEpos > source->toReturn) {
2000-11-20 19:17:17 +00:00
return(*(source->toReturn++));
}
2000-11-20 19:17:17 +00:00
source->CEpos = source->toReturn = source->CEs;
*(source->CEpos) = ucmp32_get(((RuleBasedCollator *)coll)->data->mapping, *(source->pos));
// this should benefit from reordering of the clauses, so that the cleanest case is returned the first.
2000-11-20 19:17:17 +00:00
if(*(source->CEpos) < UCOL_EXPANDCHARINDEX) {
source->pos++;
2000-11-20 19:17:17 +00:00
return (*(source->CEpos));
}
2000-11-20 19:17:17 +00:00
if (*(source->CEpos) == UCOL_UNMAPPED) {
// Returned an "unmapped" flag and save the character so it can be
// returned next time this method is called.
2000-11-20 19:17:17 +00:00
if (*(source->pos) == 0x0000) return *(source->pos++); // \u0000 is not valid in C++'s UnicodeString
*(source->CEpos++) = CollationElementIterator::UNMAPPEDCHARVALUE;
*(source->CEpos++) = *(source->pos)<<16;
} else {
// Contraction sequence start...
2000-11-20 19:17:17 +00:00
if (*(source->CEpos) >= UCOL_CONTRACTCHARINDEX) {
UChar key[1024];
for(int aj = 0; aj < 1024; aj++) {
key[aj] = 0;
}
uint32_t posKey = 0;
2000-11-20 19:17:17 +00:00
VectorOfPToContractElement* list = ((RuleBasedCollator *)coll)->data->contractTable->at(*(source->CEpos)-UCOL_CONTRACTCHARINDEX);
// The upper line obtained a list of contracting sequences.
if (list != NULL) {
EntryPair *pair = (EntryPair *)list->at(0); // Taking out the first one.
int32_t order = pair->value; // This got us mapping for just the first element - the one that signalled a contraction.
key[posKey++] = *(source->pos);
// This tries to find the longes common match for the data in contraction table...
// and needs to be rewritten, especially the test down there!
int32_t i;
UBool foundSmaller = TRUE;
while(source->pos<source->len && foundSmaller) {
key[posKey++] = *(++source->pos);
foundSmaller = FALSE;
i = 0;
while(i<list->size() && !foundSmaller) {
pair = list->at(i);
if ((pair != NULL) && (pair->fwd == TRUE /*fwd*/) && (pair->entryName == UnicodeString(key, posKey))) {
order = pair->value;
foundSmaller = TRUE;
}
i++;
}
}
source->pos--; /* spit back the last char - it wasn't part of the sequence */
*(source->CEpos) = order;
}
}
// Expansion sequence start...
if (*(source->CEpos) >= UCOL_EXPANDCHARINDEX) {
2000-11-20 19:17:17 +00:00
VectorOfInt *v = ((RuleBasedCollator *)coll)->data->expandTable->at(*(source->CEpos)-UCOL_EXPANDCHARINDEX);
if(v != NULL) {
int32_t expandindex=0;
while(expandindex < v->size()) {
2000-11-20 19:17:17 +00:00
*(source->CEpos++) = v->at(expandindex++);
}
}
}
2000-11-20 19:17:17 +00:00
// Thai/Lao reordering
if (CollationElementIterator::isThaiPreVowel(*(source->pos))) {
UChar consonant = *(source->pos+1);
if (CollationElementIterator::isThaiBaseConsonant(consonant)) {
// find the element for consonant
// and reorder them
}
}
}
source->pos++;
2000-11-20 19:17:17 +00:00
return (*(source->toReturn++));
}
2000-11-20 19:17:17 +00:00
U_CAPI UCollationResult
ucol_strcollEx( const UCollator *coll,
2000-11-20 19:17:17 +00:00
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
if (coll == NULL) return UCOL_EQUAL;
if (sourceLength == -1) sourceLength = u_strlen(source);
if (targetLength == -1) targetLength = u_strlen(target);
return (UCollationResult) ((RuleBasedCollator*)coll)->compareEx(source,sourceLength,target,targetLength);
2000-11-20 19:17:17 +00:00
}
U_CAPI UCollationResult
ucol_strcoll( const UCollator *coll,
2000-11-20 19:17:17 +00:00
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
// check if source and target are valid strings
if (((source == 0) && (target == 0)) ||
((sourceLength == 0) && (targetLength == 0)))
{
return UCOL_EQUAL;
}
UCollationResult result = UCOL_EQUAL;
UErrorCode status = U_ZERO_ERROR;
UChar normSource[UCOL_MAX_BUFFER], normTarget[UCOL_MAX_BUFFER];
uint32_t normSourceLength = UCOL_MAX_BUFFER, normTargetLength = UCOL_MAX_BUFFER;
#if 0
if (cursor1 == NULL)
{
((RuleBasedCollator *)this)->cursor1 = new NormalizerIterator(source, sourceLength, getDecomposition());
}
else
{
cursor1->setModeAndText(getDecomposition(), source, sourceLength, status);
}
if ( /*cursor1->cursor == NULL ||*/ U_FAILURE(status))
{
return Collator::EQUAL;
}
if (cursor2 == NULL)
{
((RuleBasedCollator *)this)->cursor2 = new NormalizerIterator(target, targetLength, getDecomposition());
}
else
{
cursor2->setModeAndText(getDecomposition(), target, targetLength, status);
}
#endif
collIterate sColl, tColl;
UNormalizationMode normMode = ucol_getNormalization(coll);
if(normMode == UCOL_NO_NORMALIZATION) {
init_collIterate(source, sourceLength, &sColl);
init_collIterate(target, targetLength, &tColl);
} else {
normSourceLength = u_normalize(source, sourceLength, normMode, 0, normSource, normSourceLength, &status);
normTargetLength = u_normalize(target, targetLength, normMode, 0, normTarget, normTargetLength, &status);
init_collIterate(normSource, normSourceLength, &sColl);
init_collIterate(normTarget, normTargetLength, &tColl);
}
if (/*cursor2 == NULL ||*/ U_FAILURE(status))
{
return UCOL_EQUAL;
}
int32_t sOrder, tOrder;
// int32_t sOrder = CollationElementIterator::NULLORDER, tOrder = CollationElementIterator::NULLORDER;
UBool gets = TRUE, gett = TRUE;
UBool initialCheckSecTer = ucol_getStrength(coll) >= UCOL_SECONDARY;
2000-11-20 19:17:17 +00:00
UBool checkSecTer = initialCheckSecTer;
UBool checkTertiary = ucol_getStrength(coll) >= UCOL_TERTIARY;
2000-11-20 19:17:17 +00:00
UBool isFrenchSec = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, &status) == UCOL_ATTR_ON);
uint32_t pSOrder, pTOrder;
for(;;)
{
// Get the next collation element in each of the strings, unless
// we've been requested to skip it.
if (gets)
{
//sOrder = getStrengthOrder((NormalizerIterator*)cursor1, status);
sOrder = ucol_getNextCE(coll, &sColl, &status);
if (U_FAILURE(status))
{
return UCOL_EQUAL;
}
}
gets = TRUE;
if (gett)
{
//tOrder = getStrengthOrder((NormalizerIterator*)cursor2, status);
tOrder = ucol_getNextCE(coll, &tColl, &status);
if (U_FAILURE(status))
{
return UCOL_EQUAL;
}
}
gett = TRUE;
// If we've hit the end of one of the strings, jump out of the loop
if ((sOrder == CollationElementIterator::NULLORDER)||
(tOrder == CollationElementIterator::NULLORDER))
{
break;
}
// If there's no difference at this position, we can skip to the
// next one.
pSOrder = CollationElementIterator::primaryOrder(sOrder);
pTOrder = CollationElementIterator::primaryOrder(tOrder);
if (sOrder == tOrder)
{
if (isFrenchSec && pSOrder != 0)
{
if (!checkSecTer)
{
// in french, a secondary difference more to the right is stronger,
// so accents have to be checked with each base element
checkSecTer = initialCheckSecTer;
// but tertiary differences are less important than the first
// secondary difference, so checking tertiary remains disabled
checkTertiary = FALSE;
}
}
continue;
}
// Compare primary differences first.
if (pSOrder != pTOrder)
{
if (sOrder == 0)
{
// The entire source element is ignorable.
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
continue;
}
if (tOrder == 0)
{
gets = FALSE;
continue;
}
// The source and target elements aren't ignorable, but it's still possible
// for the primary component of one of the elements to be ignorable....
if (pSOrder == 0) // primary order in source is ignorable
{
// The source's primary is ignorable, but the target's isn't. We treat ignorables
// as a secondary difference, so remember that we found one.
if (checkSecTer)
{
result = UCOL_GREATER; // (strength is SECONDARY)
checkSecTer = FALSE;
}
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
}
else if (pTOrder == 0)
{
// record differences - see the comment above.
if (checkSecTer)
{
result = UCOL_LESS; // (strength is SECONDARY)
checkSecTer = FALSE;
}
// Skip to the next target element, but don't fetch another source element.
gets = FALSE;
}
else
{
// Neither of the orders is ignorable, and we already know that the primary
// orders are different because of the (pSOrder != pTOrder) test above.
// Record the difference and stop the comparison.
if (pSOrder < pTOrder)
{
return UCOL_LESS; // (strength is PRIMARY)
}
return UCOL_GREATER; // (strength is PRIMARY)
}
}
else
{ // else of if ( pSOrder != pTOrder )
// primary order is the same, but complete order is different. So there
// are no base elements at this point, only ignorables (Since the strings are
// normalized)
if (checkSecTer)
{
// a secondary or tertiary difference may still matter
uint32_t secSOrder = CollationElementIterator::secondaryOrder(sOrder);
uint32_t secTOrder = CollationElementIterator::secondaryOrder(tOrder);
if (secSOrder != secTOrder)
{
// there is a secondary difference
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is SECONDARY)
checkSecTer = FALSE;
// (even in french, only the first secondary difference within
// a base character matters)
}
else
{
if (checkTertiary)
{
// a tertiary difference may still matter
uint32_t terSOrder = CollationElementIterator::tertiaryOrder(sOrder);
uint32_t terTOrder = CollationElementIterator::tertiaryOrder(tOrder);
if (terSOrder != terTOrder)
{
// there is a tertiary difference
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is TERTIARY)
checkTertiary = FALSE;
}
}
}
} // if (checkSecTer)
} // if ( pSOrder != pTOrder )
} // while()
if (sOrder != CollationElementIterator::NULLORDER)
{
// (tOrder must be CollationElementIterator::NULLORDER,
// since this point is only reached when sOrder or tOrder is NULLORDER.)
// The source string has more elements, but the target string hasn't.
do
{
if (CollationElementIterator::primaryOrder(sOrder) != 0)
{
// We found an additional non-ignorable base character in the source string.
// This is a primary difference, so the source is greater
return UCOL_GREATER; // (strength is PRIMARY)
}
if (CollationElementIterator::secondaryOrder(sOrder) != 0)
{
// Additional secondary elements mean the source string is greater
if (checkSecTer)
{
result = UCOL_GREATER; // (strength is SECONDARY)
checkSecTer = FALSE;
}
}
}
while ((sOrder = ucol_getNextCE(coll, &sColl, &status)) != CollationElementIterator::NULLORDER);
//while ((sOrder = getStrengthOrder(cursor1, status)) != CollationElementIterator::NULLORDER);
}
else if (tOrder != CollationElementIterator::NULLORDER)
{
// The target string has more elements, but the source string hasn't.
do
{
if (CollationElementIterator::primaryOrder(tOrder) != 0)
{
// We found an additional non-ignorable base character in the target string.
// This is a primary difference, so the source is less
return UCOL_LESS; // (strength is PRIMARY)
}
if (CollationElementIterator::secondaryOrder(tOrder) != 0)
{
// Additional secondary elements in the target mean the source string is less
if (checkSecTer)
{
result = UCOL_LESS; // (strength is SECONDARY)
checkSecTer = FALSE;
}
}
}
while ((tOrder = ucol_getNextCE(coll, &tColl, &status)) != CollationElementIterator::NULLORDER);
//while ((tOrder = getStrengthOrder(cursor2, status)) != CollationElementIterator::NULLORDER);
}
// For IDENTICAL comparisons, we use a bitwise character comparison
// as a tiebreaker if all else is equal
// NOTE: The java code compares result with 0, and
// puts the result of the string comparison directly into result
if (result == UCOL_EQUAL && ucol_getStrength(coll) == UCOL_IDENTICAL)
2000-11-20 19:17:17 +00:00
{
#if 0
// ******** for the UChar normalization interface.
// It doesn't work much faster, and the code was broken
// so it's commented out. --srl
// UChar sourceDecomp[1024], targetDecomp[1024];
// int32_t sourceDecompLength = 1024;
// int32_t targetDecompLength = 1024;
// int8_t comparison;
// Normalizer::EMode decompMode = getDecomposition();
// if (decompMode != Normalizer::NO_OP)
// {
// Normalizer::normalize(source, sourceLength, decompMode,
// 0, sourceDecomp, sourceDecompLength, status);
// Normalizer::normalize(target, targetLength, decompMode,
// 0, targetDecomp, targetDecompLength, status);
// comparison = u_strcmp(sourceDecomp,targetDecomp);
// }
// else
// {
// comparison = u_strcmp(source, target); /* ! */
// }
#else
UnicodeString sourceDecomp, targetDecomp;
int8_t comparison;
Normalizer::normalize(source, ((RuleBasedCollator *)coll)->getDecomposition(),
0, sourceDecomp, status);
Normalizer::normalize(target, ((RuleBasedCollator *)coll)->getDecomposition(),
0, targetDecomp, status);
comparison = sourceDecomp.compare(targetDecomp);
#endif
if (comparison < 0)
{
result = UCOL_LESS;
}
else if (comparison == 0)
{
result = UCOL_EQUAL;
}
else
{
result = UCOL_GREATER;
}
}
return result;
}
U_CAPI int32_t
ucol_getSortKeyEx(const UCollator *coll,
2000-11-20 19:17:17 +00:00
const UChar *source,
int32_t sourceLength,
uint8_t *result,
int32_t resultLength)
{
int32_t count;
const uint8_t* bytes = NULL;
CollationKey key;
int32_t copyLen;
int32_t len = (sourceLength == -1 ? u_strlen(source)
: sourceLength);
// UnicodeString string((UChar*)source, len, len);
UErrorCode status = U_ZERO_ERROR;
((RuleBasedCollator*)coll)->getCollationKeyEx(source, len, key, status);
2000-11-20 19:17:17 +00:00
if(U_FAILURE(status))
return 0;
bytes = key.getByteArray(count);
copyLen = uprv_min(count, resultLength);
uprv_arrayCopy((const int8_t*)bytes, (int8_t*)result, copyLen);
// if(count > resultLength) {
// *status = U_BUFFER_OVERFLOW_ERROR;
// }
return count;
}
U_CAPI int32_t
ucol_getSortKey(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
uint8_t *result,
int32_t resultLength)
{
2000-11-20 19:17:17 +00:00
//uprv_memset(result, 0xAA, resultLength); // for debug purposes
/*
Still problems in:
SUMMARY:
******* [Total error count: 213]
Errors in
[tscoll/capitst/TestSortKey] // this is normal, since we are changing binary keys
[tscoll/cfrtst/TestSecondary] // this is also OK, ICU original implementation was messed up
[tscoll/cfrtst/TestTertiary] // probably the same as above
[tscoll/cjacoll/TestTertiary] // most probably due to normalization...
[tscoll/cg7coll/TestDemo4] // need to check
Total errors: 213
*/
uint32_t i = 0; // general purpose counter
UErrorCode status = U_ZERO_ERROR;
uint8_t prim[2*UCOL_MAX_BUFFER], second[UCOL_MAX_BUFFER], tert[UCOL_MAX_BUFFER];
uint8_t *primaries = prim, *secondaries = second, *tertiaries = tert;
UChar normBuffer[2*UCOL_MAX_BUFFER];
UChar *normSource = normBuffer;
int32_t normSourceLen = 2048;
int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
UBool compareSec = (((RuleBasedCollator *)coll)->getStrength() >= Collator::SECONDARY);
UBool compareTer = (((RuleBasedCollator *)coll)->getStrength() >= Collator::TERTIARY);
UBool compareIdent = (((RuleBasedCollator *)coll)->getStrength() == Collator::IDENTICAL);
if(len > UCOL_MAX_BUFFER) {
2000-11-20 19:17:17 +00:00
primaries = (uint8_t *)uprv_malloc(6*len*sizeof(uint8_t));
if(compareSec) {
secondaries = (uint8_t *)uprv_malloc(2*len*sizeof(uint8_t));
}
if(compareTer) {
tertiaries = (uint8_t *)uprv_malloc(2*len*sizeof(uint8_t));
}
}
uint8_t *primstart = primaries;
uint8_t *secstart = secondaries;
uint8_t *terstart = tertiaries;
2000-11-20 19:17:17 +00:00
collIterate s;
init_collIterate((UChar *)source, len, &s);
// If we need to normalize, we'll do it all at once at the beggining!
if(((RuleBasedCollator *)coll)->getDecomposition() != Normalizer::NO_OP) {
UnicodeString normalized;
Normalizer::normalize(UnicodeString(source, sourceLength), ((RuleBasedCollator *)coll)->getDecomposition(),
0, normalized, status);
normSourceLen = normalized.length();
if(normSourceLen > UCOL_MAX_BUFFER) {
normSource = (UChar *) uprv_malloc(normSourceLen*sizeof(UChar));
}
normalized.extract(0, normSourceLen, normSource);
normSource[normSourceLen] = 0;
s.string = normSource;
2000-11-20 19:17:17 +00:00
s.pos = normSource;
s.len = normSource+normSourceLen;
}
int32_t order = 0;
uint16_t primary = 0;
uint8_t secondary = 0;
uint8_t tertiary = 0;
while((order = ucol_getNextCE(coll, &s, &status)) !=
CollationElementIterator::NULLORDER) {
primary = ((order & UCOL_PRIMARYORDERMASK)>> UCOL_PRIMARYORDERSHIFT);
secondary = ((order & UCOL_SECONDARYORDERMASK)>> UCOL_SECONDARYORDERSHIFT);
tertiary = (order & UCOL_TERTIARYORDERMASK);
if(primary != UCOL_IGNORABLE) {
*(primaries++) = (primary+UCOL_SORTKEYOFFSET)>>8;
*(primaries++) = (primary+UCOL_SORTKEYOFFSET)&0xFF;
if(compareSec) {
*(secondaries++) = secondary+UCOL_SORTKEYOFFSET;
}
if(compareTer) {
*(tertiaries++) = tertiary+UCOL_SORTKEYOFFSET;
}
} else {
if(compareSec && secondary != 0) {
*(secondaries++) = secondary+UCOL_SORTKEYOFFSET;
}
if(compareTer && tertiary != 0) {
*(tertiaries++) = tertiary+UCOL_SORTKEYOFFSET;
}
}
}
*(primaries++) = UCOL_LEVELTERMINATOR;
*(primaries++) = UCOL_LEVELTERMINATOR;
if(compareSec) {
uint32_t secsize = secondaries-secstart;
2000-11-20 19:17:17 +00:00
if(ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, &status) == UCOL_ATTR_ON) { // do the reverse copy
for(i = 0; i<secsize; i++) {
*(primaries++) = *(secondaries-i-1);
}
} else {
uprv_memcpy(primaries, secstart, secsize);
primaries += secsize;
}
*(primaries++) = UCOL_LEVELTERMINATOR;
}
if(compareTer) {
uint32_t tersize = tertiaries - terstart;
uprv_memcpy(primaries, terstart, tersize);
primaries += tersize;
*(primaries++) = UCOL_LEVELTERMINATOR;
}
if(compareIdent) {
2000-11-20 19:17:17 +00:00
for(i = 0; i<len; i++) {
*(primaries++) = (s.string[i] >> 8) + utf16fixup[s.string[i] >> 11];
*(primaries++) = (s.string[i] & 0xFF);
}
*(primaries++) = UCOL_LEVELTERMINATOR;
}
uprv_memcpy(result, primstart, uprv_min(resultLength, (primaries-primstart)));
if(terstart != tert) {
uprv_free(terstart);
}
if(secstart != second) {
uprv_free(secstart);
}
if(primstart != prim) {
uprv_free(primstart);
}
if(normSource != normBuffer) {
uprv_free(normSource);
}
return primaries-primstart;
}
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
ucol_keyHashCode( const uint8_t* key,
int32_t length)
{
CollationKey newKey(key, length);
return newKey.hashCode();
}
UCollationElements*
ucol_openElements( const UCollator *coll,
const UChar *text,
int32_t textLength,
UErrorCode *status)
{
int32_t len = (textLength == -1 ? u_strlen(text) : textLength);
const UnicodeString src((UChar*)text, len, len);
CollationElementIterator *iter = 0;
iter = ((RuleBasedCollator*)coll)->createCollationElementIterator(src);
if(iter == 0) {
*status = U_MEMORY_ALLOCATION_ERROR;
1999-08-16 21:50:52 +00:00
return 0;
}
return (UCollationElements*) iter;
}
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_closeElements(UCollationElements *elems)
{
delete (CollationElementIterator*)elems;
}
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_reset(UCollationElements *elems)
{
((CollationElementIterator*)elems)->reset();
}
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
ucol_next( UCollationElements *elems,
UErrorCode *status)
{
if(U_FAILURE(*status)) return UCOL_NULLORDER;
1999-08-16 21:50:52 +00:00
return ((CollationElementIterator*)elems)->next(*status);
}
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
ucol_previous( UCollationElements *elems,
UErrorCode *status)
{
if(U_FAILURE(*status)) return UCOL_NULLORDER;
1999-08-16 21:50:52 +00:00
return ((CollationElementIterator*)elems)->previous(*status);
}
U_CAPI int32_t
1999-08-16 21:50:52 +00:00
ucol_getMaxExpansion( const UCollationElements *elems,
int32_t order)
{
return ((CollationElementIterator*)elems)->getMaxExpansion(order);
}
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_setText(UCollationElements *elems,
const UChar *text,
int32_t textLength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return;
1999-08-16 21:50:52 +00:00
int32_t len = (textLength == -1 ? u_strlen(text) : textLength);
const UnicodeString src((UChar*)text, len, len);
((CollationElementIterator*)elems)->setText(src, *status);
}
U_CAPI UTextOffset
1999-08-16 21:50:52 +00:00
ucol_getOffset(const UCollationElements *elems)
{
return ((CollationElementIterator*)elems)->getOffset();
}
U_CAPI void
1999-08-16 21:50:52 +00:00
ucol_setOffset( UCollationElements *elems,
UTextOffset offset,
UErrorCode *status)
{
if(U_FAILURE(*status)) return;
1999-08-16 21:50:52 +00:00
((CollationElementIterator*)elems)->setOffset(offset, *status);
}
U_CAPI void
ucol_getVersion(const UCollator* coll,
UVersionInfo versionInfo)
{
((Collator*)coll)->getVersion(versionInfo);
}
U_CAPI uint8_t *
ucol_cloneRuleData(UCollator *coll, int32_t *length, UErrorCode *status)
{
return ((RuleBasedCollator*)coll)->cloneRuleData(*length,*status);
}
U_CAPI void ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) {
((RuleBasedCollator *)coll)->setAttribute(attr, value, *status);
}
U_CAPI UColAttributeValue ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
return (((RuleBasedCollator *)coll)->getAttribute(attr, *status));
}
U_CAPI UCollator *ucol_safeClone(const UCollator *coll, void *stackBuffer, uint32_t bufferSize, UErrorCode *status) {
*status = U_UNSUPPORTED_ERROR;
return NULL;
}
U_CAPI UCollationResult ucol_strcollinc(const UCollator *coll,
UCharForwardIterator *source, void *sourceContext,
UCharForwardIterator *target, void *targetContext) {
return UCOL_EQUAL;
}
U_CAPI int32_t ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) {
return 0;
}