scuffed-code/icu4c/source/i18n/olsontz.cpp

525 lines
17 KiB
C++
Raw Normal View History

/*
**********************************************************************
* Copyright (c) 2003, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Author: Alan Liu
* Created: July 21 2003
* Since: ICU 2.8
**********************************************************************
*/
#if !UCONFIG_NO_FORMATTING
#include "olsontz.h"
#include "unicode/ures.h"
#include "unicode/simpletz.h"
#include "unicode/gregocal.h"
#include "cmemory.h"
#include "uassert.h"
U_NAMESPACE_BEGIN
#define SECONDS_PER_DAY (24*60*60)
static const int32_t ZEROS[] = {0,0};
const char OlsonTimeZone::fgClassID = 0; // Value is irrelevant
//----------------------------------------------------------------------
// Support methods
// TODO clean up; consolidate with GregorianCalendar, TimeZone, StandarTimeZone
static int32_t floorDivide(int32_t numerator, int32_t denominator) {
return (numerator >= 0) ?
numerator / denominator : ((numerator + 1) / denominator) - 1;
}
static double floorDivide(double numerator, double denominator,
double& remainder) {
double quotient = uprv_floor(numerator / denominator);
remainder = numerator - (quotient * denominator);
return quotient;
}
static int32_t floorDivide(double numerator, int32_t denominator,
int32_t& remainder) {
double quotient, rem;
quotient = floorDivide(numerator, denominator, rem);
remainder = (int32_t) rem;
return (int32_t) quotient;
}
static const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
static const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
static const int16_t DAYS_BEFORE[] =
{0,31,59,90,120,151,181,212,243,273,304,334,
0,31,60,91,121,152,182,213,244,274,305,335};
static const int8_t MONTH_LENGTH[] =
{31,28,31,30,31,30,31,31,30,31,30,31,
31,29,31,30,31,30,31,31,30,31,30,31};
static UBool isLeapYear(int year) {
return (year%4 == 0) && ((year%100 != 0) || (year%400 == 0));
}
/**
* Convert a year, month, and day-of-month, given in the proleptic Gregorian
* calendar, to 1970 epoch days.
* @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
* @param month 0-based month, with 0==Jan
* @param dom 1-based day of month
*/
static double fieldsToDay(int32_t year, int32_t month, int32_t dom) {
int32_t y = year - 1;
double julian = 365 * y + floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
floorDivide(y, 400) - floorDivide(y, 100) + 2 + // => Gregorian cal
DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
return julian - JULIAN_1970_CE; // JD => epoch day
}
/**
* Convert a 1970-epoch day number to proleptic Gregorian year, month,
* day-of-month, and day-of-week.
* @param day 1970-epoch day (integral value)
* @param year output parameter to receive year
* @param month output parameter to receive month (0-based, 0==Jan)
* @param dom output parameter to receive day-of-month (1-based)
* @param dow output parameter to receive day-of-week (1-based, 1==Sun)
*/
static void dayToFields(double day, int32_t& year, int32_t& month,
int32_t& dom, int32_t& dow) {
int32_t doy;
// Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
day += JULIAN_1970_CE - JULIAN_1_CE;
int32_t n400 = floorDivide(day, 146097, doy); // 400-year cycle length
int32_t n100 = floorDivide(doy, 36524, doy); // 100-year cycle length
int32_t n4 = floorDivide(doy, 1461, doy); // 4-year cycle length
int32_t n1 = floorDivide(doy, 365, doy);
year = 400*n400 + 100*n100 + 4*n4 + n1;
if (n100 == 4 || n1 == 4) {
doy = 365; // Dec 31 at end of 4- or 400-year cycle
} else {
++year;
}
UBool isLeap = isLeapYear(year);
// Gregorian day zero is a Monday.
dow = (int32_t) uprv_fmod(day + 1, 7);
dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
// Common Julian/Gregorian calculation
int32_t correction = 0;
int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
if (doy >= march1) {
correction = isLeap ? 1 : 2;
}
month = (12 * (doy + correction) + 6) / 367; // zero-based month
dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
}
//----------------------------------------------------------------------
/**
* Default constructor
*/
OlsonTimeZone::OlsonTimeZone() : finalZone(0), finalYear(INT32_MAX) {
constructEmpty();
}
void OlsonTimeZone::constructEmpty() {
// Construct a GMT+0 zone with no transitions
transitionCount = 0;
typeCount = 1;
transitionTimes = typeOffsets = ZEROS;
typeData = (const uint8_t*) ZEROS;
}
/**
* Construct from a resource bundle
*/
OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
const UResourceBundle* res,
UErrorCode& ec) :
finalZone(0), finalYear(INT32_MAX) {
if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
if (U_SUCCESS(ec)) {
// TODO remove nonconst casts below when ures_* API is fixed
setID(ures_getKey((UResourceBundle*) res)); // cast away const
// Size 3 is a purely historical zone (no final rules);
// size 5 is a hybrid zone, with historical and final elements.
int32_t size = ures_getSize((UResourceBundle*) res); // cast away const
if (size != 3 && size != 5) {
ec = U_INVALID_FORMAT_ERROR;
}
// Transitions list may be emptry
int32_t i;
UResourceBundle* r = ures_getByIndex(res, 0, NULL, &ec);
transitionTimes = ures_getIntVector(r, &i, &ec);
ures_close(r);
if ((i<0 || i>0x7FFF) && U_SUCCESS(ec)) {
ec = U_INVALID_FORMAT_ERROR;
}
transitionCount = (int16_t) i;
// Type offsets list must be of even size, with size >= 2
r = ures_getByIndex(res, 1, NULL, &ec);
typeOffsets = ures_getIntVector(r, &i, &ec);
ures_close(r);
if ((i<2 || i>0x7FFF || ((i&1)!=0)) && U_SUCCESS(ec)) {
ec = U_INVALID_FORMAT_ERROR;
}
typeCount = (int16_t) i >> 1;
// Type data must be of the same size as the transitions list
r = ures_getByIndex(res, 2, NULL, &ec);
int32_t len;
typeData = ures_getBinary(r, &len, &ec);
ures_close(r);
if (len != transitionCount && U_SUCCESS(ec)) {
ec = U_INVALID_FORMAT_ERROR;
}
if (size == 5) {
UnicodeString ruleid = ures_getUnicodeStringByIndex(res, 3, &ec);
r = ures_getByIndex(res, 4, NULL, &ec);
const int32_t* data = ures_getIntVector(r, &len, &ec);
ures_close(r);
if (U_SUCCESS(ec)) {
if (data != 0 && len == 2) {
int32_t rawOffset = data[0] * U_MILLIS_PER_SECOND;
// Subtract one from the actual final year; we
// actually store final year - 1, and compare
// using > rather than >=. This allows us to use
// INT32_MAX as an exclusive upper limit for all
// years, including INT32_MAX.
U_ASSERT(data[1] > INT32_MIN);
finalYear = data[1] - 1;
char key[64];
key[0] = '_';
ruleid.extract(0, sizeof(key)-2, key+1, sizeof(key)-1, "");
r = ures_getByKey(top, key, NULL, &ec);
if (U_SUCCESS(ec)) {
// 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600
data = ures_getIntVector(r, &len, &ec);
if (U_SUCCESS(ec) && len == 11) {
finalZone = new SimpleTimeZone(rawOffset, "",
(int8_t)data[0], (int8_t)data[1], (int8_t)data[2],
data[3] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) data[4],
(int8_t)data[5], (int8_t)data[6], (int8_t)data[7],
data[8] * U_MILLIS_PER_SECOND,
(SimpleTimeZone::TimeMode) data[9],
data[10] * U_MILLIS_PER_SECOND, ec);
} else {
ec = U_INVALID_FORMAT_ERROR;
}
}
ures_close(r);
} else {
ec = U_INVALID_FORMAT_ERROR;
}
}
}
}
if (U_FAILURE(ec)) {
constructEmpty();
}
}
/**
* Copy constructor
*/
OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
TimeZone(other), finalZone(0) {
*this = other;
}
/**
* Assignment operator
*/
OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) {
transitionCount = other.transitionCount;
typeCount = other.typeCount;
transitionTimes = other.transitionTimes;
typeOffsets = other.typeOffsets;
typeData = other.typeData;
finalYear = other.finalYear;
delete finalZone;
finalZone = (other.finalZone != 0) ?
(SimpleTimeZone*) other.finalZone->clone() : 0;
return *this;
}
/**
* Destructor
*/
OlsonTimeZone::~OlsonTimeZone() {
delete finalZone;
}
/**
* Returns true if the two TimeZone objects are equal.
*/
UBool OlsonTimeZone::operator==(const TimeZone& other) const {
const OlsonTimeZone* z = (const OlsonTimeZone*) &other;
// typeData points into memory-mapped or DLL space, so if two
// zones are the same, their pointers will be equal.
return TimeZone::operator==(other) &&
// [sic] pointer comparison:
(typeData == z->typeData ||
// If the pointers are not equal, the zones may still
// be equal if their rules and transitions are equal
(finalYear == z->finalYear &&
((finalZone == 0 && z->finalZone == 0) ||
(finalZone != 0 && z->finalZone != 0 &&
*finalZone == *z->finalZone)) &&
transitionCount == z->transitionCount &&
typeCount == z->typeCount &&
uprv_memcmp(transitionTimes, z->transitionTimes,
sizeof(transitionTimes[0]) * transitionCount) == 0 &&
uprv_memcmp(typeOffsets, z->typeOffsets,
(sizeof(typeOffsets[0]) * typeCount) << 1) == 0 &&
uprv_memcmp(typeData, z->typeData,
(sizeof(typeData[0]) * typeCount)) == 0
));
}
/**
* TimeZone API.
*/
TimeZone* OlsonTimeZone::clone() const {
return new OlsonTimeZone(*this);
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
int32_t dom, uint8_t dow,
int32_t millis, UErrorCode& ec) const {
if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
if (U_SUCCESS(ec)) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
return 0;
} else {
return getOffset(era, year, month, dom, dow, millis,
MONTH_LENGTH[month + isLeapYear(year)?12:0],
ec);
}
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
int32_t dom, uint8_t dow,
int32_t millis, int32_t monthLength,
UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return 0;
}
if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC)
|| month < UCAL_JANUARY
|| month > UCAL_DECEMBER
|| dom < 1
|| dom > monthLength
|| dow < UCAL_SUNDAY
|| dow > UCAL_SATURDAY
|| millis < 0
|| millis >= U_MILLIS_PER_DAY
|| monthLength < 28
|| monthLength > 31) {
ec = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if (era == GregorianCalendar::BC) {
year = -year;
}
if (year > finalYear) { // [sic] >, not >=; see above
U_ASSERT(finalZone != 0);
return finalZone->getOffset(era, year, month, dom, dow,
millis, monthLength, ec);
}
// Compute local epoch seconds from input fields
double time = fieldsToDay(year, month, dom) * SECONDS_PER_DAY +
uprv_floor(millis / (double) U_MILLIS_PER_SECOND);
return zoneOffset(findTransition(time, TRUE)) * U_MILLIS_PER_SECOND;
}
/**
* TimeZone API.
*/
void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
// We don't support this operation, since OlsonTimeZones are
// immutable (except for the ID, which is in the base class).
// Nothing to do!
}
/**
* TimeZone API.
*/
int32_t OlsonTimeZone::getRawOffset() const {
UErrorCode ec = U_ZERO_ERROR;
int32_t raw, dst;
getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND,
FALSE, raw, dst, ec);
return raw;
}
void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff,
int32_t& dstoff, UErrorCode& ec) const {
if (U_FAILURE(ec)) {
return;
}
int32_t year, month, dom, dow;
double t = uprv_floor(date / U_MILLIS_PER_SECOND);
double d = uprv_floor(date / U_MILLIS_PER_DAY);
dayToFields(d, year, month, dom, dow);
if (year > finalYear) { // [sic] >, not >=; see above
U_ASSERT(finalZone != 0);
int32_t millis = (int32_t) (date - d * U_MILLIS_PER_DAY);
rawoff = finalZone->getRawOffset();
if (!local) {
// Adjust from GMT to local
date += rawoff;
double d2 = uprv_floor(date / U_MILLIS_PER_DAY);
millis = (int32_t) (date - d2 * U_MILLIS_PER_DAY);
if (d2 != d) {
dayToFields(d2, year, month, dom, dow);
}
}
dstoff = finalZone->getOffset(
GregorianCalendar::AD, year, month,
dom, (uint8_t) dow, millis, ec) - rawoff;
return;
}
int16_t i = findTransition(t, local);
rawoff = rawOffset(i) * U_MILLIS_PER_SECOND;
dstoff = dstOffset(i) * U_MILLIS_PER_SECOND;
}
/**
* Find the smallest i (in 0..transitionCount-1) such that time >=
* transition(i), where transition(i) is either the GMT or the local
* transition time, as specified by `local'.
* @param time epoch seconds, either GMT or local wall
* @param local if TRUE, `time' is in local wall units, otherwise it
* is GMT
* @return an index i, where 0 <= i < transitionCount, and
* transition(i) <= time < transition(i+1), or i == 0 if
* transitionCount == 0 or time < transition(0).
*/
int16_t OlsonTimeZone::findTransition(double time, UBool local) const {
int16_t i = 0;
if (transitionCount != 0) {
// Linear search from the end is the fastest approach, since
// most lookups will happen at/near the end.
for (i = transitionCount - 1; i > 0; --i) {
int32_t transition = transitionTimes[i];
if (local) {
transition += zoneOffset(typeData[i]);
}
if (time >= transition) {
break;
}
}
U_ASSERT(i>=0 && i<transitionCount);
// Check invariants for GMT times; if these pass for GMT times
// the local logic should be working too.
U_ASSERT(local || time < transitionTimes[0] || time >= transitionTimes[i]);
U_ASSERT(local || i == transitionCount-1 || time < transitionTimes[i+1]);
i = typeData[i];
}
U_ASSERT(i>=0 && i<typeCount);
return i;
}
/**
* TimeZone API.
*/
UBool OlsonTimeZone::useDaylightTime() const {
// For most clients, if DST was observed in 1942 (for example) but
// has never been observed from 1943 to the present, most clients
// expect this method to return FALSE. This method determines
// whether DST is in use in the current year (at any point in the
// year) and returns TRUE if so.
int32_t d = floorDivide(uprv_getUTCtime(), SECONDS_PER_DAY); // epoch days
int32_t year, month, dom, dow;
dayToFields(d, year, month, dom, dow);
if (year > finalYear) { // [sic] >, not >=; see above
U_ASSERT(finalZone != 0 && finalZone->useDaylightTime());
return TRUE;
}
// Find start of this year, and start of next year
int32_t start = (int32_t) fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
int32_t limit = (int32_t) fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
// Return TRUE if DST is observed at any time during the current
// year.
for (int16_t i=0; i<transitionCount; ++i) {
if (transitionTimes[i] >= limit) {
break;
}
if (transitionTimes[i] >= start &&
dstOffset(typeData[i]) != 0) {
return TRUE;
}
}
return FALSE;
}
/**
* TimeZone API.
*/
UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const {
int32_t raw, dst;
getOffset(date, FALSE, raw, dst, ec);
return dst != 0;
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_FORMATTING
//eof