scuffed-code/icu4c/source/common/uniset.cpp

2327 lines
75 KiB
C++
Raw Normal View History

/*
**********************************************************************
* Copyright (C) 1999-2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 10/20/99 alan Creation.
**********************************************************************
*/
#include "unicode/uniset.h"
#include "unicode/parsepos.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "symtable.h"
#include "cmemory.h"
#include "uhash.h"
#include "upropset.h"
#include "util.h"
#include "uvector.h"
#include "uprops.h"
// HIGH_VALUE > all valid values. 110000 for codepoints
#define UNICODESET_HIGH 0x0110000
// LOW <= all valid values. ZERO for codepoints
#define UNICODESET_LOW 0x000000
2000-05-31 22:18:22 +00:00
// initial storage. Must be >= 0
#define START_EXTRA 16
// extra amount for growth. Must be >= 0
#define GROW_EXTRA START_EXTRA
// Define UChar constants using hex for EBCDIC compatibility
// Used #define to reduce private static exports and memory access time.
#define SET_OPEN ((UChar)0x005B) /*[*/
#define SET_CLOSE ((UChar)0x005D) /*]*/
#define HYPHEN ((UChar)0x002D) /*-*/
#define COMPLEMENT ((UChar)0x005E) /*^*/
#define COLON ((UChar)0x003A) /*:*/
#define BACKSLASH ((UChar)0x005C) /*\*/
#define INTERSECTION ((UChar)0x0026) /*&*/
#define UPPER_U ((UChar)0x0055) /*U*/
#define LOWER_U ((UChar)0x0075) /*u*/
#define OPEN_BRACE ((UChar)123) /*{*/
#define CLOSE_BRACE ((UChar)125) /*}*/
// TEMPORARY: Remove when deprecated category code constructor is removed.
static const UChar CATEGORY_NAMES[] = {
// Must be kept in sync with uchar.h/UCharCategory
0x43, 0x6E, /* "Cn" */
0x4C, 0x75, /* "Lu" */
0x4C, 0x6C, /* "Ll" */
0x4C, 0x74, /* "Lt" */
0x4C, 0x6D, /* "Lm" */
0x4C, 0x6F, /* "Lo" */
0x4D, 0x6E, /* "Mn" */
0x4D, 0x65, /* "Me" */
0x4D, 0x63, /* "Mc" */
0x4E, 0x64, /* "Nd" */
0x4E, 0x6C, /* "Nl" */
0x4E, 0x6F, /* "No" */
0x5A, 0x73, /* "Zs" */
0x5A, 0x6C, /* "Zl" */
0x5A, 0x70, /* "Zp" */
0x43, 0x63, /* "Cc" */
0x43, 0x66, /* "Cf" */
0x43, 0x6F, /* "Co" */
0x43, 0x73, /* "Cs" */
0x50, 0x64, /* "Pd" */
0x50, 0x73, /* "Ps" */
0x50, 0x65, /* "Pe" */
0x50, 0x63, /* "Pc" */
0x50, 0x6F, /* "Po" */
0x53, 0x6D, /* "Sm" */
0x53, 0x63, /* "Sc" */
0x53, 0x6B, /* "Sk" */
0x53, 0x6F, /* "So" */
0x50, 0x69, /* "Pi" */
0x50, 0x66, /* "Pf" */
0x00
};
/**
* Delimiter string used in patterns to close a category reference:
* ":]". Example: "[:Lu:]".
*/
static const UChar CATEGORY_CLOSE[] = {COLON, SET_CLOSE, 0x0000}; /* ":]" */
U_NAMESPACE_BEGIN
const char ParsePosition::fgClassID=0;
/**
* Minimum value that can be stored in a UnicodeSet.
*/
const UChar32 UnicodeSet::MIN_VALUE = UNICODESET_LOW;
/**
* Maximum value that can be stored in a UnicodeSet.
*/
const UChar32 UnicodeSet::MAX_VALUE = UNICODESET_HIGH - 1;
const char UnicodeSet::fgClassID = 0;
//----------------------------------------------------------------
// Debugging
//----------------------------------------------------------------
// DO NOT DELETE THIS CODE. This code is used to debug memory leaks.
// To enable the debugging, define the symbol DEBUG_MEM in the line
// below. This will result in text being sent to stdout that looks
// like this:
// DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85-
// DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85-
// Each line lists a construction (ct) or destruction (dt) event, the
// object address, the number of outstanding objects after the event,
// and the pattern of the object in question.
// #define DEBUG_MEM
#ifdef DEBUG_MEM
#include <stdio.h>
static int32_t _dbgCount = 0;
static inline void _dbgct(UnicodeSet* set) {
UnicodeString str;
set->toPattern(str, TRUE);
char buf[40];
str.extract(0, 39, buf, "");
printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf);
}
static inline void _dbgdt(UnicodeSet* set) {
UnicodeString str;
set->toPattern(str, TRUE);
char buf[40];
str.extract(0, 39, buf, "");
printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf);
}
#else
#define _dbgct(set)
#define _dbgdt(set)
#endif
//----------------------------------------------------------------
// UnicodeString in UVector support
//----------------------------------------------------------------
static void U_CALLCONV cloneUnicodeString(UHashTok dst, UHashTok src) {
dst.pointer = new UnicodeString(*(UnicodeString*)src.pointer);
}
static int8_t U_CALLCONV compareUnicodeString(UHashTok t1, UHashTok t2) {
const UnicodeString &a = *(const UnicodeString*)t1.pointer;
const UnicodeString &b = *(const UnicodeString*)t2.pointer;
return a.compare(b);
}
//----------------------------------------------------------------
// Constructors &c
//----------------------------------------------------------------
/**
* Constructs an empty set.
*/
UnicodeSet::UnicodeSet() :
len(1), capacity(1 + START_EXTRA), bufferCapacity(0),
buffer(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
list[0] = UNICODESET_HIGH;
allocateStrings();
_dbgct(this);
}
/**
* Constructs a set containing the given range. If <code>end >
* start</code> then an empty set is created.
*
* @param start first character, inclusive, of range
* @param end last character, inclusive, of range
*/
UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) :
len(1), capacity(1 + START_EXTRA), bufferCapacity(0),
buffer(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
list[0] = UNICODESET_HIGH;
allocateStrings();
complement(start, end);
_dbgct(this);
}
/**
* Constructs a set from the given pattern, optionally ignoring
* white space. See the class description for the syntax of the
* pattern language.
* @param pattern a string specifying what characters are in the set
*/
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
buffer(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
allocateStrings();
applyPattern(pattern, status);
_dbgct(this);
}
// For internal use by RuleBasedTransliterator
UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos,
const SymbolTable& symbols,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
buffer(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
allocateStrings();
applyPattern(pattern, pos, &symbols, status);
_dbgct(this);
}
// For internal use by TransliteratorIDParser
UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
buffer(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
allocateStrings();
applyPattern(pattern, pos, NULL, status);
_dbgct(this);
}
/**
* DEPRECATED Constructs a set from the given Unicode character category.
* @param category an integer indicating the character category as
* defined in uchar.h.
* @deprecated To be removed after 2002-DEC-31
*/
UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0), list(0),
buffer(0), strings(0)
{
static const UChar OPEN[] = { 91, 58, 0 }; // "[:"
static const UChar CLOSE[]= { 58, 93, 0 }; // ":]"
if (U_SUCCESS(status)) {
if (category < 0 || category >= U_CHAR_CATEGORY_COUNT) {
status = U_ILLEGAL_ARGUMENT_ERROR;
} else {
UnicodeString pattern(FALSE, CATEGORY_NAMES + category*2, 2);
pattern.insert(0, OPEN);
pattern.append(CLOSE);
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
allocateStrings();
applyPattern(pattern, status);
}
}
_dbgct(this);
}
/**
* Constructs a set that is identical to the given UnicodeSet.
*/
UnicodeSet::UnicodeSet(const UnicodeSet& o) :
UnicodeFilter(o),
capacity(o.len + GROW_EXTRA), bufferCapacity(0),
buffer(0)
{
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
allocateStrings();
*this = o;
_dbgct(this);
}
/**
* Destructs the set.
*/
UnicodeSet::~UnicodeSet() {
_dbgdt(this); // first!
uprv_free(list);
uprv_free(buffer);
delete strings;
}
/**
* Assigns this object to be a copy of another.
*/
UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) {
ensureCapacity(o.len);
len = o.len;
uprv_memcpy(list, o.list, len*sizeof(UChar32));
UErrorCode ec = U_ZERO_ERROR;
strings->assign(*o.strings, cloneUnicodeString, ec);
pat = o.pat;
return *this;
}
/**
* Compares the specified object with this set for equality. Returns
* <tt>true</tt> if the two sets
* have the same size, and every member of the specified set is
* contained in this set (or equivalently, every member of this set is
* contained in the specified set).
*
* @param o set to be compared for equality with this set.
* @return <tt>true</tt> if the specified set is equal to this set.
*/
UBool UnicodeSet::operator==(const UnicodeSet& o) const {
if (len != o.len) return FALSE;
for (int32_t i = 0; i < len; ++i) {
if (list[i] != o.list[i]) return FALSE;
}
if (*strings != *o.strings) return FALSE;
return TRUE;
}
/**
* Returns a copy of this object. All UnicodeMatcher objects have
* to support cloning in order to allow classes using
* UnicodeMatchers, such as Transliterator, to implement cloning.
*/
UnicodeFunctor* UnicodeSet::clone() const {
return new UnicodeSet(*this);
}
/**
* Returns the hash code value for this set.
*
* @return the hash code value for this set.
* @see Object#hashCode()
*/
int32_t UnicodeSet::hashCode(void) const {
int32_t result = len;
for (int32_t i = 0; i < len; ++i) {
result *= 1000003;
result += list[i];
}
return result;
}
//----------------------------------------------------------------
// Public API
//----------------------------------------------------------------
/**
* Make this object represent the range <code>start - end</code>.
* If <code>end > start</code> then this object is set to an
* an empty range.
*
* @param start first character in the set, inclusive
* @rparam end last character in the set, inclusive
*/
UnicodeSet& UnicodeSet::set(UChar32 start, UChar32 end) {
clear();
complement(start, end);
return *this;
}
/**
* Modifies this set to represent the set specified by the given
* pattern, optionally ignoring white space. See the class
* description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param ignoreSpaces if <code>true</code>, all spaces in the
* pattern are ignored. Spaces are those characters for which
* <code>uprv_isRuleWhiteSpace()</code> is <code>true</code>.
* Characters preceded by '\\' are escaped, losing any special
* meaning they otherwise have. Spaces may be included by
* escaping them.
* @exception <code>IllegalArgumentException</code> if the pattern
* contains a syntax error.
*/
UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern,
UErrorCode& status) {
if (U_FAILURE(status)) {
return *this;
}
ParsePosition pos(0);
applyPattern(pattern, pos, NULL, status);
if (U_FAILURE(status)) return *this;
// Skip over trailing whitespace
int32_t i = pos.getIndex();
int32_t n = pattern.length();
while (i<n && uprv_isRuleWhiteSpace(pattern.charAt(i))) {
++i;
}
if (i != n) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a UnicodeSet pattern.
*/
UBool UnicodeSet::resemblesPattern(const UnicodeString& pattern, int32_t pos) {
return ((pos+1) < pattern.length() &&
pattern.charAt(pos) == (UChar)91/*[*/) ||
UnicodePropertySet::resemblesPattern(pattern, pos);
}
/**
* Append the <code>toPattern()</code> representation of a
* string to the given <code>StringBuffer</code>.
*/
void UnicodeSet::_appendToPat(UnicodeString& buf, const UnicodeString& s, UBool useHexEscape) {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
_appendToPat(buf, cp = s.char32At(i), useHexEscape);
}
}
/**
* Append the <code>toPattern()</code> representation of a
* character to the given <code>StringBuffer</code>.
*/
void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool useHexEscape) {
if (useHexEscape) {
// Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything
// unprintable
if (ICU_Utility::escapeUnprintable(buf, c)) {
return;
}
}
// Okay to let ':' pass through
switch (c) {
case SET_OPEN:
case SET_CLOSE:
case HYPHEN:
case COMPLEMENT:
case INTERSECTION:
case BACKSLASH:
case 123/*{*/:
case 125/*}*/:
case SymbolTable::SYMBOL_REF:
case COLON:
buf.append(BACKSLASH);
break;
default:
// Escape whitespace
if (uprv_isRuleWhiteSpace(c)) {
buf.append(BACKSLASH);
}
break;
}
buf.append((UChar) c);
}
/**
* Returns a string representation of this set. If the result of
* calling this function is passed to a UnicodeSet constructor, it
* will produce another set that is equal to this one.
*/
UnicodeString& UnicodeSet::toPattern(UnicodeString& result,
UBool escapeUnprintable) const {
result.truncate(0);
return _toPattern(result, escapeUnprintable);
}
/**
* Append a string representation of this set to result. This will be
* a cleaned version of the string passed to applyPattern(), if there
* is one. Otherwise it will be generated.
*/
UnicodeString& UnicodeSet::_toPattern(UnicodeString& result,
UBool escapeUnprintable) const {
if (pat.length() > 0) {
int32_t i;
int32_t backslashCount = 0;
for (i=0; i<pat.length(); ) {
UChar32 c = pat.char32At(i);
i += UTF_CHAR_LENGTH(c);
if (escapeUnprintable && ICU_Utility::isUnprintable(c)) {
// If the unprintable character is preceded by an odd
// number of backslashes, then it has been escaped.
// Before unescaping it, we delete the final
// backslash.
if ((backslashCount % 2) == 1) {
result.truncate(result.length() - 1);
}
ICU_Utility::escapeUnprintable(result, c);
backslashCount = 0;
} else {
result.append(c);
if (c == BACKSLASH) {
++backslashCount;
} else {
backslashCount = 0;
}
}
}
return result;
}
return _generatePattern(result, escapeUnprintable);
}
/**
* Generate and append a string representation of this set to result.
* This does not use this.pat, the cleaned up copy of the string
* passed to applyPattern().
*/
UnicodeString& UnicodeSet::_generatePattern(UnicodeString& result,
UBool escapeUnprintable) const {
result.append(SET_OPEN);
// // Check against the predefined categories. We implicitly build
// // up ALL category sets the first time toPattern() is called.
// for (int8_t cat=0; cat<Unicode::GENERAL_TYPES_COUNT; ++cat) {
// if (*this == getCategorySet(cat)) {
// result.append(COLON);
// result.append(CATEGORY_NAMES, cat*2, 2);
// return result.append(CATEGORY_CLOSE);
// }
// }
int32_t count = getRangeCount();
// If the set contains at least 2 intervals and includes both
// MIN_VALUE and MAX_VALUE, then the inverse representation will
// be more economical.
if (count > 1 &&
getRangeStart(0) == MIN_VALUE &&
getRangeEnd(count-1) == MAX_VALUE) {
// Emit the inverse
result.append(COMPLEMENT);
for (int32_t i = 1; i < count; ++i) {
UChar32 start = getRangeEnd(i-1)+1;
UChar32 end = getRangeStart(i)-1;
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
result.append(HYPHEN);
_appendToPat(result, end, escapeUnprintable);
}
}
}
// Default; emit the ranges as pairs
else {
for (int32_t i = 0; i < count; ++i) {
UChar32 start = getRangeStart(i);
UChar32 end = getRangeEnd(i);
_appendToPat(result, start, escapeUnprintable);
if (start != end) {
result.append(HYPHEN);
_appendToPat(result, end, escapeUnprintable);
}
}
}
for (int32_t i = 0; i<strings->size(); ++i) {
result.append(OPEN_BRACE);
_appendToPat(result,
*(const UnicodeString*) strings->elementAt(i),
escapeUnprintable);
result.append(CLOSE_BRACE);
}
return result.append(SET_CLOSE);
}
/**
* Returns the number of elements in this set (its cardinality),
* <em>n</em>, where <code>0 <= </code><em>n</em><code> <= 65536</code>.
*
* @return the number of elements in this set (its cardinality).
*/
int32_t UnicodeSet::size(void) const {
int32_t n = 0;
int32_t count = getRangeCount();
for (int32_t i = 0; i < count; ++i) {
n += getRangeEnd(i) - getRangeStart(i) + 1;
}
return n + strings->size();
}
/**
* Returns <tt>true</tt> if this set contains no elements.
*
* @return <tt>true</tt> if this set contains no elements.
*/
UBool UnicodeSet::isEmpty(void) const {
return len == 1 && strings->size() == 0;
}
/**
* Returns true if this set contains the given character.
* @param c character to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::contains(UChar32 c) const {
// Set i to the index of the start item greater than ch
// We know we will terminate without length test!
// LATER: for large sets, add binary search
//int32_t i = -1;
//for (;;) {
// if (c < list[++i]) break;
//}
int32_t i = findCodePoint(c);
return ((i & 1) != 0); // return true if odd
}
/**
* Returns the smallest value i such that c < list[i]. Caller
* must ensure that c is a legal value or this method will enter
* an infinite loop. This method performs a binary search.
* @param c a character in the range MIN_VALUE..MAX_VALUE
* inclusive
* @return the smallest integer i in the range 0..len-1,
* inclusive, such that c < list[i]
*/
int32_t UnicodeSet::findCodePoint(UChar32 c) const {
// Return the smallest i such that c < list[i]. Assume
// list[len - 1] == HIGH and that c is legal (0..HIGH-1).
if (c < list[0]) return 0;
int32_t lo = 0;
int32_t hi = len - 1;
// invariant: c >= list[lo]
// invariant: c < list[hi]
for (;;) {
int32_t i = (lo + hi) / 2;
if (i == lo) return hi;
if (c < list[i]) {
hi = i;
} else {
lo = i;
}
}
return 0; // To make compiler happy; never reached
}
/**
* Returns true if this set contains every character
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
UBool UnicodeSet::contains(UChar32 start, UChar32 end) const {
//int32_t i = -1;
//for (;;) {
// if (start < list[++i]) break;
//}
int32_t i = findCodePoint(start);
return ((i & 1) != 0 && end < list[i]);
}
/**
* Returns <tt>true</tt> if this set contains the given
* multicharacter string.
* @param s string to be checked for containment
* @return <tt>true</tt> if this set contains the specified string
*/
UBool UnicodeSet::contains(const UnicodeString& s) const {
if (s.length() == 0) return FALSE;
int32_t cp = getSingleCP(s);
if (cp < 0) {
return strings->contains((void*) &s);
} else {
return contains((UChar32) cp);
}
}
/**
* Returns true if this set contains all the characters and strings
* of the given set.
* @param c set to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsAll(const UnicodeSet& c) const {
// The specified set is a subset if all of its pairs are contained in
// this set. It's possible to code this more efficiently in terms of
// direct manipulation of the inversion lists if the need arises.
int32_t n = c.getRangeCount();
for (int i=0; i<n; ++i) {
if (!contains(c.getRangeStart(i), c.getRangeEnd(i))) {
return FALSE;
}
}
if (!strings->containsAll(*c.strings)) return FALSE;
return TRUE;
}
/**
* Returns true if this set contains all the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsAll(const UnicodeString& s) const {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
cp = s.char32At(i);
if (!contains(cp)) return FALSE;
}
return TRUE;
}
/**
* Returns true if this set contains none of the characters
* of the given range.
* @param start first character, inclusive, of the range
* @param end last character, inclusive, of the range
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(UChar32 start, UChar32 end) const {
int32_t i = -1;
for (;;) {
if (start < list[++i]) break;
}
return ((i & 1) == 0 && end < list[i]);
}
/**
* Returns true if this set contains none of the characters and strings
* of the given set.
* @param c set to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(const UnicodeSet& c) const {
// The specified set is a subset if all of its pairs are contained in
// this set. It's possible to code this more efficiently in terms of
// direct manipulation of the inversion lists if the need arises.
int32_t n = c.getRangeCount();
for (int32_t i=0; i<n; ++i) {
if (!containsNone(c.getRangeStart(i), c.getRangeEnd(i))) {
return FALSE;
}
}
if (!strings->containsNone(*c.strings)) return FALSE;
return TRUE;
}
/**
* Returns true if this set contains none of the characters
* of the given string.
* @param s string containing characters to be checked for containment
* @return true if the test condition is met
*/
UBool UnicodeSet::containsNone(const UnicodeString& s) const {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
cp = s.char32At(i);
if (contains(cp)) return FALSE;
}
return TRUE;
}
/**
* Returns <tt>true</tt> if this set contains any character whose low byte
* is the given value. This is used by <tt>RuleBasedTransliterator</tt> for
* indexing.
*/
UBool UnicodeSet::matchesIndexValue(uint8_t v) const {
/* The index value v, in the range [0,255], is contained in this set if
* it is contained in any pair of this set. Pairs either have the high
* bytes equal, or unequal. If the high bytes are equal, then we have
* aaxx..aayy, where aa is the high byte. Then v is contained if xx <=
* v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa.
* Then v is contained if xx <= v || v <= yy. (This is identical to the
* time zone month containment logic.)
*/
int32_t i;
for (i=0; i<getRangeCount(); ++i) {
UChar32 low = getRangeStart(i);
UChar32 high = getRangeEnd(i);
if ((low & ~0xFF) == (high & ~0xFF)) {
if ((low & 0xFF) <= v && v <= (high & 0xFF)) {
return TRUE;
}
} else if ((low & 0xFF) <= v || v <= (high & 0xFF)) {
return TRUE;
}
}
if (strings->size() != 0) {
for (i=0; i<strings->size(); ++i) {
const UnicodeString& s = *(const UnicodeString*)strings->elementAt(i);
//if (s.length() == 0) {
// // Empty strings match everything
// return TRUE;
//}
// assert(s.length() != 0); // We enforce this elsewhere
UChar32 c = s.char32At(0);
if ((c & 0xFF) == v) {
return TRUE;
}
}
}
return FALSE;
}
/**
* Implementation of UnicodeMatcher::matches(). Always matches the
* longest possible multichar string.
*/
UMatchDegree UnicodeSet::matches(const Replaceable& text,
int32_t& offset,
int32_t limit,
UBool incremental) {
if (offset == limit) {
// Strings, if any, have length != 0, so we don't worry
// about them here. If we ever allow zero-length strings
// we much check for them here.
if (contains(U_ETHER)) {
return incremental ? U_PARTIAL_MATCH : U_MATCH;
} else {
return U_MISMATCH;
}
} else {
if (strings->size() != 0) { // try strings first
// might separate forward and backward loops later
// for now they are combined
// TODO Improve efficiency of this, at least in the forward
// direction, if not in both. In the forward direction we
// can assume the strings are sorted.
int32_t i;
UBool forward = offset < limit;
// firstChar is the leftmost char to match in the
// forward direction or the rightmost char to match in
// the reverse direction.
UChar firstChar = text.charAt(offset);
// If there are multiple strings that can match we
// return the longest match.
int32_t highWaterLength = 0;
for (i=0; i<strings->size(); ++i) {
const UnicodeString& trial = *(const UnicodeString*)strings->elementAt(i);
//if (trial.length() == 0) {
// return U_MATCH; // null-string always matches
//}
// assert(trial.length() != 0); // We ensure this elsewhere
UChar c = trial.charAt(forward ? 0 : trial.length() - 1);
// Strings are sorted, so we can optimize in the
// forward direction.
if (forward && c > firstChar) break;
if (c != firstChar) continue;
int32_t matchLen = matchRest(text, offset, limit, trial);
if (incremental) {
int32_t maxLen = forward ? limit-offset : offset-limit;
if (matchLen == maxLen) {
// We have successfully matched but only up to limit.
return U_PARTIAL_MATCH;
}
}
if (matchLen == trial.length()) {
// We have successfully matched the whole string.
if (matchLen > highWaterLength) {
highWaterLength = matchLen;
}
// In the forward direction we know strings
// are sorted so we can bail early.
if (forward && matchLen < highWaterLength) {
break;
}
continue;
}
}
// We've checked all strings without a partial match.
// If we have full matches, return the longest one.
if (highWaterLength != 0) {
offset += forward ? highWaterLength : -highWaterLength;
return U_MATCH;
}
}
return UnicodeFilter::matches(text, offset, limit, incremental);
}
}
/**
* Returns the longest match for s in text at the given position.
* If limit > start then match forward from start+1 to limit
* matching all characters except s.charAt(0). If limit < start,
* go backward starting from start-1 matching all characters
* except s.charAt(s.length()-1). This method assumes that the
* first character, text.charAt(start), matches s, so it does not
* check it.
* @param text the text to match
* @param start the first character to match. In the forward
* direction, text.charAt(start) is matched against s.charAt(0).
* In the reverse direction, it is matched against
* s.charAt(s.length()-1).
* @param limit the limit offset for matching, either last+1 in
* the forward direction, or last-1 in the reverse direction,
* where last is the index of the last character to match.
* @return If part of s matches up to the limit, return |limit -
* start|. If all of s matches before reaching the limit, return
* s.length(). If there is a mismatch between s and text, return
* 0
*/
int32_t UnicodeSet::matchRest(const Replaceable& text,
int32_t start, int32_t limit,
const UnicodeString& s) {
int32_t i;
int32_t maxLen;
int32_t slen = s.length();
if (start < limit) {
maxLen = limit - start;
if (maxLen > slen) maxLen = slen;
for (i = 1; i < maxLen; ++i) {
if (text.charAt(start + i) != s.charAt(i)) return 0;
}
} else {
maxLen = start - limit;
if (maxLen > slen) maxLen = slen;
--slen; // <=> slen = s.length() - 1;
for (i = 1; i < maxLen; ++i) {
if (text.charAt(start - i) != s.charAt(slen - i)) return 0;
}
}
return maxLen;
}
/**
* Implement of UnicodeMatcher
*/
void UnicodeSet::addMatchSetTo(UnicodeSet& toUnionTo) const {
toUnionTo.addAll(*this);
}
/**
* Returns the index of the given character within this set, where
* the set is ordered by ascending code point. If the character
* is not in this set, return -1. The inverse of this method is
* <code>charAt()</code>.
* @return an index from 0..size()-1, or -1
*/
int32_t UnicodeSet::indexOf(UChar32 c) const {
if (c < MIN_VALUE || c > MAX_VALUE) {
return -1;
}
int32_t i = 0;
int32_t n = 0;
for (;;) {
UChar32 start = list[i++];
if (c < start) {
return -1;
}
UChar32 limit = list[i++];
if (c < limit) {
return n + c - start;
}
n += limit - start;
}
}
/**
* Returns the character at the given index within this set, where
* the set is ordered by ascending code point. If the index is
* out of range, return (UChar32)-1. The inverse of this method is
* <code>indexOf()</code>.
* @param index an index from 0..size()-1
* @return the character at the given index, or (UChar32)-1.
*/
UChar32 UnicodeSet::charAt(int32_t index) const {
if (index >= 0) {
// len2 is the largest even integer <= len, that is, it is len
// for even values and len-1 for odd values. With odd values
// the last entry is UNICODESET_HIGH.
int32_t len2 = len & ~1;
for (int32_t i=0; i < len2;) {
UChar32 start = list[i++];
int32_t count = list[i++] - start;
if (index < count) {
return (UChar32)(start + index);
}
index -= count;
}
}
return (UChar32)-1;
}
/**
* Adds the specified range to this set if it is not already
* present. If this set already contains the specified range,
* the call leaves this set unchanged. If <code>end > start</code>
* then an empty range is added, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be added
* to this set.
* @param end last character, inclusive, of range to be added
* to this set.
*/
UnicodeSet& UnicodeSet::add(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
add(range, 2, 0);
}
return *this;
}
/**
* Adds the specified character to this set if it is not already
* present. If this set already contains the specified character,
* the call leaves this set unchanged.
*/
UnicodeSet& UnicodeSet::add(UChar32 c) {
return add(c, c);
}
/**
* Adds the specified multicharacter to this set if it is not already
* present. If this set already contains the multicharacter,
* the call leaves this set unchanged.
* Thus "ch" => {"ch"}
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param s the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::add(const UnicodeString& s) {
if (s.length() == 0) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
_add(s);
pat.truncate(0);
} else {
add((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Adds the given string, in order, to 'strings'. The given string
* must have been checked by the caller to not be empty and to not
* already be in 'strings'.
*/
void UnicodeSet::_add(const UnicodeString& s) {
UnicodeString* t = new UnicodeString(s);
UErrorCode ec = U_ZERO_ERROR;
strings->sortedInsert(t, compareUnicodeString, ec);
}
/**
* @return a code point IF the string consists of a single one.
* otherwise returns -1.
* @param string to test
*/
int32_t UnicodeSet::getSingleCP(const UnicodeString& s) {
//if (s.length() < 1) {
// throw new IllegalArgumentException("Can't use zero-length strings in UnicodeSet");
//}
if (s.length() > 2) return -1;
if (s.length() == 1) return s.charAt(0);
// at this point, len = 2
UChar32 cp = s.char32At(0);
if (cp > 0xFFFF) { // is surrogate pair
return cp;
}
return -1;
}
/**
* Adds each of the characters in this string to the set. Thus "ch" => {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::addAll(const UnicodeString& s) {
UChar32 cp;
for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) {
cp = s.char32At(i);
add(cp, cp);
}
return *this;
}
/**
* Retains EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::retainAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
retainAll(set);
return *this;
}
/**
* Complement EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::complementAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
complementAll(set);
return *this;
}
/**
* Remove EACH of the characters in this string. Note: "ch" == {"c", "h"}
* If this set already any particular character, it has no effect on that character.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::removeAll(const UnicodeString& s) {
UnicodeSet set;
set.addAll(s);
removeAll(set);
return *this;
}
/**
* Makes a set from a multicharacter string. Thus "ch" => {"ch"}
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param the source string
* @return a newly created set containing the given string
*/
UnicodeSet* UnicodeSet::createFrom(const UnicodeString& s) {
UnicodeSet *set = new UnicodeSet();
set->add(s);
return set;
}
/**
* Makes a set from each of the characters in the string. Thus "ch" => {"c", "h"}
* @param the source string
* @return a newly created set containing the given characters
*/
UnicodeSet* UnicodeSet::createFromAll(const UnicodeString& s) {
UnicodeSet *set = new UnicodeSet();
set->addAll(s);
return set;
}
/**
* Retain only the elements in this set that are contained in the
* specified range. If <code>end > start</code> then an empty range is
* retained, leaving the set empty.
*
* @param start first character, inclusive, of range to be retained
* to this set.
* @param end last character, inclusive, of range to be retained
* to this set.
*/
UnicodeSet& UnicodeSet::retain(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
retain(range, 2, 0);
} else {
clear();
}
return *this;
}
UnicodeSet& UnicodeSet::retain(UChar32 c) {
return retain(c, c);
}
/**
* Removes the specified range from this set if it is present.
* The set will not contain the specified range once the call
* returns. If <code>end > start</code> then an empty range is
* removed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
UnicodeSet& UnicodeSet::remove(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
retain(range, 2, 2);
}
return *this;
}
/**
* Removes the specified character from this set if it is present.
* The set will not contain the specified range once the call
* returns.
*/
UnicodeSet& UnicodeSet::remove(UChar32 c) {
return remove(c, c);
}
/**
* Removes the specified string from this set if it is present.
* The set will not contain the specified character once the call
* returns.
* @param the source string
* @return the modified set, for chaining
*/
UnicodeSet& UnicodeSet::remove(const UnicodeString& s) {
if (s.length() == 0) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
strings->removeElement((void*) &s);
pat.truncate(0);
} else {
remove((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Complements the specified range in this set. Any character in
* the range will be removed if it is in this set, or will be
* added if it is not in this set. If <code>end > start</code>
* then an empty range is xor'ed, leaving the set unchanged.
*
* @param start first character, inclusive, of range to be removed
* from this set.
* @param end last character, inclusive, of range to be removed
* from this set.
*/
UnicodeSet& UnicodeSet::complement(UChar32 start, UChar32 end) {
if (start <= end) {
UChar32 range[3] = { start, end+1, UNICODESET_HIGH };
exclusiveOr(range, 2, 0);
}
pat.truncate(0);
return *this;
}
UnicodeSet& UnicodeSet::complement(UChar32 c) {
return complement(c, c);
}
/**
* This is equivalent to
* <code>complement(MIN_VALUE, MAX_VALUE)</code>.
*/
UnicodeSet& UnicodeSet::complement(void) {
if (list[0] == UNICODESET_LOW) {
ensureBufferCapacity(len-1);
uprv_memcpy(buffer, list + 1, (len-1)*sizeof(UChar32));
--len;
} else {
ensureBufferCapacity(len+1);
uprv_memcpy(buffer + 1, list, len*sizeof(UChar32));
buffer[0] = UNICODESET_LOW;
++len;
}
swapBuffers();
pat.truncate(0);
return *this;
}
/**
* Complement the specified string in this set.
* The set will not contain the specified string once the call
* returns.
* <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b>
* @param s the string to complement
* @return this object, for chaining
*/
UnicodeSet& UnicodeSet::complement(const UnicodeString& s) {
if (s.length() == 0) return *this;
int32_t cp = getSingleCP(s);
if (cp < 0) {
if (strings->contains((void*) &s)) {
strings->removeElement((void*) &s);
} else {
_add(s);
}
pat.truncate(0);
} else {
complement((UChar32)cp, (UChar32)cp);
}
return *this;
}
/**
* Adds all of the elements in the specified set to this set if
* they're not already present. This operation effectively
* modifies this set so that its value is the <i>union</i> of the two
* sets. The behavior of this operation is unspecified if the specified
* collection is modified while the operation is in progress.
*
* @param c set whose elements are to be added to this set.
* @see #add(char, char)
*/
UnicodeSet& UnicodeSet::addAll(const UnicodeSet& c) {
add(c.list, c.len, 0);
// Add strings in order
for (int32_t i=0; i<c.strings->size(); ++i) {
const UnicodeString* s = (const UnicodeString*)c.strings->elementAt(i);
if (!strings->contains((void*) s)) {
_add(*s);
}
}
return *this;
}
/**
* Retains only the elements in this set that are contained in the
* specified set. In other words, removes from this set all of
* its elements that are not contained in the specified set. This
* operation effectively modifies this set so that its value is
* the <i>intersection</i> of the two sets.
*
* @param c set that defines which elements this set will retain.
*/
UnicodeSet& UnicodeSet::retainAll(const UnicodeSet& c) {
retain(c.list, c.len, 0);
strings->retainAll(*c.strings);
return *this;
}
/**
* Removes from this set all of its elements that are contained in the
* specified set. This operation effectively modifies this
* set so that its value is the <i>asymmetric set difference</i> of
* the two sets.
*
* @param c set that defines which elements will be removed from
* this set.
*/
UnicodeSet& UnicodeSet::removeAll(const UnicodeSet& c) {
retain(c.list, c.len, 2);
strings->removeAll(*c.strings);
return *this;
}
/**
* Complements in this set all elements contained in the specified
* set. Any character in the other set will be removed if it is
* in this set, or will be added if it is not in this set.
*
* @param c set that defines which elements will be xor'ed from
* this set.
*/
UnicodeSet& UnicodeSet::complementAll(const UnicodeSet& c) {
exclusiveOr(c.list, c.len, 0);
for (int32_t i=0; i<c.strings->size(); ++i) {
void* e = c.strings->elementAt(i);
if (!strings->removeElement(e)) {
_add(*(const UnicodeString*)e);
}
}
return *this;
}
/**
* Removes all of the elements from this set. This set will be
* empty after this call returns.
*/
UnicodeSet& UnicodeSet::clear(void) {
list[0] = UNICODESET_HIGH;
len = 1;
pat.truncate(0);
strings->removeAllElements();
return *this;
}
/**
* Iteration method that returns the number of ranges contained in
* this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
int32_t UnicodeSet::getRangeCount() const {
return len/2;
}
/**
* Iteration method that returns the first character in the
* specified range of this set.
* @see #getRangeCount
* @see #getRangeEnd
*/
UChar32 UnicodeSet::getRangeStart(int32_t index) const {
return list[index*2];
}
/**
* Iteration method that returns the last character in the
* specified range of this set.
* @see #getRangeStart
* @see #getRangeEnd
*/
UChar32 UnicodeSet::getRangeEnd(int32_t index) const {
return list[index*2 + 1] - 1;
}
int32_t UnicodeSet::getStringCount() const {
return strings->size();
}
const UnicodeString* UnicodeSet::getString(int32_t index) const {
return (const UnicodeString*) strings->elementAt(index);
}
/**
* Reallocate this objects internal structures to take up the least
* possible space, without changing this object's value.
*/
UnicodeSet& UnicodeSet::compact() {
if (len != capacity) {
capacity = len;
UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
uprv_memcpy(temp, list, len*sizeof(UChar32));
uprv_free(list);
list = temp;
}
uprv_free(buffer);
buffer = NULL;
return *this;
}
int32_t UnicodeSet::serialize(uint16_t *dest, int32_t destCapacity, UErrorCode& ec) const {
int32_t bmpLength, length, destLength;
if (U_FAILURE(ec)) {
return 0;
}
if (destCapacity<0 || (destCapacity>0 && dest==NULL)) {
ec=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* count necessary 16-bit units */
length=this->len-1; // Subtract 1 to ignore final UNICODESET_HIGH
// assert(length>=0);
if (length==0) {
/* empty set */
if (destCapacity>0) {
*dest=0;
} else {
ec=U_BUFFER_OVERFLOW_ERROR;
}
return 1;
}
/* now length>0 */
if (this->list[length-1]<=0xffff) {
/* all BMP */
bmpLength=length;
} else if (this->list[0]>=0x10000) {
/* all supplementary */
bmpLength=0;
length*=2;
} else {
/* some BMP, some supplementary */
for (bmpLength=0; bmpLength<length && this->list[bmpLength]<=0xffff; ++bmpLength) {}
length=bmpLength+2*(length-bmpLength);
}
/* length: number of 16-bit array units */
if (length>0x7fff) {
/* there are only 15 bits for the length in the first serialized word */
ec=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/*
* total serialized length:
* number of 16-bit array units (length) +
* 1 length unit (always) +
* 1 bmpLength unit (if there are supplementary values)
*/
destLength=length+((length>bmpLength)?2:1);
if (destLength<=destCapacity) {
const UChar32 *p;
int32_t i;
*dest=(uint16_t)length;
if (length>bmpLength) {
*dest|=0x8000;
*++dest=(uint16_t)bmpLength;
}
++dest;
/* write the BMP part of the array */
p=this->list;
for (i=0; i<bmpLength; ++i) {
*dest++=(uint16_t)*p++;
}
/* write the supplementary part of the array */
for (; i<length; i+=2) {
*dest++=(uint16_t)(*p>>16);
*dest++=(uint16_t)*p++;
}
} else {
ec=U_BUFFER_OVERFLOW_ERROR;
}
return destLength;
}
//----------------------------------------------------------------
// Implementation: Pattern parsing
//----------------------------------------------------------------
/**
* Parses the given pattern, starting at the given position. The
* character at pattern.charAt(pos.getIndex()) must be '[', or the
* parse fails. Parsing continues until the corresponding closing
* ']'. If a syntax error is encountered between the opening and
* closing brace, the parse fails. Upon return from a successful
* parse, the ParsePosition is updated to point to the character
* following the closing ']', and a StringBuffer containing a
* pairs list for the parsed pattern is returned. This method calls
* itself recursively to parse embedded subpatterns.
*
* @param pattern the string containing the pattern to be parsed.
* The portion of the string from pos.getIndex(), which must be a
* '[', to the corresponding closing ']', is parsed.
* @param pos upon entry, the position at which to being parsing.
* The character at pattern.charAt(pos.getIndex()) must be a '['.
* Upon return from a U_SUCCESSful parse, pos.getIndex() is either
* the character after the closing ']' of the parsed pattern, or
* pattern.length() if the closing ']' is the last character of
* the pattern string.
* @return a StringBuffer containing a pairs list for the parsed
* substring of <code>pattern</code>
* @exception IllegalArgumentException if the parse fails.
*/
void UnicodeSet::applyPattern(const UnicodeString& pattern,
ParsePosition& pos,
const SymbolTable* symbols,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
// Need to build the pattern in a temporary string because
// _applyPattern calls add() etc., which set pat to empty.
UnicodeString rebuiltPat;
_applyPattern(pattern, pos, symbols, rebuiltPat, status);
pat = rebuiltPat;
}
void UnicodeSet::_applyPattern(const UnicodeString& pattern,
ParsePosition& pos,
const SymbolTable* symbols,
UnicodeString& rebuiltPat,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
// If the pattern contains any of the following, we save a
// rebuilt (variable-substituted) copy of the source pattern:
// - a category
// - an intersection or subtraction operator
// - an anchor (trailing '$', indicating RBT ether)
UBool rebuildPattern = FALSE;
UnicodeString newPat(SET_OPEN);
int32_t nestedPatStart = - 1; // see below for usage
UBool nestedPatDone = FALSE; // see below for usage
UnicodeString multiCharBuffer;
UBool invert = FALSE;
clear();
const UChar32 NONE = (UChar32) -1;
UChar32 lastChar = NONE; // This is either a char (0..10FFFF) or NONE
UBool isLastLiteral = FALSE; // TRUE if lastChar was a literal
UChar lastOp = 0;
/* This loop iterates over the characters in the pattern. We start at
* the position specified by pos. We exit the loop when either a
* matching closing ']' is seen, or we read all characters of the
* pattern. In the latter case an error will be thrown.
*/
/* Pattern syntax:
* pat := '[' '^'? elem* ']'
* elem := a | a '-' a | set | set op set
* set := pat | (a set variable)
* op := '&' | '-'
* a := (a character, possibly defined by a var)
*/
// mode 0: No chars parsed yet; next must be '['
// mode 1: '[' seen; if next is '^' or ':' then special
// mode 2: '[' '^'? seen; parse pattern and close with ']'
// mode 3: '[:' seen; parse category and close with ':]'
// mode 4: ']' seen; parse complete
// mode 5: Top-level property pattern seen
int8_t mode = 0;
int32_t i = pos.getIndex();
int32_t limit = pattern.length();
UnicodeSet nestedAux;
const UnicodeSet* nestedSet; // never owned
UnicodeString scratch;
/* In the case of an embedded SymbolTable variable, we look it up and
* then take characters from the resultant char[] array. These chars
* are subjected to an extra level of lookup in the SymbolTable in case
* they are stand-ins for a nested UnicodeSet. */
const UnicodeString* varValueBuffer = NULL;
int32_t ivarValueBuffer = 0;
int32_t anchor = 0;
UChar32 c;
while (i<limit) {
/* If the next element is a single character, c will be set to it,
* and nestedSet will be null. In this case isLiteral indicates
* whether the character should assume special meaning if it has
* one. If the next element is a nested set, either via a variable
* reference, or via an embedded "[..]" or "[:..:]" pattern, then
* nestedSet will be set to the pairs list for the nested set, and
* c's value should be ignored.
*/
nestedSet = NULL;
UBool isLiteral = FALSE;
if (varValueBuffer != NULL) {
if (ivarValueBuffer < varValueBuffer->length()) {
c = varValueBuffer->char32At(ivarValueBuffer);
ivarValueBuffer += UTF_CHAR_LENGTH(c);
const UnicodeFunctor *m = symbols->lookupMatcher(c); // may be NULL
if (m != NULL && m->getDynamicClassID() != UnicodeSet::getStaticClassID()) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
nestedSet = (UnicodeSet*) m;
nestedPatDone = FALSE;
} else {
varValueBuffer = NULL;
c = pattern.char32At(i);
i += UTF_CHAR_LENGTH(c);
}
} else {
c = pattern.char32At(i);
i += UTF_CHAR_LENGTH(c);
}
if (uprv_isRuleWhiteSpace(c)) {
continue;
}
// Keep track of the count of characters after an alleged anchor
if (anchor > 0) {
++anchor;
}
// Parse the opening '[' and optional following '^'
switch (mode) {
case 0:
if (UnicodePropertySet::resemblesPattern(pattern, i-1)) {
mode = 3;
break; // Fall through
} else if (c == SET_OPEN) {
mode = 1; // Next look for '^' or ':'
continue;
} else {
// throw new IllegalArgumentException("Missing opening '['");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
case 1:
mode = 2;
switch (c) {
case COMPLEMENT:
invert = TRUE;
newPat.append(c);
continue; // Back to top to fetch next character
case HYPHEN:
isLiteral = TRUE; // Treat leading '-' as a literal
break; // Fall through
}
// else fall through and parse this character normally
}
// After opening matter is parsed ("[", "[^", or "[:"), the mode
// will be 2 if we want a closing ']', or 3 if we should parse a
// category and close with ":]".
// Only process escapes, variable references, and nested sets
// if we are _not_ retrieving characters from the variable
// buffer. Characters in the variable buffer have already
// benn through escape and variable reference processing.
if (varValueBuffer == NULL) {
/**
* Handle property set patterns.
*/
if (UnicodePropertySet::resemblesPattern(pattern, i-1)) {
ParsePosition pp(i-1);
UnicodeSet *s = UnicodePropertySet::createFromPattern(pattern, pp, status);
if (s == NULL) {
// assert(pp.getIndex() == i-1);
//throw new IllegalArgumentException("Invalid property pattern " +
// pattern.substring(i-1));
status = U_INVALID_PROPERTY_PATTERN;
return;
}
// TODO This is very inefficient. We create a new UnicodeSet,
// then do an assignment, then delete it. Clean this up in
// the future so that either (1) we just use the new set
// directly, and delete it when we're done, or (2) even better,
// UnicodePropertySet takes an existing set.
nestedAux = *s;
delete s;
nestedSet = &nestedAux;
nestedPatStart = newPat.length();
nestedPatDone = TRUE; // we're going to do it just below
switch (lastOp) {
case HYPHEN:
case INTERSECTION:
newPat.append(lastOp);
break;
}
// If we have a top-level property pattern, then trim
// off the opening '[' and use the property pattern
// as the entire pattern.
if (mode == 3) {
newPat.truncate(0);
}
UnicodeString str;
pattern.extractBetween(i-1, pp.getIndex(), str);
newPat.append(str);
rebuildPattern = TRUE;
i = pp.getIndex(); // advance past property pattern
if (mode == 3) {
// Entire pattern is a category; leave parse
// loop. This is one of 2 ways we leave this
// loop if the pattern is well-formed.
*this = nestedAux;
mode = 5;
break;
}
}
/* Handle escapes. If a character is escaped, then it assumes its
* literal value. This is true for all characters, both special
* characters and characters with no special meaning. We also
* interpret '\\uxxxx' Unicode escapes here (as literals).
*/
else if (c == BACKSLASH) {
UChar32 escaped = pattern.unescapeAt(i);
if (escaped == (UChar32) -1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
isLiteral = TRUE;
c = escaped;
}
/* Parse variable references. These are treated as literals. If a
* variable refers to a UnicodeSet, its stand in character is
* returned in the UChar[] buffer.
* Variable names are only parsed if varNameToChar is not null.
* Set variables are only looked up if varCharToSet is not null.
*/
else if (symbols != NULL && !isLiteral && c == SymbolTable::SYMBOL_REF) {
pos.setIndex(i);
UnicodeString name = symbols->parseReference(pattern, pos, limit);
if (name.length() != 0) {
varValueBuffer = symbols->lookup(name);
if (varValueBuffer == NULL) {
//throw new IllegalArgumentException("Undefined variable: "
// + name);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
ivarValueBuffer = 0;
i = pos.getIndex(); // Make i point PAST last char of var name
} else {
// Got a null; this means we have an isolated $.
// Tentatively assume this is an anchor.
anchor = 1;
}
continue; // Back to the top to get varValueBuffer[0]
}
/* An opening bracket indicates the first bracket of a nested
* subpattern.
*/
else if (!isLiteral && c == SET_OPEN) {
// Record position before nested pattern
nestedPatStart = newPat.length();
// Recurse to get the pairs for this nested set.
// Backup i to '['.
pos.setIndex(--i);
switch (lastOp) {
case HYPHEN:
case INTERSECTION:
newPat.append(lastOp);
break;
}
nestedAux._applyPattern(pattern, pos, symbols, newPat, status);
nestedSet = &nestedAux;
nestedPatDone = TRUE;
if (U_FAILURE(status)) {
return;
}
i = pos.getIndex();
}
else if (!isLiteral && c == OPEN_BRACE) {
// start of a string. find the rest.
int32_t length = 0;
int32_t st = i;
multiCharBuffer.truncate(0);
while (i < pattern.length()) {
UChar32 ch = pattern.char32At(i);
i += UTF_CHAR_LENGTH(ch);
if (ch == CLOSE_BRACE) {
length = -length; // signal that we saw '}'
break;
} else if (ch == BACKSLASH) {
ch = pattern.unescapeAt(i);
if (ch == (UChar32) -1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
}
--length; // sic; see above
multiCharBuffer.append(ch);
}
if (length < 1) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// We have new string. Add it to set and continue;
// we don't need to drop through to the further
// processing
add(multiCharBuffer);
pattern.extractBetween(st, i, multiCharBuffer);
newPat.append(OPEN_BRACE).append(multiCharBuffer);
rebuildPattern = TRUE;
continue;
}
}
/* At this point we have either a character c, or a nested set. If
* we have encountered a nested set, either embedded in the pattern,
* or as a variable, we have a non-null nestedSet, and c should be
* ignored. Otherwise c is the current character, and isLiteral
* indicates whether it is an escaped literal (or variable) or a
* normal unescaped character. Unescaped characters '-', '&', and
* ']' have special meanings.
*/
if (nestedSet != NULL) {
if (lastChar != NONE) {
if (lastOp != 0) {
// throw new IllegalArgumentException("Illegal rhs for " + lastChar + lastOp);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
add(lastChar, lastChar);
if (nestedPatDone) {
// If there was a character before the nested set,
// then we need to insert it in newPat before the
// pattern for the nested set. This position was
// recorded in nestedPatStart.
UnicodeString s;
_appendToPat(s, lastChar, FALSE);
newPat.insert(nestedPatStart, s);
} else {
_appendToPat(newPat, lastChar, FALSE);
}
lastChar = NONE;
}
switch (lastOp) {
case HYPHEN:
removeAll(*nestedSet);
break;
case INTERSECTION:
retainAll(*nestedSet);
break;
case 0:
addAll(*nestedSet);
break;
}
// Get the pattern for the nested set, if we haven't done so
// already.
if (!nestedPatDone) {
if (lastOp != 0) {
newPat.append(lastOp);
}
nestedSet->_toPattern(newPat, FALSE);
}
rebuildPattern = TRUE;
lastOp = 0;
} else if (!isLiteral && c == SET_CLOSE) {
// Final closing delimiter. This is one of 2 ways we
// leave this loop if the pattern is well-formed.
if (anchor > 2 || anchor == 1) {
//throw new IllegalArgumentException("Syntax error near $" + pattern);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (anchor == 2) {
rebuildPattern = TRUE;
newPat.append((UChar)SymbolTable::SYMBOL_REF);
add(U_ETHER);
}
mode = 4;
break;
} else if (lastOp == 0 && !isLiteral && (c == HYPHEN || c == INTERSECTION)) {
// assert(c <= 0xFFFF);
lastOp = (UChar) c;
} else if (lastOp == HYPHEN) {
if (lastChar >= c) {
// Don't allow redundant (a-a) or empty (b-a) ranges;
// these are most likely typos.
//throw new IllegalArgumentException("Invalid range " + lastChar +
// '-' + c);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
add(lastChar, c);
_appendToPat(newPat, lastChar, FALSE);
newPat.append(HYPHEN);
_appendToPat(newPat, c, FALSE);
lastOp = 0;
lastChar = NONE;
} else if (lastOp != 0) {
// We have <set>&<char> or <char>&<char>
// throw new IllegalArgumentException("Unquoted " + lastOp);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
} else {
if (lastChar != NONE) {
// We have <char><char>
add(lastChar, lastChar);
_appendToPat(newPat, lastChar, FALSE);
}
lastChar = c;
isLastLiteral = isLiteral;
}
}
if (mode < 4) {
// throw new IllegalArgumentException("Missing ']'");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// Treat a trailing '$' as indicating U_ETHER. This code is only
// executed if symbols == NULL; otherwise other code parses the
// anchor.
if (lastChar == (UChar)SymbolTable::SYMBOL_REF && !isLastLiteral) {
rebuildPattern = TRUE;
newPat.append(lastChar);
add(U_ETHER);
}
else if (lastChar != NONE) {
add(lastChar, lastChar);
_appendToPat(newPat, lastChar, FALSE);
}
// Handle unprocessed stuff preceding the closing ']'
if (lastOp == HYPHEN) {
// Trailing '-' is treated as literal
add(lastOp, lastOp);
newPat.append(HYPHEN);
} else if (lastOp == INTERSECTION) {
// throw new IllegalArgumentException("Unquoted trailing " + lastOp);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (mode == 4) {
newPat.append(SET_CLOSE);
}
/**
* If we saw a '^' after the initial '[' of this pattern, then perform
* the complement. (Inversion after '[:' is handled elsewhere.)
*/
if (invert) {
complement();
}
pos.setIndex(i);
// Use the rebuilt pattern (newPat) only if necessary. Prefer the
// generated pattern.
if (rebuildPattern) {
rebuiltPat.append(newPat);
} else {
_generatePattern(rebuiltPat, FALSE);
}
}
//----------------------------------------------------------------
// Implementation: Utility methods
//----------------------------------------------------------------
/**
* Allocate our strings vector and return TRUE if successful.
*/
UBool UnicodeSet::allocateStrings() {
UErrorCode ec = U_ZERO_ERROR;
strings = new UVector(uhash_deleteUnicodeString,
uhash_compareUnicodeString, ec);
if (U_FAILURE(ec)) {
delete strings;
strings = NULL;
return FALSE;
}
return TRUE;
}
void UnicodeSet::ensureCapacity(int32_t newLen) {
if (newLen <= capacity)
return;
capacity = newLen + GROW_EXTRA;
UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
uprv_memcpy(temp, list, len*sizeof(UChar32));
uprv_free(list);
list = temp;
}
void UnicodeSet::ensureBufferCapacity(int32_t newLen) {
if (buffer != NULL && newLen <= bufferCapacity)
return;
uprv_free(buffer);
bufferCapacity = newLen + GROW_EXTRA;
buffer = (UChar32*) uprv_malloc(sizeof(UChar32) * bufferCapacity);
}
/**
* Swap list and buffer.
*/
void UnicodeSet::swapBuffers(void) {
// swap list and buffer
UChar32* temp = list;
list = buffer;
buffer = temp;
int32_t c = capacity;
capacity = bufferCapacity;
bufferCapacity = c;
}
//----------------------------------------------------------------
// Implementation: Fundamental operators
//----------------------------------------------------------------
static inline UChar32 max(UChar32 a, UChar32 b) {
return (a > b) ? a : b;
}
// polarity = 0, 3 is normal: x xor y
// polarity = 1, 2: x xor ~y == x === y
void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) {
ensureBufferCapacity(len + otherLen);
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b;
if (polarity == 1 || polarity == 2) {
b = UNICODESET_LOW;
if (other[j] == UNICODESET_LOW) { // skip base if already LOW
++j;
b = other[j];
}
} else {
b = other[j++];
}
// simplest of all the routines
// sort the values, discarding identicals!
for (;;) {
if (a < b) {
buffer[k++] = a;
a = list[i++];
} else if (b < a) {
buffer[k++] = b;
b = other[j++];
} else if (a != UNICODESET_HIGH) { // at this point, a == b
// discard both values!
a = list[i++];
b = other[j++];
} else { // DONE!
buffer[k++] = UNICODESET_HIGH;
len = k;
break;
}
}
swapBuffers();
pat.truncate(0);
}
// polarity = 0 is normal: x union y
// polarity = 2: x union ~y
// polarity = 1: ~x union y
// polarity = 3: ~x union ~y
void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) {
ensureBufferCapacity(len + otherLen);
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
for (;;) {
switch (polarity) {
case 0: // both first; take lower if unequal
if (a < b) { // take a
// Back up over overlapping ranges in buffer[]
if (k > 0 && a <= buffer[k-1]) {
// Pick latter end value in buffer[] vs. list[]
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++; // Common if/else code factored out
polarity ^= 1;
} else if (b < a) { // take b
if (k > 0 && b <= buffer[k-1]) {
b = max(other[j], buffer[--k]);
} else {
buffer[k++] = b;
b = other[j];
}
j++;
polarity ^= 2;
} else { // a == b, take a, drop b
if (a == UNICODESET_HIGH) goto loop_end;
// This is symmetrical; it doesn't matter if
// we backtrack with a or b. - liu
if (k > 0 && a <= buffer[k-1]) {
a = max(list[i], buffer[--k]);
} else {
// No overlap
buffer[k++] = a;
a = list[i];
}
i++;
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 3: // both second; take higher if unequal, and drop other
if (b <= a) { // take a
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
} else { // take b
if (b == UNICODESET_HIGH) goto loop_end;
buffer[k++] = b;
}
a = list[i++];
polarity ^= 1; // factored common code
b = other[j++];
polarity ^= 2;
break;
case 1: // a second, b first; if b < a, overlap
if (a < b) { // no overlap, take a
buffer[k++] = a; a = list[i++]; polarity ^= 1;
} else if (b < a) { // OVERLAP, drop b
b = other[j++];
polarity ^= 2;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else if (a < b) { // OVERLAP, drop a
a = list[i++];
polarity ^= 1;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
}
}
loop_end:
buffer[k++] = UNICODESET_HIGH; // terminate
len = k;
swapBuffers();
pat.truncate(0);
}
// polarity = 0 is normal: x intersect y
// polarity = 2: x intersect ~y == set-minus
// polarity = 1: ~x intersect y
// polarity = 3: ~x intersect ~y
void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) {
ensureBufferCapacity(len + otherLen);
int32_t i = 0, j = 0, k = 0;
UChar32 a = list[i++];
UChar32 b = other[j++];
// change from xor is that we have to check overlapping pairs
// polarity bit 1 means a is second, bit 2 means b is.
for (;;) {
switch (polarity) {
case 0: // both first; drop the smaller
if (a < b) { // drop a
a = list[i++];
polarity ^= 1;
} else if (b < a) { // drop b
b = other[j++];
polarity ^= 2;
} else { // a == b, take one, drop other
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 3: // both second; take lower if unequal
if (a < b) { // take a
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
} else if (b < a) { // take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else { // a == b, take one, drop other
if (a == UNICODESET_HIGH) goto loop_end;
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 1: // a second, b first;
if (a < b) { // NO OVERLAP, drop a
a = list[i++];
polarity ^= 1;
} else if (b < a) { // OVERLAP, take b
buffer[k++] = b;
b = other[j++];
polarity ^= 2;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
case 2: // a first, b second; if a < b, overlap
if (b < a) { // no overlap, drop b
b = other[j++];
polarity ^= 2;
} else if (a < b) { // OVERLAP, take a
buffer[k++] = a;
a = list[i++];
polarity ^= 1;
} else { // a == b, drop both!
if (a == UNICODESET_HIGH) goto loop_end;
a = list[i++];
polarity ^= 1;
b = other[j++];
polarity ^= 2;
}
break;
}
}
loop_end:
buffer[k++] = UNICODESET_HIGH; // terminate
len = k;
swapBuffers();
pat.truncate(0);
}
U_NAMESPACE_END