2001-10-10 21:43:11 +00:00
|
|
|
/*
|
2001-10-11 16:56:24 +00:00
|
|
|
******************************************************************************
|
|
|
|
* Copyright (C) 1997-2001, International Business Machines
|
|
|
|
* Corporation and others. All Rights Reserved.
|
|
|
|
******************************************************************************
|
|
|
|
* file name: nfrule.cpp
|
|
|
|
* encoding: US-ASCII
|
|
|
|
* tab size: 8 (not used)
|
|
|
|
* indentation:4
|
|
|
|
*
|
|
|
|
* Modification history
|
|
|
|
* Date Name Comments
|
|
|
|
* 10/11/2001 Doug Ported from ICU4J
|
2001-10-10 21:43:11 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include "nfrule.h"
|
|
|
|
|
|
|
|
#include "unicode/rbnf.h"
|
|
|
|
#include "unicode/tblcoll.h"
|
|
|
|
#include "unicode/coleitr.h"
|
2001-11-30 00:06:13 +00:00
|
|
|
#include "unicode/uchar.h"
|
2001-10-10 21:43:11 +00:00
|
|
|
#include "nfrs.h"
|
|
|
|
#include "nfrlist.h"
|
|
|
|
#include "nfsubs.h"
|
|
|
|
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
extern const UChar* CSleftBracket;
|
|
|
|
extern const UChar* CSrightBracket;
|
|
|
|
|
|
|
|
NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
|
|
|
|
: baseValue((int32_t)0)
|
|
|
|
, radix(0)
|
|
|
|
, exponent(0)
|
|
|
|
, ruleText()
|
|
|
|
, sub1(NULL)
|
|
|
|
, sub2(NULL)
|
|
|
|
, formatter(_rbnf)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
NFRule::~NFRule()
|
|
|
|
{
|
|
|
|
delete sub1;
|
|
|
|
delete sub2;
|
|
|
|
}
|
|
|
|
|
2001-10-11 16:56:24 +00:00
|
|
|
static const UChar gLeftBracket = 0x005b;
|
|
|
|
static const UChar gRightBracket = 0x005d;
|
|
|
|
static const UChar gColon = 0x003a;
|
|
|
|
static const UChar gZero = 0x0030;
|
|
|
|
static const UChar gNine = 0x0039;
|
|
|
|
static const UChar gSpace = 0x0020;
|
|
|
|
static const UChar gSlash = 0x002f;
|
|
|
|
static const UChar gGreaterThan = 0x003e;
|
|
|
|
static const UChar gComma = 0x002c;
|
|
|
|
static const UChar gDot = 0x002e;
|
|
|
|
static const UChar gTick = 0x0027;
|
|
|
|
static const UChar gMinus = 0x002d;
|
|
|
|
static const UChar gSemicolon = 0x003b;
|
|
|
|
|
|
|
|
static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
|
|
|
|
static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
|
|
|
|
static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
|
|
|
|
static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
|
|
|
|
|
|
|
|
static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
|
|
|
|
static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
|
|
|
|
static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
|
|
|
|
static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
|
|
|
|
static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
|
|
|
|
static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
|
|
|
|
static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
|
|
|
|
static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
|
|
|
|
static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
|
|
|
|
static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
|
|
|
|
static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
|
|
|
|
static const UChar gEmptyString[] = {0}; /* "" */
|
|
|
|
static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
|
|
|
|
|
|
|
|
static const UChar * const tokenStrings[] = {
|
2001-10-11 21:41:11 +00:00
|
|
|
gLessLess, gLessPercent, gLessHash, gLessZero,
|
|
|
|
gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
|
|
|
|
gEqualPercent, gEqualHash, gEqualZero, NULL
|
2001-10-10 21:43:11 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
void
|
|
|
|
NFRule::makeRules(UnicodeString& description,
|
|
|
|
const NFRuleSet *ruleSet,
|
|
|
|
const NFRule *predecessor,
|
|
|
|
const RuleBasedNumberFormat *rbnf,
|
|
|
|
NFRuleList& rules,
|
|
|
|
UErrorCode& status)
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// we know we're making at least one rule, so go ahead and
|
|
|
|
// new it up and initialize its basevalue and divisor
|
|
|
|
// (this also strips the rule descriptor, if any, off the
|
|
|
|
// descripton string)
|
|
|
|
NFRule* rule1 = new NFRule(rbnf);
|
|
|
|
rule1->parseRuleDescriptor(description, status);
|
|
|
|
|
|
|
|
// check the description to see whether there's text enclosed
|
|
|
|
// in brackets
|
|
|
|
int32_t brack1 = description.indexOf(gLeftBracket);
|
|
|
|
int32_t brack2 = description.indexOf(gRightBracket);
|
|
|
|
|
|
|
|
// if the description doesn't contain a matched pair of brackets,
|
|
|
|
// or if it's of a type that doesn't recognize bracketed text,
|
|
|
|
// then leave the description alone, initialize the rule's
|
|
|
|
// rule text and substitutions, and return that rule
|
|
|
|
if (brack1 == -1 || brack2 == -1 || brack1 > brack2
|
|
|
|
|| rule1->getType() == kProperFractionRule
|
|
|
|
|| rule1->getType() == kNegativeNumberRule) {
|
|
|
|
rule1->ruleText = description;
|
|
|
|
rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
|
|
|
|
rules.add(rule1);
|
|
|
|
} else {
|
|
|
|
// if the description does contain a matched pair of brackets,
|
|
|
|
// then it's really shorthand for two rules (with one exception)
|
|
|
|
NFRule* rule2 = NULL;
|
|
|
|
UnicodeString sbuf;
|
|
|
|
|
|
|
|
// we'll actually only split the rule into two rules if its
|
|
|
|
// base value is an even multiple of its divisor (or it's one
|
|
|
|
// of the special rules)
|
|
|
|
if ((rule1->baseValue > 0
|
2001-10-23 00:38:12 +00:00
|
|
|
&& (rule1->baseValue % ((llong)rule1->radix).pow((int32_t)rule1->exponent)) == 0)
|
2001-10-11 16:56:24 +00:00
|
|
|
|| rule1->getType() == kImproperFractionRule
|
|
|
|
|| rule1->getType() == kMasterRule) {
|
|
|
|
|
|
|
|
// if it passes that test, new up the second rule. If the
|
|
|
|
// rule set both rules will belong to is a fraction rule
|
|
|
|
// set, they both have the same base value; otherwise,
|
|
|
|
// increment the original rule's base value ("rule1" actually
|
|
|
|
// goes SECOND in the rule set's rule list)
|
|
|
|
rule2 = new NFRule(rbnf);
|
|
|
|
if (rule1->baseValue >= 0) {
|
|
|
|
rule2->baseValue = rule1->baseValue;
|
|
|
|
if (!ruleSet->isFractionRuleSet()) {
|
|
|
|
++rule1->baseValue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if the description began with "x.x" and contains bracketed
|
|
|
|
// text, it describes both the improper fraction rule and
|
|
|
|
// the proper fraction rule
|
|
|
|
else if (rule1->getType() == kImproperFractionRule) {
|
|
|
|
rule2->setType(kProperFractionRule);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if the description began with "x.0" and contains bracketed
|
|
|
|
// text, it describes both the master rule and the
|
|
|
|
// improper fraction rule
|
|
|
|
else if (rule1->getType() == kMasterRule) {
|
|
|
|
rule2->baseValue = rule1->baseValue;
|
|
|
|
rule1->setType(kImproperFractionRule);
|
|
|
|
}
|
|
|
|
|
|
|
|
// both rules have the same radix and exponent (i.e., the
|
|
|
|
// same divisor)
|
|
|
|
rule2->radix = rule1->radix;
|
|
|
|
rule2->exponent = rule1->exponent;
|
|
|
|
|
|
|
|
// rule2's rule text omits the stuff in brackets: initalize
|
|
|
|
// its rule text and substitutions accordingly
|
|
|
|
sbuf.append(description, 0, brack1);
|
|
|
|
if (brack2 + 1 < description.length()) {
|
|
|
|
sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
|
|
|
|
}
|
|
|
|
rule2->ruleText.setTo(sbuf);
|
|
|
|
rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
// rule1's text includes the text in the brackets but omits
|
|
|
|
// the brackets themselves: initialize _its_ rule text and
|
|
|
|
// substitutions accordingly
|
|
|
|
sbuf.setTo(description, 0, brack1);
|
|
|
|
sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
|
|
|
|
if (brack2 + 1 < description.length()) {
|
|
|
|
sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
|
|
|
|
}
|
|
|
|
rule1->ruleText.setTo(sbuf);
|
|
|
|
rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
|
|
|
|
|
|
|
|
// if we only have one rule, return it; if we have two, return
|
|
|
|
// a two-element array containing them (notice that rule2 goes
|
|
|
|
// BEFORE rule1 in the list: in all cases, rule2 OMITS the
|
|
|
|
// material in the brackets and rule1 INCLUDES the material
|
|
|
|
// in the brackets)
|
|
|
|
if (rule2 != NULL) {
|
|
|
|
rules.add(rule2);
|
|
|
|
}
|
|
|
|
rules.add(rule1);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2001-10-11 16:56:24 +00:00
|
|
|
* This function parses the rule's rule descriptor (i.e., the base
|
|
|
|
* value and/or other tokens that precede the rule's rule text
|
|
|
|
* in the description) and sets the rule's base value, radix, and
|
|
|
|
* exponent according to the descriptor. (If the description doesn't
|
|
|
|
* include a rule descriptor, then this function sets everything to
|
|
|
|
* default values and the rule set sets the rule's real base value).
|
|
|
|
* @param description The rule's description
|
|
|
|
* @return If "description" included a rule descriptor, this is
|
|
|
|
* "description" with the descriptor and any trailing whitespace
|
|
|
|
* stripped off. Otherwise; it's "descriptor" unchangd.
|
|
|
|
*/
|
2001-10-10 21:43:11 +00:00
|
|
|
void
|
|
|
|
NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// the description consists of a rule descriptor and a rule body,
|
|
|
|
// separated by a colon. The rule descriptor is optional. If
|
|
|
|
// it's omitted, just set the base value to 0.
|
|
|
|
int32_t p = description.indexOf(gColon);
|
|
|
|
if (p == -1) {
|
|
|
|
setBaseValue((int32_t)0);
|
|
|
|
} else {
|
|
|
|
// copy the descriptor out into its own string and strip it,
|
|
|
|
// along with any trailing whitespace, out of the original
|
|
|
|
// description
|
|
|
|
UnicodeString descriptor;
|
|
|
|
descriptor.setTo(description, 0, p);
|
|
|
|
|
|
|
|
++p;
|
|
|
|
while (p < description.length() && u_isWhitespace(description.charAt(p))) {
|
|
|
|
++p;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
description.removeBetween(0, p);
|
|
|
|
|
|
|
|
// check first to see if the rule descriptor matches the token
|
|
|
|
// for one of the special rules. If it does, set the base
|
|
|
|
// value to the correct identfier value
|
|
|
|
if (descriptor == gMinusX) {
|
|
|
|
setType(kNegativeNumberRule);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
else if (descriptor == gXDotX) {
|
|
|
|
setType(kImproperFractionRule);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
else if (descriptor == gZeroDotX) {
|
|
|
|
setType(kProperFractionRule);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
else if (descriptor == gXDotZero) {
|
|
|
|
setType(kMasterRule);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
// if the rule descriptor begins with a digit, it's a descriptor
|
|
|
|
// for a normal rule
|
|
|
|
// since we don't have Long.parseLong, and this isn't much work anyway,
|
|
|
|
// just build up the value as we encounter the digits.
|
|
|
|
else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
|
|
|
|
llong val = (int32_t)0;
|
|
|
|
p = 0;
|
|
|
|
UChar c = gSpace;
|
|
|
|
|
|
|
|
// begin parsing the descriptor: copy digits
|
|
|
|
// into "tempValue", skip periods, commas, and spaces,
|
|
|
|
// stop on a slash or > sign (or at the end of the string),
|
|
|
|
// and throw an exception on any other character
|
|
|
|
llong ll_10 = (int32_t)10;
|
|
|
|
while (p < descriptor.length()) {
|
|
|
|
c = descriptor.charAt(p);
|
|
|
|
if (c >= gZero && c <= gNine) {
|
|
|
|
val = val * ll_10 + (int32_t)(c - gZero);
|
|
|
|
}
|
|
|
|
else if (c == gSlash || c == gGreaterThan) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if (u_isWhitespace(c) || c == gComma || c == gDot) {
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// throw new IllegalArgumentException("Illegal character in rule descriptor");
|
|
|
|
status = U_PARSE_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// we have the base value, so set it
|
|
|
|
setBaseValue(val);
|
|
|
|
|
|
|
|
// if we stopped the previous loop on a slash, we're
|
|
|
|
// now parsing the rule's radix. Again, accumulate digits
|
|
|
|
// in tempValue, skip punctuation, stop on a > mark, and
|
|
|
|
// throw an exception on anything else
|
2001-10-29 17:26:01 +00:00
|
|
|
if (c == gSlash) {
|
2001-10-11 16:56:24 +00:00
|
|
|
val = (int32_t)0;
|
|
|
|
++p;
|
|
|
|
llong ll_10 = (int32_t)10;
|
|
|
|
while (p < descriptor.length()) {
|
|
|
|
c = descriptor.charAt(p);
|
|
|
|
if (c >= gZero && c <= gNine) {
|
|
|
|
val = val * ll_10 + (int32_t)(c - gZero);
|
|
|
|
}
|
|
|
|
else if (c == gGreaterThan) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if (u_isWhitespace(c) || c == gComma || c == gDot) {
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// throw new IllegalArgumentException("Illegal character is rule descriptor");
|
|
|
|
status = U_PARSE_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// tempValue now contain's the rule's radix. Set it
|
|
|
|
// accordingly, and recalculate the rule's exponent
|
2001-10-23 00:38:12 +00:00
|
|
|
radix = (int16_t)val.asInt();
|
2001-10-11 16:56:24 +00:00
|
|
|
if (radix == 0) {
|
|
|
|
// throw new IllegalArgumentException("Rule can't have radix of 0");
|
|
|
|
status = U_PARSE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
exponent = expectedExponent();
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we stopped the previous loop on a > sign, then continue
|
|
|
|
// for as long as we still see > signs. For each one,
|
|
|
|
// decrement the exponent (unless the exponent is already 0).
|
|
|
|
// If we see another character before reaching the end of
|
|
|
|
// the descriptor, that's also a syntax error.
|
|
|
|
if (c == gGreaterThan) {
|
|
|
|
while (p < descriptor.length()) {
|
|
|
|
c = descriptor.charAt(p);
|
|
|
|
if (c == gGreaterThan && exponent > 0) {
|
|
|
|
--exponent;
|
|
|
|
} else {
|
|
|
|
// throw new IllegalArgumentException("Illegal character in rule descriptor");
|
|
|
|
status = U_PARSE_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
// finally, if the rule body begins with an apostrophe, strip it off
|
|
|
|
// (this is generally used to put whitespace at the beginning of
|
|
|
|
// a rule's rule text)
|
|
|
|
if (description.length() > 0 && description.charAt(0) == gTick) {
|
|
|
|
description.removeBetween(0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// return the description with all the stuff we've just waded through
|
|
|
|
// stripped off the front. It now contains just the rule body.
|
|
|
|
// return description;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
2001-10-10 21:43:11 +00:00
|
|
|
/**
|
|
|
|
* Searches the rule's rule text for the substitution tokens,
|
|
|
|
* creates the substitutions, and removes the substitution tokens
|
|
|
|
* from the rule's rule text.
|
|
|
|
* @param owner The rule set containing this rule
|
|
|
|
* @param predecessor The rule preseding this one in "owners" rule list
|
|
|
|
* @param ownersOwner The RuleBasedFormat that owns this rule
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
|
|
|
|
const NFRule* predecessor,
|
|
|
|
const RuleBasedNumberFormat* rbnf,
|
2001-10-11 16:56:24 +00:00
|
|
|
UErrorCode& status)
|
2001-10-10 21:43:11 +00:00
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
if (U_SUCCESS(status)) {
|
|
|
|
sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
|
|
|
|
sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Searches the rule's rule text for the first substitution token,
|
|
|
|
* creates a substitution based on it, and removes the token from
|
|
|
|
* the rule's rule text.
|
|
|
|
* @param owner The rule set containing this rule
|
|
|
|
* @param predecessor The rule preceding this one in the rule set's
|
|
|
|
* rule list
|
|
|
|
* @param ownersOwner The RuleBasedNumberFormat that owns this rule
|
|
|
|
* @return The newly-created substitution. This is never null; if
|
|
|
|
* the rule text doesn't contain any substitution tokens, this will
|
|
|
|
* be a NullSubstitution.
|
|
|
|
*/
|
|
|
|
NFSubstitution *
|
|
|
|
NFRule::extractSubstitution(const NFRuleSet* ruleSet,
|
|
|
|
const NFRule* predecessor,
|
|
|
|
const RuleBasedNumberFormat* rbnf,
|
2001-10-11 16:56:24 +00:00
|
|
|
UErrorCode& status)
|
2001-10-10 21:43:11 +00:00
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
NFSubstitution* result = NULL;
|
|
|
|
|
|
|
|
// search the rule's rule text for the first two characters of
|
|
|
|
// a substitution token
|
|
|
|
int32_t subStart = indexOfAny(tokenStrings);
|
|
|
|
int32_t subEnd = subStart;
|
|
|
|
|
|
|
|
// if we didn't find one, create a null substitution positioned
|
|
|
|
// at the end of the rule text
|
|
|
|
if (subStart == -1) {
|
|
|
|
return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
|
|
|
|
ruleSet, rbnf, gEmptyString, status);
|
|
|
|
}
|
|
|
|
|
|
|
|
// special-case the ">>>" token, since searching for the > at the
|
|
|
|
// end will actually find the > in the middle
|
|
|
|
if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
|
|
|
|
subEnd = subStart + 2;
|
|
|
|
|
|
|
|
// otherwise the substitution token ends with the same character
|
|
|
|
// it began with
|
|
|
|
} else {
|
|
|
|
subEnd = ruleText.indexOf(ruleText.charAt(subStart), subStart + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we don't find the end of the token (i.e., if we're on a single,
|
|
|
|
// unmatched token character), create a null substitution positioned
|
|
|
|
// at the end of the rule
|
|
|
|
if (subEnd == -1) {
|
|
|
|
return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
|
|
|
|
ruleSet, rbnf, gEmptyString, status);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we get here, we have a real substitution token (or at least
|
|
|
|
// some text bounded by substitution token characters). Use
|
|
|
|
// makeSubstitution() to create the right kind of substitution
|
|
|
|
UnicodeString subToken;
|
|
|
|
subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
|
|
|
|
result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
|
|
|
|
rbnf, subToken, status);
|
|
|
|
|
|
|
|
// remove the substitution from the rule text
|
|
|
|
ruleText.removeBetween(subStart, subEnd+1);
|
|
|
|
|
|
|
|
return result;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2001-10-11 16:56:24 +00:00
|
|
|
* Sets the rule's base value, and causes the radix and exponent
|
|
|
|
* to be recalculated. This is used during construction when we
|
|
|
|
* don't know the rule's base value until after it's been
|
|
|
|
* constructed. It should be used at any other time.
|
|
|
|
* @param The new base value for the rule.
|
|
|
|
*/
|
2001-10-10 21:43:11 +00:00
|
|
|
void
|
|
|
|
NFRule::setBaseValue(llong newBaseValue)
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// set the base value
|
|
|
|
baseValue = newBaseValue;
|
|
|
|
|
|
|
|
// if this isn't a special rule, recalculate the radix and exponent
|
|
|
|
// (the radix always defaults to 10; if it's supposed to be something
|
|
|
|
// else, it's cleaned up by the caller and the exponent is
|
|
|
|
// recalculated again-- the only function that does this is
|
|
|
|
// NFRule.parseRuleDescriptor() )
|
|
|
|
if (baseValue >= 1) {
|
|
|
|
radix = 10;
|
|
|
|
exponent = expectedExponent();
|
|
|
|
|
|
|
|
// this function gets called on a fully-constructed rule whose
|
|
|
|
// description didn't specify a base value. This means it
|
|
|
|
// has substitutions, and some substitutions hold on to copies
|
|
|
|
// of the rule's divisor. Fix their copies of the divisor.
|
|
|
|
if (sub1 != NULL) {
|
|
|
|
sub1->setDivisor(radix, exponent);
|
|
|
|
}
|
|
|
|
if (sub2 != NULL) {
|
|
|
|
sub2->setDivisor(radix, exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if this is a special rule, its radix and exponent are basically
|
|
|
|
// ignored. Set them to "safe" default values
|
|
|
|
} else {
|
|
|
|
radix = 10;
|
|
|
|
exponent = 0;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This calculates the rule's exponent based on its radix and base
|
|
|
|
* value. This will be the highest power the radix can be raised to
|
|
|
|
* and still produce a result less than or equal to the base value.
|
|
|
|
*/
|
|
|
|
int16_t
|
|
|
|
NFRule::expectedExponent() const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// since the log of 0, or the log base 0 of something, causes an
|
|
|
|
// error, declare the exponent in these cases to be 0 (we also
|
|
|
|
// deal with the special-rule identifiers here)
|
|
|
|
if (radix == 0 || baseValue < 1) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// we get rounding error in some cases-- for example, log 1000 / log 10
|
|
|
|
// gives us 1.9999999996 instead of 2. The extra logic here is to take
|
|
|
|
// that into account
|
2001-10-23 00:38:12 +00:00
|
|
|
int16_t tempResult = (int16_t)(uprv_log(baseValue.asDouble()) / uprv_log((double)radix));
|
|
|
|
llong temp = ((llong)radix).pow(tempResult + 1);
|
2001-10-11 16:56:24 +00:00
|
|
|
if (temp <= baseValue) {
|
|
|
|
tempResult += 1;
|
|
|
|
}
|
|
|
|
return tempResult;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Searches the rule's rule text for any of the specified strings.
|
|
|
|
* @param strings An array of strings to search the rule's rule
|
|
|
|
* text for
|
|
|
|
* @return The index of the first match in the rule's rule text
|
|
|
|
* (i.e., the first substring in the rule's rule text that matches
|
|
|
|
* _any_ of the strings in "strings"). If none of the strings in
|
|
|
|
* "strings" is found in the rule's rule text, returns -1.
|
|
|
|
*/
|
|
|
|
int32_t
|
2001-10-11 16:56:24 +00:00
|
|
|
NFRule::indexOfAny(const UChar* const strings[]) const
|
2001-10-10 21:43:11 +00:00
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
int result = -1;
|
|
|
|
for (int i = 0; strings[i]; i++) {
|
|
|
|
int32_t pos = ruleText.indexOf(*strings[i]);
|
|
|
|
if (pos != -1 && (result == -1 || pos < result)) {
|
|
|
|
result = pos;
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
return result;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------
|
|
|
|
// boilerplate
|
|
|
|
//-----------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Tests two rules for equality.
|
|
|
|
* @param that The rule to compare this one against
|
|
|
|
* @return True is the two rules are functionally equivalent
|
|
|
|
*/
|
|
|
|
UBool
|
|
|
|
NFRule::operator==(const NFRule& rhs) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
return baseValue == rhs.baseValue
|
|
|
|
&& radix == rhs.radix
|
|
|
|
&& exponent == rhs.exponent
|
|
|
|
&& ruleText == rhs.ruleText
|
|
|
|
&& *sub1 == *rhs.sub1
|
|
|
|
&& *sub2 == *rhs.sub2;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
2001-10-12 17:47:17 +00:00
|
|
|
/*
|
2001-10-10 21:43:11 +00:00
|
|
|
static void
|
|
|
|
util_append_llong(UnicodeString& result, const llong& value)
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
llong n(value);
|
|
|
|
|
|
|
|
if (n < 0) {
|
|
|
|
result.append(gMinus);
|
|
|
|
n = -n;
|
|
|
|
}
|
|
|
|
if (n == 0) {
|
|
|
|
result.append(gZero);
|
|
|
|
} else {
|
|
|
|
llong ll_10((int32_t)10);
|
|
|
|
while (n != 0) {
|
|
|
|
llong nn = n / ll_10;
|
|
|
|
result.append((UChar)(gZero + llong_asInt(n - nn * ll_10)));
|
|
|
|
n = nn;
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
2001-10-12 17:47:17 +00:00
|
|
|
*/
|
2001-10-10 21:43:11 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a textual representation of the rule. This won't
|
|
|
|
* necessarily be the same as the description that this rule
|
|
|
|
* was created with, but it will produce the same result.
|
|
|
|
* @return A textual description of the rule
|
|
|
|
*/
|
|
|
|
static void util_append64(UnicodeString& result, const llong& n)
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
UChar buffer[256];
|
2001-11-29 23:47:52 +00:00
|
|
|
int32_t len = n.lltou(buffer, sizeof(buffer));
|
2001-10-11 16:56:24 +00:00
|
|
|
UnicodeString temp(buffer, len);
|
|
|
|
result.append(temp);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
NFRule::appendRuleText(UnicodeString& result) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
switch (getType()) {
|
|
|
|
case kNegativeNumberRule: result.append(gMinusX); break;
|
|
|
|
case kImproperFractionRule: result.append(gXDotX); break;
|
|
|
|
case kProperFractionRule: result.append(gZeroDotX); break;
|
|
|
|
case kMasterRule: result.append(gXDotZero); break;
|
|
|
|
default:
|
|
|
|
// for a normal rule, write out its base value, and if the radix is
|
|
|
|
// something other than 10, write out the radix (with the preceding
|
|
|
|
// slash, of course). Then calculate the expected exponent and if
|
|
|
|
// if isn't the same as the actual exponent, write an appropriate
|
|
|
|
// number of > signs. Finally, terminate the whole thing with
|
|
|
|
// a colon.
|
|
|
|
util_append64(result, baseValue);
|
|
|
|
if (radix != 10) {
|
|
|
|
result.append(gSlash);
|
|
|
|
util_append64(result, radix);
|
|
|
|
}
|
|
|
|
int numCarets = expectedExponent() - exponent;
|
|
|
|
for (int i = 0; i < numCarets; i++) {
|
|
|
|
result.append(gGreaterThan);
|
|
|
|
}
|
|
|
|
break;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
result.append(gColon);
|
|
|
|
result.append(gSpace);
|
|
|
|
|
|
|
|
// if the rule text begins with a space, write an apostrophe
|
|
|
|
// (whitespace after the rule descriptor is ignored; the
|
|
|
|
// apostrophe is used to make the whitespace significant)
|
|
|
|
if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
|
|
|
|
result.append(gTick);
|
|
|
|
}
|
|
|
|
|
|
|
|
// now, write the rule's rule text, inserting appropriate
|
|
|
|
// substitution tokens in the appropriate places
|
|
|
|
UnicodeString ruleTextCopy;
|
|
|
|
ruleTextCopy.setTo(ruleText);
|
|
|
|
|
|
|
|
UnicodeString temp;
|
|
|
|
sub2->toString(temp);
|
|
|
|
ruleTextCopy.insert(sub2->getPos(), temp);
|
|
|
|
sub1->toString(temp);
|
|
|
|
ruleTextCopy.insert(sub1->getPos(), temp);
|
|
|
|
|
|
|
|
result.append(ruleTextCopy);
|
|
|
|
|
|
|
|
// and finally, top the whole thing off with a semicolon and
|
|
|
|
// return the result
|
|
|
|
result.append(gSemicolon);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------
|
|
|
|
// formatting
|
|
|
|
//-----------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Formats the number, and inserts the resulting text into
|
|
|
|
* toInsertInto.
|
|
|
|
* @param number The number being formatted
|
|
|
|
* @param toInsertInto The string where the resultant text should
|
|
|
|
* be inserted
|
|
|
|
* @param pos The position in toInsertInto where the resultant text
|
|
|
|
* should be inserted
|
|
|
|
*/
|
|
|
|
void
|
2001-10-23 00:38:12 +00:00
|
|
|
NFRule::doFormat(const llong &number, UnicodeString& toInsertInto, int32_t pos) const
|
2001-10-10 21:43:11 +00:00
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// first, insert the rule's rule text into toInsertInto at the
|
|
|
|
// specified position, then insert the results of the substitutions
|
|
|
|
// into the right places in toInsertInto (notice we do the
|
|
|
|
// substitutions in reverse order so that the offsets don't get
|
|
|
|
// messed up)
|
|
|
|
toInsertInto.insert(pos, ruleText);
|
|
|
|
sub2->doSubstitution(number, toInsertInto, pos);
|
|
|
|
sub1->doSubstitution(number, toInsertInto, pos);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Formats the number, and inserts the resulting text into
|
|
|
|
* toInsertInto.
|
|
|
|
* @param number The number being formatted
|
|
|
|
* @param toInsertInto The string where the resultant text should
|
|
|
|
* be inserted
|
|
|
|
* @param pos The position in toInsertInto where the resultant text
|
|
|
|
* should be inserted
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// first, insert the rule's rule text into toInsertInto at the
|
|
|
|
// specified position, then insert the results of the substitutions
|
|
|
|
// into the right places in toInsertInto
|
|
|
|
// [again, we have two copies of this routine that do the same thing
|
|
|
|
// so that we don't sacrifice precision in a long by casting it
|
|
|
|
// to a double]
|
|
|
|
toInsertInto.insert(pos, ruleText);
|
|
|
|
sub2->doSubstitution(number, toInsertInto, pos);
|
|
|
|
sub1->doSubstitution(number, toInsertInto, pos);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Used by the owning rule set to determine whether to invoke the
|
|
|
|
* rollback rule (i.e., whether this rule or the one that precedes
|
|
|
|
* it in the rule set's list should be used to format the number)
|
|
|
|
* @param The number being formatted
|
|
|
|
* @return True if the rule set should use the rule that precedes
|
|
|
|
* this one in its list; false if it should use this rule
|
|
|
|
*/
|
|
|
|
UBool
|
|
|
|
NFRule::shouldRollBack(double number) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// we roll back if the rule contains a modulus substitution,
|
|
|
|
// the number being formatted is an even multiple of the rule's
|
|
|
|
// divisor, and the rule's base value is NOT an even multiple
|
|
|
|
// of its divisor
|
|
|
|
// In other words, if the original description had
|
|
|
|
// 100: << hundred[ >>];
|
|
|
|
// that expands into
|
|
|
|
// 100: << hundred;
|
|
|
|
// 101: << hundred >>;
|
|
|
|
// internally. But when we're formatting 200, if we use the rule
|
|
|
|
// at 101, which would normally apply, we get "two hundred zero".
|
|
|
|
// To prevent this, we roll back and use the rule at 100 instead.
|
|
|
|
// This is the logic that makes this happen: the rule at 101 has
|
|
|
|
// a modulus substitution, its base value isn't an even multiple
|
|
|
|
// of 100, and the value we're trying to format _is_ an even
|
|
|
|
// multiple of 100. This is called the "rollback rule."
|
|
|
|
if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
|
2001-10-23 00:38:12 +00:00
|
|
|
llong re = ((llong)radix).pow(exponent);
|
|
|
|
return uprv_fmod(number, re.asDouble()) == 0 && (baseValue % re) != 0;
|
2001-10-11 16:56:24 +00:00
|
|
|
}
|
|
|
|
return FALSE;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------
|
|
|
|
// parsing
|
|
|
|
//-----------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Attempts to parse the string with this rule.
|
|
|
|
* @param text The string being parsed
|
|
|
|
* @param parsePosition On entry, the value is ignored and assumed to
|
|
|
|
* be 0. On exit, this has been updated with the position of the first
|
|
|
|
* character not consumed by matching the text against this rule
|
|
|
|
* (if this rule doesn't match the text at all, the parse position
|
|
|
|
* if left unchanged (presumably at 0) and the function returns
|
|
|
|
* new Long(0)).
|
|
|
|
* @param isFractionRule True if this rule is contained within a
|
|
|
|
* fraction rule set. This is only used if the rule has no
|
|
|
|
* substitutions.
|
|
|
|
* @return If this rule matched the text, this is the rule's base value
|
|
|
|
* combined appropriately with the results of parsing the substitutions.
|
|
|
|
* If nothing matched, this is new Long(0) and the parse position is
|
|
|
|
* left unchanged. The result will be an instance of Long if the
|
|
|
|
* result is an integer and Double otherwise. The result is never null.
|
|
|
|
*/
|
|
|
|
#ifdef RBNF_DEBUG
|
2001-10-24 00:47:46 +00:00
|
|
|
#include <stdio.h>
|
|
|
|
|
2001-10-10 21:43:11 +00:00
|
|
|
static void dumpUS(FILE* f, const UnicodeString& us) {
|
|
|
|
int len = us.length();
|
|
|
|
char* buf = new char[len+1];
|
|
|
|
us.extract(0, len, buf);
|
|
|
|
buf[len] = 0;
|
|
|
|
fprintf(f, "%s", buf);
|
|
|
|
delete[] buf;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
UBool
|
|
|
|
NFRule::doParse(const UnicodeString& text,
|
|
|
|
ParsePosition& parsePosition,
|
|
|
|
UBool isFractionRule,
|
|
|
|
double upperBound,
|
|
|
|
Formattable& resVal) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// internally we operate on a copy of the string being parsed
|
|
|
|
// (because we're going to change it) and use our own ParsePosition
|
|
|
|
ParsePosition pp;
|
|
|
|
UnicodeString workText(text);
|
|
|
|
|
|
|
|
// check to see whether the text before the first substitution
|
|
|
|
// matches the text at the beginning of the string being
|
|
|
|
// parsed. If it does, strip that off the front of workText;
|
|
|
|
// otherwise, dump out with a mismatch
|
|
|
|
UnicodeString prefix;
|
|
|
|
prefix.setTo(ruleText, 0, sub1->getPos());
|
|
|
|
|
2001-10-10 21:43:11 +00:00
|
|
|
#ifdef RBNF_DEBUG
|
2001-10-11 16:56:24 +00:00
|
|
|
fprintf(stderr, "doParse %x ", this);
|
|
|
|
{
|
|
|
|
UnicodeString rt;
|
|
|
|
appendRuleText(rt);
|
|
|
|
dumpUS(stderr, rt);
|
|
|
|
}
|
|
|
|
|
|
|
|
fprintf(stderr, " text: '", this);
|
|
|
|
dumpUS(stderr, text);
|
|
|
|
fprintf(stderr, "' prefix: '");
|
|
|
|
dumpUS(stderr, prefix);
|
2001-10-10 21:43:11 +00:00
|
|
|
#endif
|
2001-10-11 16:56:24 +00:00
|
|
|
stripPrefix(workText, prefix, pp);
|
|
|
|
int32_t prefixLength = text.length() - workText.length();
|
|
|
|
|
2001-10-10 21:43:11 +00:00
|
|
|
#ifdef RBNF_DEBUG
|
2001-10-11 16:56:24 +00:00
|
|
|
fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
|
2001-10-10 21:43:11 +00:00
|
|
|
#endif
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
if (pp.getIndex() == 0 && sub1->getPos() != 0) {
|
|
|
|
// commented out because ParsePosition doesn't have error index in 1.1.x
|
|
|
|
// restored for ICU4C port
|
|
|
|
parsePosition.setErrorIndex(pp.getErrorIndex());
|
|
|
|
resVal.setLong(0);
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// this is the fun part. The basic guts of the rule-matching
|
|
|
|
// logic is matchToDelimiter(), which is called twice. The first
|
|
|
|
// time it searches the input string for the rule text BETWEEN
|
|
|
|
// the substitutions and tries to match the intervening text
|
|
|
|
// in the input string with the first substitution. If that
|
|
|
|
// succeeds, it then calls it again, this time to look for the
|
|
|
|
// rule text after the second substitution and to match the
|
|
|
|
// intervening input text against the second substitution.
|
|
|
|
//
|
|
|
|
// For example, say we have a rule that looks like this:
|
|
|
|
// first << middle >> last;
|
|
|
|
// and input text that looks like this:
|
|
|
|
// first one middle two last
|
|
|
|
// First we use stripPrefix() to match "first " in both places and
|
|
|
|
// strip it off the front, leaving
|
|
|
|
// one middle two last
|
|
|
|
// Then we use matchToDelimiter() to match " middle " and try to
|
|
|
|
// match "one" against a substitution. If it's successful, we now
|
|
|
|
// have
|
|
|
|
// two last
|
|
|
|
// We use matchToDelimiter() a second time to match " last" and
|
|
|
|
// try to match "two" against a substitution. If "two" matches
|
|
|
|
// the substitution, we have a successful parse.
|
|
|
|
//
|
|
|
|
// Since it's possible in many cases to find multiple instances
|
|
|
|
// of each of these pieces of rule text in the input string,
|
|
|
|
// we need to try all the possible combinations of these
|
|
|
|
// locations. This prevents us from prematurely declaring a mismatch,
|
|
|
|
// and makes sure we match as much input text as we can.
|
|
|
|
int highWaterMark = 0;
|
|
|
|
double result = 0;
|
|
|
|
int start = 0;
|
2001-10-23 00:38:12 +00:00
|
|
|
double tempBaseValue = (baseValue <= 0) ? 0 : baseValue.asDouble();
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
UnicodeString temp;
|
|
|
|
do {
|
|
|
|
// our partial parse result starts out as this rule's base
|
|
|
|
// value. If it finds a successful match, matchToDelimiter()
|
|
|
|
// will compose this in some way with what it gets back from
|
|
|
|
// the substitution, giving us a new partial parse result
|
|
|
|
pp.setIndex(0);
|
|
|
|
|
|
|
|
temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
|
|
|
|
double partialResult = matchToDelimiter(workText, start, tempBaseValue,
|
|
|
|
temp, pp, sub1,
|
|
|
|
upperBound);
|
|
|
|
|
|
|
|
// if we got a successful match (or were trying to match a
|
|
|
|
// null substitution), pp is now pointing at the first unmatched
|
|
|
|
// character. Take note of that, and try matchToDelimiter()
|
|
|
|
// on the input text again
|
|
|
|
if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
|
|
|
|
start = pp.getIndex();
|
|
|
|
|
|
|
|
UnicodeString workText2;
|
|
|
|
workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
|
|
|
|
ParsePosition pp2;
|
|
|
|
|
|
|
|
// the second matchToDelimiter() will compose our previous
|
|
|
|
// partial result with whatever it gets back from its
|
|
|
|
// substitution if there's a successful match, giving us
|
|
|
|
// a real result
|
|
|
|
temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
|
|
|
|
partialResult = matchToDelimiter(workText2, 0, partialResult,
|
|
|
|
temp, pp2, sub2,
|
|
|
|
upperBound);
|
|
|
|
|
|
|
|
// if we got a successful match on this second
|
|
|
|
// matchToDelimiter() call, update the high-water mark
|
|
|
|
// and result (if necessary)
|
|
|
|
if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
|
|
|
|
if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
|
|
|
|
highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
|
|
|
|
result = partialResult;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// commented out because ParsePosition doesn't have error index in 1.1.x
|
|
|
|
// restored for ICU4C port
|
|
|
|
else {
|
|
|
|
int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
|
|
|
|
if (temp> parsePosition.getErrorIndex()) {
|
|
|
|
parsePosition.setErrorIndex(temp);
|
|
|
|
}
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
// commented out because ParsePosition doesn't have error index in 1.1.x
|
|
|
|
// restored for ICU4C port
|
|
|
|
else {
|
|
|
|
int32_t temp = sub1->getPos() + pp.getErrorIndex();
|
|
|
|
if (temp > parsePosition.getErrorIndex()) {
|
|
|
|
parsePosition.setErrorIndex(temp);
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
// keep trying to match things until the outer matchToDelimiter()
|
|
|
|
// call fails to make a match (each time, it picks up where it
|
|
|
|
// left off the previous time)
|
|
|
|
} while (sub1->getPos() != sub2->getPos()
|
|
|
|
&& pp.getIndex() > 0
|
|
|
|
&& pp.getIndex() < workText.length()
|
|
|
|
&& pp.getIndex() != start);
|
|
|
|
|
|
|
|
// update the caller's ParsePosition with our high-water mark
|
|
|
|
// (i.e., it now points at the first character this function
|
|
|
|
// didn't match-- the ParsePosition is therefore unchanged if
|
|
|
|
// we didn't match anything)
|
|
|
|
parsePosition.setIndex(highWaterMark);
|
2001-10-10 21:43:11 +00:00
|
|
|
// commented out because ParsePosition doesn't have error index in 1.1.x
|
|
|
|
// restored for ICU4C port
|
2001-10-11 16:56:24 +00:00
|
|
|
if (highWaterMark > 0) {
|
|
|
|
parsePosition.setErrorIndex(0);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
// this is a hack for one unusual condition: Normally, whether this
|
|
|
|
// rule belong to a fraction rule set or not is handled by its
|
|
|
|
// substitutions. But if that rule HAS NO substitutions, then
|
|
|
|
// we have to account for it here. By definition, if the matching
|
|
|
|
// rule in a fraction rule set has no substitutions, its numerator
|
|
|
|
// is 1, and so the result is the reciprocal of its base value.
|
|
|
|
if (isFractionRule &&
|
|
|
|
highWaterMark > 0 &&
|
|
|
|
sub1->isNullSubstitution()) {
|
|
|
|
result = 1 / result;
|
|
|
|
}
|
|
|
|
|
|
|
|
resVal.setDouble(result);
|
|
|
|
return TRUE; // ??? do we need to worry if it is a long or a double?
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This function is used by parse() to match the text being parsed
|
|
|
|
* against a possible prefix string. This function
|
|
|
|
* matches characters from the beginning of the string being parsed
|
|
|
|
* to characters from the prospective prefix. If they match, pp is
|
|
|
|
* updated to the first character not matched, and the result is
|
|
|
|
* the unparsed part of the string. If they don't match, the whole
|
|
|
|
* string is returned, and pp is left unchanged.
|
|
|
|
* @param text The string being parsed
|
|
|
|
* @param prefix The text to match against
|
|
|
|
* @param pp On entry, ignored and assumed to be 0. On exit, points
|
|
|
|
* to the first unmatched character (assuming the whole prefix matched),
|
|
|
|
* or is unchanged (if the whole prefix didn't match).
|
|
|
|
* @return If things match, this is the unparsed part of "text";
|
|
|
|
* if they didn't match, this is "text".
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// if the prefix text is empty, dump out without doing anything
|
|
|
|
if (prefix.length() != 0) {
|
|
|
|
// use prefixLength() to match the beginning of
|
|
|
|
// "text" against "prefix". This function returns the
|
|
|
|
// number of characters from "text" that matched (or 0 if
|
|
|
|
// we didn't match the whole prefix)
|
|
|
|
int32_t pfl = prefixLength(text, prefix);
|
|
|
|
if (pfl != 0) {
|
|
|
|
// if we got a successful match, update the parse position
|
|
|
|
// and strip the prefix off of "text"
|
|
|
|
pp.setIndex(pp.getIndex() + pfl);
|
|
|
|
text.remove(0, pfl);
|
|
|
|
}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Used by parse() to match a substitution and any following text.
|
|
|
|
* "text" is searched for instances of "delimiter". For each instance
|
|
|
|
* of delimiter, the intervening text is tested to see whether it
|
|
|
|
* matches the substitution. The longest match wins.
|
|
|
|
* @param text The string being parsed
|
|
|
|
* @param startPos The position in "text" where we should start looking
|
|
|
|
* for "delimiter".
|
|
|
|
* @param baseValue A partial parse result (often the rule's base value),
|
|
|
|
* which is combined with the result from matching the substitution
|
|
|
|
* @param delimiter The string to search "text" for.
|
|
|
|
* @param pp Ignored and presumed to be 0 on entry. If there's a match,
|
|
|
|
* on exit this will point to the first unmatched character.
|
|
|
|
* @param sub If we find "delimiter" in "text", this substitution is used
|
|
|
|
* to match the text between the beginning of the string and the
|
|
|
|
* position of "delimiter." (If "delimiter" is the empty string, then
|
|
|
|
* this function just matches against this substitution and updates
|
|
|
|
* everything accordingly.)
|
|
|
|
* @param upperBound When matching the substitution, it will only
|
|
|
|
* consider rules with base values lower than this value.
|
|
|
|
* @return If there's a match, this is the result of composing
|
|
|
|
* baseValue with the result of matching the substitution. Otherwise,
|
|
|
|
* this is new Long(0). It's never null. If the result is an integer,
|
|
|
|
* this will be an instance of Long; otherwise, it's an instance of
|
|
|
|
* Double.
|
|
|
|
*
|
|
|
|
* !!! note {dlf} in point of fact, in the java code the caller always converts
|
|
|
|
* the result to a double, so we might as well return one.
|
|
|
|
*/
|
|
|
|
double
|
|
|
|
NFRule::matchToDelimiter(const UnicodeString& text,
|
|
|
|
int32_t startPos,
|
|
|
|
double _baseValue,
|
|
|
|
const UnicodeString& delimiter,
|
|
|
|
ParsePosition& pp,
|
|
|
|
const NFSubstitution* sub,
|
|
|
|
double upperBound) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// if "delimiter" contains real (i.e., non-ignorable) text, search
|
|
|
|
// it for "delimiter" beginning at "start". If that succeeds, then
|
|
|
|
// use "sub"'s doParse() method to match the text before the
|
|
|
|
// instance of "delimiter" we just found.
|
|
|
|
if (!allIgnorable(delimiter)) {
|
|
|
|
ParsePosition tempPP;
|
|
|
|
Formattable result;
|
|
|
|
|
|
|
|
// use findText() to search for "delimiter". It returns a two-
|
|
|
|
// element array: element 0 is the position of the match, and
|
|
|
|
// element 1 is the number of characters that matched
|
|
|
|
// "delimiter".
|
|
|
|
int32_t dLen;
|
|
|
|
int32_t dPos = findText(text, delimiter, startPos, &dLen);
|
|
|
|
|
|
|
|
// if findText() succeeded, isolate the text preceding the
|
|
|
|
// match, and use "sub" to match that text
|
|
|
|
while (dPos >= 0) {
|
|
|
|
UnicodeString subText;
|
|
|
|
subText.setTo(text, 0, dPos);
|
|
|
|
if (subText.length() > 0) {
|
|
|
|
UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
|
|
|
|
formatter->isLenient(), result);
|
|
|
|
|
|
|
|
// if the substitution could match all the text up to
|
|
|
|
// where we found "delimiter", then this function has
|
|
|
|
// a successful match. Bump the caller's parse position
|
|
|
|
// to point to the first character after the text
|
|
|
|
// that matches "delimiter", and return the result
|
|
|
|
// we got from parsing the substitution.
|
|
|
|
if (success && tempPP.getIndex() == dPos) {
|
|
|
|
pp.setIndex(dPos + dLen);
|
|
|
|
return result.getDouble();
|
|
|
|
}
|
|
|
|
// commented out because ParsePosition doesn't have error index in 1.1.x
|
|
|
|
// restored for ICU4C port
|
|
|
|
else {
|
|
|
|
if (tempPP.getErrorIndex() > 0) {
|
|
|
|
pp.setErrorIndex(tempPP.getErrorIndex());
|
|
|
|
} else {
|
|
|
|
pp.setErrorIndex(tempPP.getIndex());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we didn't match the substitution, search for another
|
|
|
|
// copy of "delimiter" in "text" and repeat the loop if
|
|
|
|
// we find it
|
|
|
|
tempPP.setIndex(0);
|
|
|
|
dPos = findText(text, delimiter, dPos + dLen, &dLen);
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
// if we make it here, this was an unsuccessful match, and we
|
|
|
|
// leave pp unchanged and return 0
|
|
|
|
pp.setIndex(0);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// if "delimiter" is empty, or consists only of ignorable characters
|
|
|
|
// (i.e., is semantically empty), thwe we obviously can't search
|
|
|
|
// for "delimiter". Instead, just use "sub" to parse as much of
|
|
|
|
// "text" as possible.
|
|
|
|
} else {
|
|
|
|
ParsePosition tempPP;
|
|
|
|
Formattable result;
|
|
|
|
|
|
|
|
// try to match the whole string against the substitution
|
|
|
|
UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
|
|
|
|
formatter->isLenient(), result);
|
|
|
|
if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
|
|
|
|
// if there's a successful match (or it's a null
|
|
|
|
// substitution), update pp to point to the first
|
|
|
|
// character we didn't match, and pass the result from
|
|
|
|
// sub.doParse() on through to the caller
|
|
|
|
pp.setIndex(tempPP.getIndex());
|
|
|
|
return result.getDouble();
|
|
|
|
}
|
|
|
|
// commented out because ParsePosition doesn't have error index in 1.1.x
|
|
|
|
// restored for ICU4C port
|
2001-10-10 21:43:11 +00:00
|
|
|
else {
|
|
|
|
pp.setErrorIndex(tempPP.getErrorIndex());
|
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
// and if we get to here, then nothing matched, so we return
|
|
|
|
// 0 and leave pp alone
|
|
|
|
return 0;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Used by stripPrefix() to match characters. If lenient parse mode
|
|
|
|
* is off, this just calls startsWith(). If lenient parse mode is on,
|
|
|
|
* this function uses CollationElementIterators to match characters in
|
|
|
|
* the strings (only primary-order differences are significant in
|
|
|
|
* determining whether there's a match).
|
|
|
|
* @param str The string being tested
|
|
|
|
* @param prefix The text we're hoping to see at the beginning
|
|
|
|
* of "str"
|
|
|
|
* @return If "prefix" is found at the beginning of "str", this
|
|
|
|
* is the number of characters in "str" that were matched (this
|
|
|
|
* isn't necessarily the same as the length of "prefix" when matching
|
|
|
|
* text with a collator). If there's no match, this is 0.
|
|
|
|
*/
|
|
|
|
int32_t
|
|
|
|
NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// if we're looking for an empty prefix, it obviously matches
|
|
|
|
// zero characters. Just go ahead and return 0.
|
|
|
|
if (prefix.length() == 0) {
|
2001-10-10 21:43:11 +00:00
|
|
|
return 0;
|
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
|
|
|
// go through all this grief if we're in lenient-parse mode
|
|
|
|
if (formatter->isLenient()) {
|
|
|
|
// get the formatter's collator and use it to create two
|
|
|
|
// collation element iterators, one over the target string
|
|
|
|
// and another over the prefix (right now, we'll throw an
|
|
|
|
// exception if the collator we get back from the formatter
|
|
|
|
// isn't a RuleBasedCollator, because RuleBasedCollator defines
|
2001-10-24 00:47:46 +00:00
|
|
|
// the CollationElementIterator protocol. Hopefully, this
|
2001-10-11 16:56:24 +00:00
|
|
|
// will change someday.)
|
|
|
|
RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
|
|
|
|
CollationElementIterator* strIter = collator->createCollationElementIterator(str);
|
|
|
|
CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
|
|
|
|
|
|
|
|
UErrorCode err = U_ZERO_ERROR;
|
|
|
|
|
2001-10-24 00:47:46 +00:00
|
|
|
// The original code was problematic. Consider this match:
|
|
|
|
// prefix = "fifty-"
|
|
|
|
// string = " fifty-7"
|
|
|
|
// The intent is to match string up to the '7', by matching 'fifty-' at position 1
|
|
|
|
// in the string. Unfortunately, we were getting a match, and then computing where
|
|
|
|
// the match terminated by rematching the string. The rematch code was using as an
|
|
|
|
// initial guess the substring of string between 0 and prefix.length. Because of
|
|
|
|
// the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
|
|
|
|
// the position before the hyphen in the string. Recursing down, we then parsed the
|
|
|
|
// remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
|
|
|
|
// This was not pretty, especially since the string "fifty-7" parsed just fine.
|
|
|
|
//
|
|
|
|
// We have newer APIs now, so we can use calls on the iterator to determine what we
|
|
|
|
// matched up to. If we terminate because we hit the last element in the string,
|
|
|
|
// our match terminates at this length. If we terminate because we hit the last element
|
|
|
|
// in the target, our match terminates at one before the element iterator position.
|
|
|
|
|
2001-10-11 16:56:24 +00:00
|
|
|
// match collation elements between the strings
|
|
|
|
int32_t oStr = strIter->next(err);
|
|
|
|
int32_t oPrefix = prefixIter->next(err);
|
|
|
|
|
|
|
|
while (oPrefix != CollationElementIterator::NULLORDER) {
|
|
|
|
// skip over ignorable characters in the target string
|
|
|
|
while (CollationElementIterator::primaryOrder(oStr) == 0
|
|
|
|
&& oStr != CollationElementIterator::NULLORDER) {
|
|
|
|
oStr = strIter->next(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
// skip over ignorable characters in the prefix
|
|
|
|
while (CollationElementIterator::primaryOrder(oPrefix) == 0
|
|
|
|
&& oPrefix != CollationElementIterator::NULLORDER) {
|
|
|
|
oPrefix = prefixIter->next(err);
|
|
|
|
}
|
|
|
|
|
2001-10-24 00:47:46 +00:00
|
|
|
// dlf: move this above following test, if we consume the
|
|
|
|
// entire target, aren't we ok even if the source was also
|
|
|
|
// entirely consumed?
|
|
|
|
|
|
|
|
// if skipping over ignorables brought to the end of
|
|
|
|
// the prefix, we DID match: drop out of the loop
|
|
|
|
if (oPrefix == CollationElementIterator::NULLORDER) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2001-10-11 16:56:24 +00:00
|
|
|
// if skipping over ignorables brought us to the end
|
|
|
|
// of the target string, we didn't match and return 0
|
|
|
|
if (oStr == CollationElementIterator::NULLORDER) {
|
|
|
|
delete prefixIter;
|
|
|
|
delete strIter;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// match collation elements from the two strings
|
|
|
|
// (considering only primary differences). If we
|
|
|
|
// get a mismatch, dump out and return 0
|
|
|
|
if (CollationElementIterator::primaryOrder(oStr)
|
|
|
|
!= CollationElementIterator::primaryOrder(oPrefix)) {
|
|
|
|
delete prefixIter;
|
|
|
|
delete strIter;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// otherwise, advance to the next character in each string
|
|
|
|
// and loop (we drop out of the loop when we exhaust
|
|
|
|
// collation elements in the prefix)
|
|
|
|
} else {
|
|
|
|
oStr = strIter->next(err);
|
|
|
|
oPrefix = prefixIter->next(err);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-10-24 00:47:46 +00:00
|
|
|
int32_t result = strIter->getOffset();
|
|
|
|
if (oStr != CollationElementIterator::NULLORDER) {
|
|
|
|
--result; // back over character that we don't want to consume;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef RBNF_DEBUG
|
|
|
|
fprintf(stderr, "prefix length: %d\n", result);
|
|
|
|
#endif
|
2001-10-11 16:56:24 +00:00
|
|
|
delete prefixIter;
|
|
|
|
delete strIter;
|
|
|
|
|
2001-10-24 00:47:46 +00:00
|
|
|
return result;
|
|
|
|
#if 0
|
2001-10-11 16:56:24 +00:00
|
|
|
//----------------------------------------------------------------
|
|
|
|
// JDK 1.2-specific API call
|
|
|
|
// return strIter.getOffset();
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// JDK 1.1 HACK (take out for 1.2-specific code)
|
|
|
|
|
|
|
|
// if we make it to here, we have a successful match. Now we
|
|
|
|
// have to find out HOW MANY characters from the target string
|
|
|
|
// matched the prefix (there isn't necessarily a one-to-one
|
|
|
|
// mapping between collation elements and characters).
|
|
|
|
// In JDK 1.2, there's a simple getOffset() call we can use.
|
|
|
|
// In JDK 1.1, on the other hand, we have to go through some
|
|
|
|
// ugly contortions. First, use the collator to compare the
|
|
|
|
// same number of characters from the prefix and target string.
|
|
|
|
// If they're equal, we're done.
|
|
|
|
collator->setStrength(Collator::PRIMARY);
|
|
|
|
if (str.length() >= prefix.length()) {
|
|
|
|
UnicodeString temp;
|
|
|
|
temp.setTo(str, 0, prefix.length());
|
|
|
|
if (collator->equals(temp, prefix)) {
|
2001-10-24 00:47:46 +00:00
|
|
|
#ifdef RBNF_DEBUG
|
|
|
|
fprintf(stderr, "returning: %d\n", prefix.length());
|
|
|
|
#endif
|
2001-10-11 16:56:24 +00:00
|
|
|
return prefix.length();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if they're not equal, then we have to compare successively
|
|
|
|
// larger and larger substrings of the target string until we
|
|
|
|
// get to one that matches the prefix. At that point, we know
|
|
|
|
// how many characters matched the prefix, and we can return.
|
|
|
|
int32_t p = 1;
|
|
|
|
while (p <= str.length()) {
|
|
|
|
UnicodeString temp;
|
|
|
|
temp.setTo(str, 0, p);
|
|
|
|
if (collator->equals(temp, prefix)) {
|
|
|
|
return p;
|
|
|
|
} else {
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// SHOULD NEVER GET HERE!!!
|
|
|
|
return 0;
|
|
|
|
//----------------------------------------------------------------
|
2001-10-24 00:47:46 +00:00
|
|
|
#endif
|
|
|
|
|
2001-10-11 16:56:24 +00:00
|
|
|
// If lenient parsing is turned off, forget all that crap above.
|
|
|
|
// Just use String.startsWith() and be done with it.
|
|
|
|
} else {
|
|
|
|
if (str.startsWith(prefix)) {
|
|
|
|
return prefix.length();
|
2001-10-10 21:43:11 +00:00
|
|
|
} else {
|
2001-10-11 16:56:24 +00:00
|
|
|
return 0;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2001-10-11 16:56:24 +00:00
|
|
|
|
2001-10-10 21:43:11 +00:00
|
|
|
/**
|
|
|
|
* Searches a string for another string. If lenient parsing is off,
|
|
|
|
* this just calls indexOf(). If lenient parsing is on, this function
|
|
|
|
* uses CollationElementIterator to match characters, and only
|
|
|
|
* primary-order differences are significant in determining whether
|
|
|
|
* there's a match.
|
|
|
|
* @param str The string to search
|
|
|
|
* @param key The string to search "str" for
|
|
|
|
* @param startingAt The index into "str" where the search is to
|
|
|
|
* begin
|
|
|
|
* @return A two-element array of ints. Element 0 is the position
|
|
|
|
* of the match, or -1 if there was no match. Element 1 is the
|
|
|
|
* number of characters in "str" that matched (which isn't necessarily
|
|
|
|
* the same as the length of "key")
|
|
|
|
*/
|
|
|
|
int32_t
|
|
|
|
NFRule::findText(const UnicodeString& str,
|
|
|
|
const UnicodeString& key,
|
|
|
|
int32_t startingAt,
|
|
|
|
int32_t* length) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// if lenient parsing is turned off, this is easy: just call
|
|
|
|
// String.indexOf() and we're done
|
|
|
|
if (!formatter->isLenient()) {
|
|
|
|
*length = key.length();
|
|
|
|
return str.indexOf(key, startingAt);
|
|
|
|
|
|
|
|
// but if lenient parsing is turned ON, we've got some work
|
|
|
|
// ahead of us
|
|
|
|
} else {
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// JDK 1.1 HACK (take out of 1.2-specific code)
|
|
|
|
|
|
|
|
// in JDK 1.2, CollationElementIterator provides us with an
|
|
|
|
// API to map between character offsets and collation elements
|
|
|
|
// and we can do this by marching through the string comparing
|
|
|
|
// collation elements. We can't do that in JDK 1.1. Insted,
|
|
|
|
// we have to go through this horrible slow mess:
|
|
|
|
int32_t p = startingAt;
|
|
|
|
int32_t keyLen = 0;
|
|
|
|
|
|
|
|
// basically just isolate smaller and smaller substrings of
|
|
|
|
// the target string (each running to the end of the string,
|
|
|
|
// and with the first one running from startingAt to the end)
|
|
|
|
// and then use prefixLength() to see if the search key is at
|
|
|
|
// the beginning of each substring. This is excruciatingly
|
|
|
|
// slow, but it will locate the key and tell use how long the
|
|
|
|
// matching text was.
|
|
|
|
UnicodeString temp;
|
|
|
|
while (p < str.length() && keyLen == 0) {
|
|
|
|
temp.setTo(str, p, str.length() - p);
|
|
|
|
keyLen = prefixLength(temp, key);
|
|
|
|
if (keyLen != 0) {
|
|
|
|
*length = keyLen;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
++p;
|
|
|
|
}
|
|
|
|
// if we make it to here, we didn't find it. Return -1 for the
|
|
|
|
// location. The length should be ignored, but set it to 0,
|
|
|
|
// which should be "safe"
|
|
|
|
*length = 0;
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// JDK 1.2 version of this routine
|
|
|
|
//RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
|
|
|
|
//
|
|
|
|
//CollationElementIterator strIter = collator.getCollationElementIterator(str);
|
|
|
|
//CollationElementIterator keyIter = collator.getCollationElementIterator(key);
|
|
|
|
//
|
|
|
|
//int keyStart = -1;
|
|
|
|
//
|
|
|
|
//str.setOffset(startingAt);
|
|
|
|
//
|
|
|
|
//int oStr = strIter.next();
|
|
|
|
//int oKey = keyIter.next();
|
|
|
|
//while (oKey != CollationElementIterator.NULLORDER) {
|
|
|
|
// while (oStr != CollationElementIterator.NULLORDER &&
|
|
|
|
// CollationElementIterator.primaryOrder(oStr) == 0)
|
|
|
|
// oStr = strIter.next();
|
|
|
|
//
|
|
|
|
// while (oKey != CollationElementIterator.NULLORDER &&
|
|
|
|
// CollationElementIterator.primaryOrder(oKey) == 0)
|
|
|
|
// oKey = keyIter.next();
|
|
|
|
//
|
|
|
|
// if (oStr == CollationElementIterator.NULLORDER) {
|
|
|
|
// return new int[] { -1, 0 };
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// if (oKey == CollationElementIterator.NULLORDER) {
|
|
|
|
// break;
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// if (CollationElementIterator.primaryOrder(oStr) ==
|
|
|
|
// CollationElementIterator.primaryOrder(oKey)) {
|
|
|
|
// keyStart = strIter.getOffset();
|
|
|
|
// oStr = strIter.next();
|
|
|
|
// oKey = keyIter.next();
|
|
|
|
// } else {
|
|
|
|
// if (keyStart != -1) {
|
|
|
|
// keyStart = -1;
|
|
|
|
// keyIter.reset();
|
|
|
|
// } else {
|
|
|
|
// oStr = strIter.next();
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
//}
|
|
|
|
//
|
|
|
|
//if (oKey == CollationElementIterator.NULLORDER) {
|
|
|
|
// return new int[] { keyStart, strIter.getOffset() - keyStart };
|
|
|
|
//} else {
|
|
|
|
// return new int[] { -1, 0 };
|
|
|
|
//}
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Checks to see whether a string consists entirely of ignorable
|
|
|
|
* characters.
|
|
|
|
* @param str The string to test.
|
|
|
|
* @return true if the string is empty of consists entirely of
|
|
|
|
* characters that the number formatter's collator says are
|
|
|
|
* ignorable at the primary-order level. false otherwise.
|
|
|
|
*/
|
|
|
|
UBool
|
|
|
|
NFRule::allIgnorable(const UnicodeString& str) const
|
|
|
|
{
|
2001-10-11 16:56:24 +00:00
|
|
|
// if the string is empty, we can just return true
|
|
|
|
if (str.length() == 0) {
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if lenient parsing is turned on, walk through the string with
|
|
|
|
// a collation element iterator and make sure each collation
|
|
|
|
// element is 0 (ignorable) at the primary level
|
|
|
|
if (formatter->isLenient()) {
|
|
|
|
RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
|
|
|
|
CollationElementIterator* iter = collator->createCollationElementIterator(str);
|
|
|
|
|
|
|
|
UErrorCode err = U_ZERO_ERROR;
|
|
|
|
int32_t o = iter->next(err);
|
|
|
|
while (o != CollationElementIterator::NULLORDER
|
|
|
|
&& CollationElementIterator::primaryOrder(o) == 0) {
|
|
|
|
o = iter->next(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
delete iter;
|
|
|
|
return o == CollationElementIterator::NULLORDER;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
// if lenient parsing is turned off, there is no such thing as
|
|
|
|
// an ignorable character: return true only if the string is empty
|
2001-10-11 16:56:24 +00:00
|
|
|
return FALSE;
|
2001-10-10 21:43:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
U_NAMESPACE_END
|
|
|
|
|
|
|
|
|