scuffed-code/icu4c/source/i18n/smpdtfmt.cpp

2435 lines
89 KiB
C++
Raw Normal View History

1999-08-16 21:50:52 +00:00
/*
*******************************************************************************
* Copyright (C) 1997-2008, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
1999-08-16 21:50:52 +00:00
*
* File SMPDTFMT.CPP
*
* Modification History:
*
* Date Name Description
* 02/19/97 aliu Converted from java.
* 03/31/97 aliu Modified extensively to work with 50 locales.
* 04/01/97 aliu Added support for centuries.
* 07/09/97 helena Made ParsePosition into a class.
* 07/21/98 stephen Added initializeDefaultCentury.
* Removed getZoneIndex (added in DateFormatSymbols)
* Removed subParseLong
* Removed chk
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 10/14/99 aliu Updated 2-digit year parsing so that only "00" thru
* "99" are recognized. {j28 4182066}
* 11/15/99 weiv Added support for week of year/day of week format
1999-08-16 21:50:52 +00:00
********************************************************************************
*/
#define ZID_KEY_MAX 128
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/smpdtfmt.h"
#include "unicode/dtfmtsym.h"
#include "unicode/ures.h"
#include "unicode/msgfmt.h"
#include "unicode/calendar.h"
#include "unicode/gregocal.h"
#include "unicode/timezone.h"
#include "unicode/decimfmt.h"
#include "unicode/dcfmtsym.h"
#include "unicode/uchar.h"
#include "unicode/ustring.h"
#include "unicode/basictz.h"
#include "unicode/simpletz.h"
#include "unicode/rbtz.h"
#include "unicode/vtzone.h"
#include "olsontz.h"
#include "util.h"
#include "gregoimp.h"
#include "cstring.h"
#include "uassert.h"
#include "zstrfmt.h"
#include "cmemory.h"
#include "umutex.h"
1999-08-16 21:50:52 +00:00
#include <float.h>
#if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
#include <stdio.h>
#endif
1999-08-16 21:50:52 +00:00
// *****************************************************************************
// class SimpleDateFormat
// *****************************************************************************
U_NAMESPACE_BEGIN
/**
* Last-resort string to use for "GMT" when constructing time zone strings.
*/
1999-08-16 21:50:52 +00:00
// For time zones that have no names, use strings GMT+minutes and
// GMT-minutes. For instance, in France the time zone is GMT+60.
// Also accepted are GMT+H:MM or GMT-H:MM.
static const UChar gGmt[] = {0x0047, 0x004D, 0x0054, 0x0000}; // "GMT"
static const UChar gGmtPlus[] = {0x0047, 0x004D, 0x0054, 0x002B, 0x0000}; // "GMT+"
static const UChar gGmtMinus[] = {0x0047, 0x004D, 0x0054, 0x002D, 0x0000}; // "GMT-"
static const UChar gDefGmtPat[] = {0x0047, 0x004D, 0x0054, 0x007B, 0x0030, 0x007D, 0x0000}; /* GMT{0} */
static const UChar gDefGmtNegHmsPat[] = {0x002D, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x003A, 0x0073, 0x0073, 0x0000}; /* -HH:mm:ss */
static const UChar gDefGmtNegHmPat[] = {0x002D, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x0000}; /* -HH:mm */
static const UChar gDefGmtPosHmsPat[] = {0x002B, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x003A, 0x0073, 0x0073, 0x0000}; /* +HH:mm:ss */
static const UChar gDefGmtPosHmPat[] = {0x002B, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x0000}; /* +HH:mm */
typedef enum GmtPatSize {
kGmtLen = 3,
kGmtPatLen = 6,
kNegHmsLen = 9,
kNegHmLen = 6,
kPosHmsLen = 9,
kPosHmLen = 6
} GmtPatSize;
1999-08-16 21:50:52 +00:00
// This is a pattern-of-last-resort used when we can't load a usable pattern out
// of a resource.
static const UChar gDefaultPattern[] =
{
0x79, 0x79, 0x79, 0x79, 0x4D, 0x4D, 0x64, 0x64, 0x20, 0x68, 0x68, 0x3A, 0x6D, 0x6D, 0x20, 0x61, 0
}; /* "yyyyMMdd hh:mm a" */
1999-08-16 21:50:52 +00:00
// This prefix is designed to NEVER MATCH real text, in order to
// suppress the parsing of negative numbers. Adjust as needed (if
// this becomes valid Unicode).
static const UChar SUPPRESS_NEGATIVE_PREFIX[] = {0xAB00, 0};
1999-08-16 21:50:52 +00:00
/**
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
static const char gDateTimePatternsTag[]="DateTimePatterns";
1999-08-16 21:50:52 +00:00
static const UChar gEtcUTC[] = {0x45, 0x74, 0x63, 0x2F, 0x55, 0x54, 0x43, 0x00}; // "Etc/UTC"
static const UChar QUOTE = 0x27; // Single quote
enum {
kGMTNegativeHMS = 0,
kGMTNegativeHM,
kGMTPositiveHMS,
kGMTPositiveHM,
kNumGMTFormatters
};
static UMTX LOCK;
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SimpleDateFormat)
1999-08-16 21:50:52 +00:00
//----------------------------------------------------------------------
SimpleDateFormat::~SimpleDateFormat()
{
delete fSymbols;
if (fGMTFormatters) {
for (int32_t i = 0; i < kNumGMTFormatters; i++) {
if (fGMTFormatters[i]) {
delete fGMTFormatters[i];
}
}
uprv_free(fGMTFormatters);
}
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(UErrorCode& status)
: fLocale(Locale::getDefault()),
fSymbols(NULL),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
construct(kShort, (EStyle) (kShort + kDateOffset), fLocale, status);
initializeDefaultCentury();
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
UErrorCode &status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(NULL),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status);
initialize(fLocale, status);
initializeDefaultCentury();
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const Locale& locale,
UErrorCode& status)
: fPattern(pattern),
fLocale(locale),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status);
initialize(fLocale, status);
initializeDefaultCentury();
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
DateFormatSymbols* symbolsToAdopt,
UErrorCode& status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(symbolsToAdopt),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
initializeCalendar(NULL,fLocale,status);
initialize(fLocale, status);
initializeDefaultCentury();
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const DateFormatSymbols& symbols,
UErrorCode& status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(new DateFormatSymbols(symbols)),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
initializeCalendar(NULL, fLocale, status);
initialize(fLocale, status);
initializeDefaultCentury();
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
// Not for public consumption; used by DateFormat
SimpleDateFormat::SimpleDateFormat(EStyle timeStyle,
EStyle dateStyle,
const Locale& locale,
UErrorCode& status)
: fLocale(locale),
fSymbols(NULL),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
construct(timeStyle, dateStyle, fLocale, status);
if(U_SUCCESS(status)) {
initializeDefaultCentury();
}
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
/**
* Not for public consumption; used by DateFormat. This constructor
* never fails. If the resource data is not available, it uses the
* the last resort symbols.
*/
SimpleDateFormat::SimpleDateFormat(const Locale& locale,
UErrorCode& status)
: fPattern(gDefaultPattern),
fLocale(locale),
fSymbols(NULL),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
if (U_FAILURE(status)) return;
initializeSymbols(fLocale, initializeCalendar(NULL, fLocale, status),status);
if (U_FAILURE(status))
1999-08-16 21:50:52 +00:00
{
status = U_ZERO_ERROR;
1999-08-16 21:50:52 +00:00
delete fSymbols;
// This constructor doesn't fail; it uses last resort data
fSymbols = new DateFormatSymbols(status);
/* test for NULL */
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
1999-08-16 21:50:52 +00:00
}
initialize(fLocale, status);
if(U_SUCCESS(status)) {
initializeDefaultCentury();
}
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const SimpleDateFormat& other)
: DateFormat(other),
fSymbols(NULL),
fGMTFormatters(NULL)
1999-08-16 21:50:52 +00:00
{
*this = other;
}
//----------------------------------------------------------------------
SimpleDateFormat& SimpleDateFormat::operator=(const SimpleDateFormat& other)
{
if (this == &other) {
return *this;
}
1999-08-16 21:50:52 +00:00
DateFormat::operator=(other);
delete fSymbols;
fSymbols = NULL;
if (other.fSymbols)
fSymbols = new DateFormatSymbols(*other.fSymbols);
fDefaultCenturyStart = other.fDefaultCenturyStart;
fDefaultCenturyStartYear = other.fDefaultCenturyStartYear;
fHaveDefaultCentury = other.fHaveDefaultCentury;
1999-08-16 21:50:52 +00:00
fPattern = other.fPattern;
return *this;
}
//----------------------------------------------------------------------
Format*
SimpleDateFormat::clone() const
{
return new SimpleDateFormat(*this);
}
//----------------------------------------------------------------------
UBool
1999-08-16 21:50:52 +00:00
SimpleDateFormat::operator==(const Format& other) const
{
if (DateFormat::operator==(other)) {
// DateFormat::operator== guarantees following cast is safe
1999-08-16 21:50:52 +00:00
SimpleDateFormat* that = (SimpleDateFormat*)&other;
return (fPattern == that->fPattern &&
1999-08-16 21:50:52 +00:00
fSymbols != NULL && // Check for pathological object
that->fSymbols != NULL && // Check for pathological object
*fSymbols == *that->fSymbols &&
fHaveDefaultCentury == that->fHaveDefaultCentury &&
1999-08-16 21:50:52 +00:00
fDefaultCenturyStart == that->fDefaultCenturyStart);
}
return FALSE;
}
//----------------------------------------------------------------------
void SimpleDateFormat::construct(EStyle timeStyle,
EStyle dateStyle,
const Locale& locale,
UErrorCode& status)
{
// called by several constructors to load pattern data from the resources
if (U_FAILURE(status)) return;
1999-08-16 21:50:52 +00:00
// We will need the calendar to know what type of symbols to load.
initializeCalendar(NULL, locale, status);
if (U_FAILURE(status)) return;
CalendarData calData(locale, fCalendar?fCalendar->getType():NULL, status);
UResourceBundle *dateTimePatterns = calData.getByKey(gDateTimePatternsTag, status);
if (U_FAILURE(status)) return;
if (ures_getSize(dateTimePatterns) <= kDateTime)
1999-08-16 21:50:52 +00:00
{
status = U_INVALID_FORMAT_ERROR;
1999-08-16 21:50:52 +00:00
return;
}
setLocaleIDs(ures_getLocaleByType(dateTimePatterns, ULOC_VALID_LOCALE, &status),
ures_getLocaleByType(dateTimePatterns, ULOC_ACTUAL_LOCALE, &status));
1999-08-16 21:50:52 +00:00
// create a symbols object from the locale
initializeSymbols(locale,fCalendar, status);
if (U_FAILURE(status)) return;
/* test for NULL */
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
1999-08-16 21:50:52 +00:00
const UChar *resStr;
int32_t resStrLen = 0;
1999-08-16 21:50:52 +00:00
// if the pattern should include both date and time information, use the date/time
// pattern string as a guide to tell use how to glue together the appropriate date
// and time pattern strings. The actual gluing-together is handled by a convenience
// method on MessageFormat.
if ((timeStyle != kNone) && (dateStyle != kNone))
1999-08-16 21:50:52 +00:00
{
Formattable timeDateArray[2];
1999-08-16 21:50:52 +00:00
// use Formattable::adoptString() so that we can use fastCopyFrom()
// instead of Formattable::setString()'s unaware, safe, deep string clone
// see Jitterbug 2296
resStr = ures_getStringByIndex(dateTimePatterns, (int32_t)timeStyle, &resStrLen, &status);
UnicodeString *tempus1 = new UnicodeString(TRUE, resStr, resStrLen);
// NULL pointer check
if (tempus1 == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
timeDateArray[0].adoptString(tempus1);
resStr = ures_getStringByIndex(dateTimePatterns, (int32_t)dateStyle, &resStrLen, &status);
UnicodeString *tempus2 = new UnicodeString(TRUE, resStr, resStrLen);
// Null pointer check
if (tempus2 == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
timeDateArray[1].adoptString(tempus2);
1999-08-16 21:50:52 +00:00
resStr = ures_getStringByIndex(dateTimePatterns, (int32_t)kDateTime, &resStrLen, &status);
MessageFormat::format(UnicodeString(TRUE, resStr, resStrLen), timeDateArray, 2, fPattern, status);
1999-08-16 21:50:52 +00:00
}
// if the pattern includes just time data or just date date, load the appropriate
// pattern string from the resources
// setTo() - see DateFormatSymbols::assignArray comments
else if (timeStyle != kNone) {
resStr = ures_getStringByIndex(dateTimePatterns, (int32_t)timeStyle, &resStrLen, &status);
fPattern.setTo(TRUE, resStr, resStrLen);
}
else if (dateStyle != kNone) {
resStr = ures_getStringByIndex(dateTimePatterns, (int32_t)dateStyle, &resStrLen, &status);
fPattern.setTo(TRUE, resStr, resStrLen);
}
1999-08-16 21:50:52 +00:00
// and if it includes _neither_, that's an error
else
status = U_INVALID_FORMAT_ERROR;
1999-08-16 21:50:52 +00:00
// finally, finish initializing by creating a Calendar and a NumberFormat
initialize(locale, status);
}
//----------------------------------------------------------------------
Calendar*
SimpleDateFormat::initializeCalendar(TimeZone* adoptZone, const Locale& locale, UErrorCode& status)
{
if(!U_FAILURE(status)) {
fCalendar = Calendar::createInstance(adoptZone?adoptZone:TimeZone::createDefault(), locale, status);
}
if (U_SUCCESS(status) && fCalendar == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
return fCalendar;
}
void
SimpleDateFormat::initializeSymbols(const Locale& locale, Calendar* calendar, UErrorCode& status)
{
if(U_FAILURE(status)) {
fSymbols = NULL;
} else {
// pass in calendar type - use NULL (default) if no calendar set (or err).
fSymbols = new DateFormatSymbols(locale, calendar?calendar->getType() :NULL , status);
// Null pointer check
if (fSymbols == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
1999-08-16 21:50:52 +00:00
void
SimpleDateFormat::initialize(const Locale& locale,
UErrorCode& status)
{
if (U_FAILURE(status)) return;
1999-08-16 21:50:52 +00:00
// We don't need to check that the row count is >= 1, since all 2d arrays have at
// least one row
fNumberFormat = NumberFormat::createInstance(locale, status);
if (fNumberFormat != NULL && U_SUCCESS(status))
1999-08-16 21:50:52 +00:00
{
// no matter what the locale's default number format looked like, we want
// to modify it so that it doesn't use thousands separators, doesn't always
// show the decimal point, and recognizes integers only when parsing
fNumberFormat->setGroupingUsed(FALSE);
if (fNumberFormat->getDynamicClassID() == DecimalFormat::getStaticClassID())
((DecimalFormat*)fNumberFormat)->setDecimalSeparatorAlwaysShown(FALSE);
fNumberFormat->setParseIntegerOnly(TRUE);
fNumberFormat->setMinimumFractionDigits(0); // To prevent "Jan 1.00, 1997.00"
}
else if (U_SUCCESS(status))
1999-08-16 21:50:52 +00:00
{
status = U_MISSING_RESOURCE_ERROR;
1999-08-16 21:50:52 +00:00
}
}
/* Initialize the fields we use to disambiguate ambiguous years. Separate
* so we can call it from readObject().
*/
void SimpleDateFormat::initializeDefaultCentury()
{
if(fCalendar) {
fHaveDefaultCentury = fCalendar->haveDefaultCentury();
if(fHaveDefaultCentury) {
fDefaultCenturyStart = fCalendar->defaultCenturyStart();
fDefaultCenturyStartYear = fCalendar->defaultCenturyStartYear();
} else {
fDefaultCenturyStart = DBL_MIN;
fDefaultCenturyStartYear = -1;
}
}
1999-08-16 21:50:52 +00:00
}
/* Define one-century window into which to disambiguate dates using
* two-digit years. Make public in JDK 1.2.
*/
void SimpleDateFormat::parseAmbiguousDatesAsAfter(UDate startDate, UErrorCode& status)
{
if(U_FAILURE(status)) {
1999-08-16 21:50:52 +00:00
return;
}
if(!fCalendar) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
1999-08-16 21:50:52 +00:00
fCalendar->setTime(startDate, status);
if(U_SUCCESS(status)) {
fHaveDefaultCentury = TRUE;
1999-08-16 21:50:52 +00:00
fDefaultCenturyStart = startDate;
fDefaultCenturyStartYear = fCalendar->get(UCAL_YEAR, status);
1999-08-16 21:50:52 +00:00
}
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::format(Calendar& cal, UnicodeString& appendTo, FieldPosition& pos) const
1999-08-16 21:50:52 +00:00
{
UErrorCode status = U_ZERO_ERROR;
1999-08-16 21:50:52 +00:00
pos.setBeginIndex(0);
pos.setEndIndex(0);
UBool inQuote = FALSE;
1999-08-16 21:50:52 +00:00
UChar prevCh = 0;
int32_t count = 0;
// loop through the pattern string character by character
for (int32_t i = 0; i < fPattern.length() && U_SUCCESS(status); ++i) {
1999-08-16 21:50:52 +00:00
UChar ch = fPattern[i];
// Use subFormat() to format a repeated pattern character
// when a different pattern or non-pattern character is seen
if (ch != prevCh && count > 0) {
subFormat(appendTo, prevCh, count, pos, cal, status);
1999-08-16 21:50:52 +00:00
count = 0;
}
if (ch == QUOTE) {
1999-08-16 21:50:52 +00:00
// Consecutive single quotes are a single quote literal,
// either outside of quotes or between quotes
if ((i+1) < fPattern.length() && fPattern[i+1] == QUOTE) {
appendTo += (UChar)QUOTE;
1999-08-16 21:50:52 +00:00
++i;
} else {
inQuote = ! inQuote;
}
}
else if ( ! inQuote && ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/)
|| (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))) {
// ch is a date-time pattern character to be interpreted
// by subFormat(); count the number of times it is repeated
prevCh = ch;
++count;
}
else {
// Append quoted characters and unquoted non-pattern characters
appendTo += ch;
1999-08-16 21:50:52 +00:00
}
}
// Format the last item in the pattern, if any
if (count > 0) {
subFormat(appendTo, prevCh, count, pos, cal, status);
1999-08-16 21:50:52 +00:00
}
// and if something failed (e.g., an invalid format character), reset our FieldPosition
// to (0, 0) to show that
// {sfb} look at this later- are these being set correctly?
if (U_FAILURE(status)) {
1999-08-16 21:50:52 +00:00
pos.setBeginIndex(0);
pos.setEndIndex(0);
}
return appendTo;
1999-08-16 21:50:52 +00:00
}
UnicodeString&
SimpleDateFormat::format(const Formattable& obj,
UnicodeString& appendTo,
1999-08-16 21:50:52 +00:00
FieldPosition& pos,
UErrorCode& status) const
{
// this is just here to get around the hiding problem
// (the previous format() override would hide the version of
// format() on DateFormat that this function correspond to, so we
// have to redefine it here)
return DateFormat::format(obj, appendTo, pos, status);
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
// Map index into pattern character string to Calendar field number.
const UCalendarDateFields
1999-08-16 21:50:52 +00:00
SimpleDateFormat::fgPatternIndexToCalendarField[] =
{
/*GyM*/ UCAL_ERA, UCAL_YEAR, UCAL_MONTH,
/*dkH*/ UCAL_DATE, UCAL_HOUR_OF_DAY, UCAL_HOUR_OF_DAY,
/*msS*/ UCAL_MINUTE, UCAL_SECOND, UCAL_MILLISECOND,
/*EDF*/ UCAL_DAY_OF_WEEK, UCAL_DAY_OF_YEAR, UCAL_DAY_OF_WEEK_IN_MONTH,
/*wWa*/ UCAL_WEEK_OF_YEAR, UCAL_WEEK_OF_MONTH, UCAL_AM_PM,
/*hKz*/ UCAL_HOUR, UCAL_HOUR, UCAL_ZONE_OFFSET,
/*Yeu*/ UCAL_YEAR_WOY, UCAL_DOW_LOCAL, UCAL_EXTENDED_YEAR,
/*gAZ*/ UCAL_JULIAN_DAY, UCAL_MILLISECONDS_IN_DAY, UCAL_ZONE_OFFSET,
/*v*/ UCAL_ZONE_OFFSET,
/*c*/ UCAL_DAY_OF_WEEK,
/*L*/ UCAL_MONTH,
/*Q*/ UCAL_MONTH,
/*q*/ UCAL_MONTH,
/*V*/ UCAL_ZONE_OFFSET,
1999-08-16 21:50:52 +00:00
};
// Map index into pattern character string to DateFormat field number
const UDateFormatField
1999-08-16 21:50:52 +00:00
SimpleDateFormat::fgPatternIndexToDateFormatField[] = {
/*GyM*/ UDAT_ERA_FIELD, UDAT_YEAR_FIELD, UDAT_MONTH_FIELD,
/*dkH*/ UDAT_DATE_FIELD, UDAT_HOUR_OF_DAY1_FIELD, UDAT_HOUR_OF_DAY0_FIELD,
/*msS*/ UDAT_MINUTE_FIELD, UDAT_SECOND_FIELD, UDAT_FRACTIONAL_SECOND_FIELD,
/*EDF*/ UDAT_DAY_OF_WEEK_FIELD, UDAT_DAY_OF_YEAR_FIELD, UDAT_DAY_OF_WEEK_IN_MONTH_FIELD,
/*wWa*/ UDAT_WEEK_OF_YEAR_FIELD, UDAT_WEEK_OF_MONTH_FIELD, UDAT_AM_PM_FIELD,
/*hKz*/ UDAT_HOUR1_FIELD, UDAT_HOUR0_FIELD, UDAT_TIMEZONE_FIELD,
/*Yeu*/ UDAT_YEAR_WOY_FIELD, UDAT_DOW_LOCAL_FIELD, UDAT_EXTENDED_YEAR_FIELD,
/*gAZ*/ UDAT_JULIAN_DAY_FIELD, UDAT_MILLISECONDS_IN_DAY_FIELD, UDAT_TIMEZONE_RFC_FIELD,
/*v*/ UDAT_TIMEZONE_GENERIC_FIELD,
/*c*/ UDAT_STANDALONE_DAY_FIELD,
/*L*/ UDAT_STANDALONE_MONTH_FIELD,
/*Q*/ UDAT_QUARTER_FIELD,
/*q*/ UDAT_STANDALONE_QUARTER_FIELD,
/*V*/ UDAT_TIMEZONE_SPECIAL_FIELD,
1999-08-16 21:50:52 +00:00
};
//----------------------------------------------------------------------
/**
* Append symbols[value] to dst. Make sure the array index is not out
* of bounds.
*/
static inline void
_appendSymbol(UnicodeString& dst,
int32_t value,
const UnicodeString* symbols,
int32_t symbolsCount) {
U_ASSERT(0 <= value && value < symbolsCount);
if (0 <= value && value < symbolsCount) {
dst += symbols[value];
}
}
//---------------------------------------------------------------------
void
SimpleDateFormat::appendGMT(UnicodeString &appendTo, Calendar& cal, UErrorCode& status) const{
int32_t offset = cal.get(UCAL_ZONE_OFFSET, status) + cal.get(UCAL_DST_OFFSET, status);
if (U_FAILURE(status)) {
return;
}
if (isDefaultGMTFormat()) {
formatGMTDefault(appendTo, offset);
} else {
((SimpleDateFormat*)this)->initGMTFormatters(status);
if (U_SUCCESS(status)) {
int32_t type;
if (offset < 0) {
offset = -offset;
type = (offset % U_MILLIS_PER_MINUTE) == 0 ? kGMTNegativeHM : kGMTNegativeHMS;
} else {
type = (offset % U_MILLIS_PER_MINUTE) == 0 ? kGMTPositiveHM : kGMTPositiveHMS;
}
Formattable param(offset, Formattable::kIsDate);
FieldPosition fpos(0);
fGMTFormatters[type]->format(&param, 1, appendTo, fpos, status);
}
}
}
int32_t
SimpleDateFormat::parseGMT(const UnicodeString &text, ParsePosition &pos) const {
if (!isDefaultGMTFormat()) {
int32_t start = pos.getIndex();
// Quick check
UBool prefixMatch = FALSE;
int32_t prefixLen = fSymbols->fGmtFormat.indexOf((UChar)0x007B /* '{' */);
if (prefixLen > 0 && text.compare(start, prefixLen, fSymbols->fGmtFormat, 0, prefixLen) == 0) {
prefixMatch = TRUE;
}
if (prefixMatch) {
// Prefix matched
UErrorCode status = U_ZERO_ERROR;
((SimpleDateFormat*)this)->initGMTFormatters(status);
if (U_SUCCESS(status)) {
Formattable parsed;
int32_t parsedCount;
// Try negative Hms
fGMTFormatters[kGMTNegativeHMS]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 && pos.getIndex() > start) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)(-1 * (int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
// Try positive Hms
fGMTFormatters[kGMTPositiveHMS]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 && pos.getIndex() > start) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)((int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
// Try negative Hm
fGMTFormatters[kGMTNegativeHM]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 && pos.getIndex() > start) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)(-1 * (int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
// Try positive Hm
fGMTFormatters[kGMTPositiveHM]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 && pos.getIndex() > start) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)((int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
}
// fall through to the default GMT parsing method
}
}
return parseGMTDefault(text, pos);
}
void
SimpleDateFormat::formatGMTDefault(UnicodeString &appendTo, int32_t offset) const {
if (offset < 0) {
appendTo += gGmtMinus;
offset = -offset; // suppress the '-' sign for text display.
}else{
appendTo += gGmtPlus;
}
offset /= U_MILLIS_PER_SECOND; // now in seconds
int32_t sec = offset % 60;
offset /= 60;
int32_t min = offset % 60;
int32_t hour = offset / 60;
zeroPaddingNumber(appendTo, hour, 2, 2);
appendTo += (UChar)0x003A /*':'*/;
zeroPaddingNumber(appendTo, min, 2, 2);
if (sec != 0) {
appendTo += (UChar)0x003A /*':'*/;
zeroPaddingNumber(appendTo, sec, 2, 2);
}
}
int32_t
SimpleDateFormat::parseGMTDefault(const UnicodeString &text, ParsePosition &pos) const {
int32_t start = pos.getIndex();
if (start + kGmtLen + 1 >= text.length()) {
pos.setErrorIndex(start);
return 0;
}
int32_t cur = start;
// "GMT"
if (text.compare(start, kGmtLen, gGmt) != 0) {
pos.setErrorIndex(start);
return 0;
}
cur += kGmtLen;
// Sign
UBool negative = FALSE;
if (text.charAt(cur) == (UChar)0x002D /* minus */) {
negative = TRUE;
} else if (text.charAt(cur) != (UChar)0x002B /* plus */) {
pos.setErrorIndex(cur);
return 0;
}
cur++;
// Numbers
int32_t numLen;
pos.setIndex(cur);
Formattable number;
parseInt(text, number, 6, pos, FALSE);
numLen = pos.getIndex() - cur;
if (numLen <= 0) {
pos.setIndex(start);
pos.setErrorIndex(cur);
return 0;
}
int32_t numVal = number.getLong();
int32_t hour = 0;
int32_t min = 0;
int32_t sec = 0;
if (numLen <= 2) {
// H[H][:mm[:ss]]
hour = numVal;
cur += numLen;
if (cur + 2 < text.length() && text.charAt(cur) == (UChar)0x003A /* colon */) {
cur++;
pos.setIndex(cur);
parseInt(text, number, 2, pos, FALSE);
numLen = pos.getIndex() - cur;
if (numLen == 2) {
// got minute field
min = number.getLong();
cur += numLen;
if (cur + 2 < text.length() && text.charAt(cur) == (UChar)0x003A /* colon */) {
cur++;
pos.setIndex(cur);
parseInt(text, number, 2, pos, FALSE);
numLen = pos.getIndex() - cur;
if (numLen == 2) {
// got second field
sec = number.getLong();
} else {
// reset position
pos.setIndex(cur - 1);
pos.setErrorIndex(-1);
}
}
} else {
// reset postion
pos.setIndex(cur - 1);
pos.setErrorIndex(-1);
}
}
} else if (numLen == 3 || numLen == 4) {
// Hmm or HHmm
hour = numVal / 100;
min = numVal % 100;
} else if (numLen == 5 || numLen == 6) {
// Hmmss or HHmmss
hour = numVal / 10000;
min = (numVal % 10000) / 100;
sec = numVal % 100;
} else {
// HHmmss followed by bogus numbers
pos.setIndex(cur + 6);
int32_t shift = numLen - 6;
while (shift > 0) {
numVal /= 10;
shift--;
}
hour = numVal / 10000;
min = (numVal % 10000) / 100;
sec = numVal % 100;
}
int32_t offset = ((hour*60 + min)*60 + sec)*1000;
if (negative) {
offset = -offset;
}
return offset;
}
UBool
SimpleDateFormat::isDefaultGMTFormat() const {
// GMT pattern
if (fSymbols->fGmtFormat.length() == 0) {
// No GMT pattern is set
return TRUE;
} else if (fSymbols->fGmtFormat.compare(gDefGmtPat, kGmtPatLen) != 0) {
return FALSE;
}
// Hour patterns
if (fSymbols->fGmtHourFormats == NULL || fSymbols->fGmtHourFormatsCount != DateFormatSymbols::GMT_HOUR_COUNT) {
// No Hour pattern is set
return TRUE;
} else if ((fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HMS].compare(gDefGmtNegHmsPat, kNegHmsLen) != 0)
|| (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HM].compare(gDefGmtNegHmPat, kNegHmLen) != 0)
|| (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HMS].compare(gDefGmtPosHmsPat, kPosHmsLen) != 0)
|| (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HM].compare(gDefGmtPosHmPat, kPosHmLen) != 0)) {
return FALSE;
}
return TRUE;
}
void
SimpleDateFormat::formatRFC822TZ(UnicodeString &appendTo, int32_t offset) const {
UChar sign = 0x002B /* '+' */;
if (offset < 0) {
offset = -offset;
sign = 0x002D /* '-' */;
}
appendTo.append(sign);
int32_t offsetH = offset / U_MILLIS_PER_HOUR;
offset = offset % U_MILLIS_PER_HOUR;
int32_t offsetM = offset / U_MILLIS_PER_MINUTE;
offset = offset % U_MILLIS_PER_MINUTE;
int32_t offsetS = offset / U_MILLIS_PER_SECOND;
int32_t num = 0, denom = 0;
if (offsetS == 0) {
offset = offsetH*100 + offsetM; // HHmm
num = offset % 10000;
denom = 1000;
} else {
offset = offsetH*10000 + offsetM*100 + offsetS; // HHmmss
num = offset % 1000000;
denom = 100000;
}
while (denom >= 1) {
UChar digit = (UChar)0x0030 + (num / denom);
appendTo.append(digit);
num = num % denom;
denom /= 10;
}
}
void
SimpleDateFormat::initGMTFormatters(UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
umtx_lock(&LOCK);
if (fGMTFormatters == NULL) {
fGMTFormatters = (MessageFormat**)uprv_malloc(kNumGMTFormatters * sizeof(MessageFormat*));
if (fGMTFormatters) {
for (int32_t i = 0; i < kNumGMTFormatters; i++) {
const UnicodeString *hourPattern = NULL; //initialized it to avoid warning
switch (i) {
case kGMTNegativeHMS:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HMS]);
break;
case kGMTNegativeHM:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HM]);
break;
case kGMTPositiveHMS:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HMS]);
break;
case kGMTPositiveHM:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HM]);
break;
}
fGMTFormatters[i] = new MessageFormat(fSymbols->fGmtFormat, status);
if (U_FAILURE(status)) {
break;
}
SimpleDateFormat *sdf = (SimpleDateFormat*)this->clone();
sdf->adoptTimeZone(TimeZone::createTimeZone(UnicodeString(gEtcUTC)));
sdf->applyPattern(*hourPattern);
fGMTFormatters[i]->adoptFormat(0, sdf);
}
} else {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
umtx_unlock(&LOCK);
}
//---------------------------------------------------------------------
void
SimpleDateFormat::subFormat(UnicodeString &appendTo,
1999-08-16 21:50:52 +00:00
UChar ch,
int32_t count,
FieldPosition& pos,
Calendar& cal,
1999-08-16 21:50:52 +00:00
UErrorCode& status) const
{
if (U_FAILURE(status)) {
return;
}
1999-08-16 21:50:52 +00:00
// this function gets called by format() to produce the appropriate substitution
// text for an individual pattern symbol (e.g., "HH" or "yyyy")
UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch);
UDateFormatField patternCharIndex;
const int32_t maxIntCount = 10;
int32_t beginOffset = appendTo.length();
1999-08-16 21:50:52 +00:00
// if the pattern character is unrecognized, signal an error and dump out
if (patternCharPtr == NULL)
1999-08-16 21:50:52 +00:00
{
status = U_INVALID_FORMAT_ERROR;
return;
1999-08-16 21:50:52 +00:00
}
patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars());
UCalendarDateFields field = fgPatternIndexToCalendarField[patternCharIndex];
int32_t value = cal.get(field, status);
if (U_FAILURE(status)) {
return;
}
1999-08-16 21:50:52 +00:00
switch (patternCharIndex) {
// for any "G" symbol, write out the appropriate era string
// "GGGG" is wide era name, anything else is abbreviated name
case UDAT_ERA_FIELD:
if (count >= 4)
_appendSymbol(appendTo, value, fSymbols->fEraNames, fSymbols->fEraNamesCount);
else
_appendSymbol(appendTo, value, fSymbols->fEras, fSymbols->fErasCount);
1999-08-16 21:50:52 +00:00
break;
// OLD: for "yyyy", write out the whole year; for "yy", write out the last 2 digits
// NEW: UTS#35:
//Year y yy yyy yyyy yyyyy
//AD 1 1 01 001 0001 00001
//AD 12 12 12 012 0012 00012
//AD 123 123 23 123 0123 00123
//AD 1234 1234 34 1234 1234 01234
//AD 12345 12345 45 12345 12345 12345
case UDAT_YEAR_FIELD:
case UDAT_YEAR_WOY_FIELD:
if(count == 2)
zeroPaddingNumber(appendTo, value, 2, 2);
else
zeroPaddingNumber(appendTo, value, count, maxIntCount);
break;
1999-08-16 21:50:52 +00:00
// for "MMMM", write out the whole month name, for "MMM", write out the month
// abbreviation, for "M" or "MM", write out the month as a number with the
// appropriate number of digits
// for "MMMMM", use the narrow form
case UDAT_MONTH_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fNarrowMonths,
fSymbols->fNarrowMonthsCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fMonths,
fSymbols->fMonthsCount);
1999-08-16 21:50:52 +00:00
else if (count == 3)
_appendSymbol(appendTo, value, fSymbols->fShortMonths,
fSymbols->fShortMonthsCount);
1999-08-16 21:50:52 +00:00
else
zeroPaddingNumber(appendTo, value + 1, count, maxIntCount);
1999-08-16 21:50:52 +00:00
break;
// for "LLLL", write out the whole month name, for "LLL", write out the month
// abbreviation, for "L" or "LL", write out the month as a number with the
// appropriate number of digits
// for "LLLLL", use the narrow form
case UDAT_STANDALONE_MONTH_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fStandaloneNarrowMonths,
fSymbols->fStandaloneNarrowMonthsCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fStandaloneMonths,
fSymbols->fStandaloneMonthsCount);
else if (count == 3)
_appendSymbol(appendTo, value, fSymbols->fStandaloneShortMonths,
fSymbols->fStandaloneShortMonthsCount);
else
zeroPaddingNumber(appendTo, value + 1, count, maxIntCount);
break;
1999-08-16 21:50:52 +00:00
// for "k" and "kk", write out the hour, adjusting midnight to appear as "24"
case UDAT_HOUR_OF_DAY1_FIELD:
1999-08-16 21:50:52 +00:00
if (value == 0)
zeroPaddingNumber(appendTo, cal.getMaximum(UCAL_HOUR_OF_DAY) + 1, count, maxIntCount);
1999-08-16 21:50:52 +00:00
else
zeroPaddingNumber(appendTo, value, count, maxIntCount);
1999-08-16 21:50:52 +00:00
break;
case UDAT_FRACTIONAL_SECOND_FIELD:
// Fractional seconds left-justify
{
fNumberFormat->setMinimumIntegerDigits((count > 3) ? 3 : count);
fNumberFormat->setMaximumIntegerDigits(maxIntCount);
if (count == 1) {
value = (value + 50) / 100;
} else if (count == 2) {
value = (value + 5) / 10;
}
FieldPosition p(0);
fNumberFormat->format(value, appendTo, p);
if (count > 3) {
fNumberFormat->setMinimumIntegerDigits(count - 3);
fNumberFormat->format((int32_t)0, appendTo, p);
}
}
1999-08-16 21:50:52 +00:00
break;
// for "EEE", write out the abbreviated day-of-the-week name
// for "EEEE", write out the wide day-of-the-week name
// for "EEEEE", use the narrow day-of-the-week name
case UDAT_DAY_OF_WEEK_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fNarrowWeekdays,
fSymbols->fNarrowWeekdaysCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fWeekdays,
fSymbols->fWeekdaysCount);
else
_appendSymbol(appendTo, value, fSymbols->fShortWeekdays,
fSymbols->fShortWeekdaysCount);
1999-08-16 21:50:52 +00:00
break;
// for "ccc", write out the abbreviated day-of-the-week name
// for "cccc", write out the wide day-of-the-week name
// for "ccccc", use the narrow day-of-the-week name
case UDAT_STANDALONE_DAY_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fStandaloneNarrowWeekdays,
fSymbols->fStandaloneNarrowWeekdaysCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fStandaloneWeekdays,
fSymbols->fStandaloneWeekdaysCount);
else if (count == 3)
_appendSymbol(appendTo, value, fSymbols->fStandaloneShortWeekdays,
fSymbols->fStandaloneShortWeekdaysCount);
else
zeroPaddingNumber(appendTo, value, 1, maxIntCount);
break;
1999-08-16 21:50:52 +00:00
// for and "a" symbol, write out the whole AM/PM string
case UDAT_AM_PM_FIELD:
_appendSymbol(appendTo, value, fSymbols->fAmPms,
fSymbols->fAmPmsCount);
1999-08-16 21:50:52 +00:00
break;
// for "h" and "hh", write out the hour, adjusting noon and midnight to show up
// as "12"
case UDAT_HOUR1_FIELD:
1999-08-16 21:50:52 +00:00
if (value == 0)
zeroPaddingNumber(appendTo, cal.getLeastMaximum(UCAL_HOUR) + 1, count, maxIntCount);
1999-08-16 21:50:52 +00:00
else
zeroPaddingNumber(appendTo, value, count, maxIntCount);
1999-08-16 21:50:52 +00:00
break;
// for the "z" symbols, we have to check our time zone data first. If we have a
// localized name for the time zone, then "zzzz" / "zzz" indicate whether
// daylight time is in effect (long/short) and "zz" / "z" do not (long/short).
// If we don't have a localized time zone name,
1999-08-16 21:50:52 +00:00
// then the time zone shows up as "GMT+hh:mm" or "GMT-hh:mm" (where "hh:mm" is the
// offset from GMT) regardless of how many z's were in the pattern symbol
case UDAT_TIMEZONE_FIELD:
case UDAT_TIMEZONE_GENERIC_FIELD:
case UDAT_TIMEZONE_SPECIAL_FIELD:
{
UnicodeString zoneString;
const ZoneStringFormat *zsf = fSymbols->getZoneStringFormat();
if (zsf) {
if (patternCharIndex == UDAT_TIMEZONE_FIELD) {
if (count < 4) {
// "z", "zz", "zzz"
zsf->getSpecificShortString(cal, TRUE /*commonly used only*/,
zoneString, status);
} else {
// "zzzz"
zsf->getSpecificLongString(cal, zoneString, status);
}
} else if (patternCharIndex == UDAT_TIMEZONE_GENERIC_FIELD) {
if (count == 1) {
// "v"
zsf->getGenericShortString(cal, TRUE /*commonly used only*/,
zoneString, status);
} else if (count == 4) {
// "vvvv"
zsf->getGenericLongString(cal, zoneString, status);
}
} else { // patternCharIndex == UDAT_TIMEZONE_SPECIAL_FIELD
if (count == 1) {
// "V"
zsf->getSpecificShortString(cal, FALSE /*ignore commonly used*/,
zoneString, status);
} else if (count == 4) {
// "VVVV"
zsf->getGenericLocationString(cal, zoneString, status);
}
}
}
if (zoneString.isEmpty()) {
appendGMT(appendTo, cal, status);
} else {
appendTo += zoneString;
}
1999-08-16 21:50:52 +00:00
}
break;
case UDAT_TIMEZONE_RFC_FIELD: // 'Z' - TIMEZONE_RFC
if (count < 4) {
// RFC822 format, must use ASCII digits
value = (cal.get(UCAL_ZONE_OFFSET, status) + cal.get(UCAL_DST_OFFSET, status));
formatRFC822TZ(appendTo, value);
} else {
// long form, localized GMT pattern
appendGMT(appendTo, cal, status);
}
break;
case UDAT_QUARTER_FIELD:
if (count >= 4)
_appendSymbol(appendTo, value/3, fSymbols->fQuarters,
fSymbols->fQuartersCount);
else if (count == 3)
_appendSymbol(appendTo, value/3, fSymbols->fShortQuarters,
fSymbols->fShortQuartersCount);
else
zeroPaddingNumber(appendTo, (value/3) + 1, count, maxIntCount);
break;
case UDAT_STANDALONE_QUARTER_FIELD:
if (count >= 4)
_appendSymbol(appendTo, value/3, fSymbols->fStandaloneQuarters,
fSymbols->fStandaloneQuartersCount);
else if (count == 3)
_appendSymbol(appendTo, value/3, fSymbols->fStandaloneShortQuarters,
fSymbols->fStandaloneShortQuartersCount);
else
zeroPaddingNumber(appendTo, (value/3) + 1, count, maxIntCount);
break;
1999-08-16 21:50:52 +00:00
// all of the other pattern symbols can be formatted as simple numbers with
// appropriate zero padding
default:
zeroPaddingNumber(appendTo, value, count, maxIntCount);
1999-08-16 21:50:52 +00:00
break;
}
// if the field we're formatting is the one the FieldPosition says it's interested
// in, fill in the FieldPosition with this field's positions
if (pos.getBeginIndex() == pos.getEndIndex() &&
pos.getField() == fgPatternIndexToDateFormatField[patternCharIndex]) {
pos.setBeginIndex(beginOffset);
pos.setEndIndex(appendTo.length());
1999-08-16 21:50:52 +00:00
}
}
1999-08-16 21:50:52 +00:00
//----------------------------------------------------------------------
void
SimpleDateFormat::zeroPaddingNumber(UnicodeString &appendTo, int32_t value, int32_t minDigits, int32_t maxDigits) const
1999-08-16 21:50:52 +00:00
{
FieldPosition pos(0);
1999-08-16 21:50:52 +00:00
fNumberFormat->setMinimumIntegerDigits(minDigits);
fNumberFormat->setMaximumIntegerDigits(maxDigits);
fNumberFormat->format(value, appendTo, pos); // 3rd arg is there to speed up processing
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
/**
* Format characters that indicate numeric fields. The character
* at index 0 is treated specially.
*/
static const UChar NUMERIC_FORMAT_CHARS[] = {0x4D, 0x59, 0x79, 0x75, 0x64, 0x65, 0x68, 0x48, 0x6D, 0x73, 0x53, 0x44, 0x46, 0x77, 0x57, 0x6B, 0x4B, 0x00}; /* "MYyudehHmsSDFwWkK" */
/**
* Return true if the given format character, occuring count
* times, represents a numeric field.
*/
UBool SimpleDateFormat::isNumeric(UChar formatChar, int32_t count) {
UnicodeString s(NUMERIC_FORMAT_CHARS);
int32_t i = s.indexOf(formatChar);
return (i > 0 || (i == 0 && count < 3));
}
void
SimpleDateFormat::parse(const UnicodeString& text, Calendar& cal, ParsePosition& parsePos) const
1999-08-16 21:50:52 +00:00
{
int32_t pos = parsePos.getIndex();
int32_t start = pos;
UBool ambiguousYear[] = { FALSE };
1999-08-16 21:50:52 +00:00
int32_t count = 0;
// hack, reset tztype, cast away const
((SimpleDateFormat*)this)->tztype = TZTYPE_UNK;
// For parsing abutting numeric fields. 'abutPat' is the
// offset into 'pattern' of the first of 2 or more abutting
// numeric fields. 'abutStart' is the offset into 'text'
// where parsing the fields begins. 'abutPass' starts off as 0
// and increments each time we try to parse the fields.
int32_t abutPat = -1; // If >=0, we are in a run of abutting numeric fields
int32_t abutStart = 0;
int32_t abutPass = 0;
UBool inQuote = FALSE;
const UnicodeString numericFormatChars(NUMERIC_FORMAT_CHARS);
for (int32_t i=0; i<fPattern.length(); ++i) {
UChar ch = fPattern.charAt(i);
// Handle alphabetic field characters.
if (!inQuote && ((ch >= 0x41 && ch <= 0x5A) || (ch >= 0x61 && ch <= 0x7A))) { // [A-Za-z]
int32_t fieldPat = i;
// Count the length of this field specifier
count = 1;
while ((i+1)<fPattern.length() &&
fPattern.charAt(i+1) == ch) {
++count;
++i;
}
if (isNumeric(ch, count)) {
if (abutPat < 0) {
// Determine if there is an abutting numeric field. For
// most fields we can just look at the next characters,
// but the 'm' field is either numeric or text,
// depending on the count, so we have to look ahead for
// that field.
if ((i+1)<fPattern.length()) {
UBool abutting;
UChar nextCh = fPattern.charAt(i+1);
int32_t k = numericFormatChars.indexOf(nextCh);
if (k == 0) {
int32_t j = i+2;
while (j<fPattern.length() &&
fPattern.charAt(j) == nextCh) {
++j;
}
abutting = (j-i) < 4; // nextCount < 3
} else {
abutting = k > 0;
}
1999-08-16 21:50:52 +00:00
// Record the start of a set of abutting numeric
// fields.
if (abutting) {
abutPat = fieldPat;
abutStart = pos;
abutPass = 0;
1999-08-16 21:50:52 +00:00
}
}
}
} else {
abutPat = -1; // End of any abutting fields
1999-08-16 21:50:52 +00:00
}
// Handle fields within a run of abutting numeric fields. Take
// the pattern "HHmmss" as an example. We will try to parse
// 2/2/2 characters of the input text, then if that fails,
// 1/2/2. We only adjust the width of the leftmost field; the
// others remain fixed. This allows "123456" => 12:34:56, but
// "12345" => 1:23:45. Likewise, for the pattern "yyyyMMdd" we
// try 4/2/2, 3/2/2, 2/2/2, and finally 1/2/2.
if (abutPat >= 0) {
// If we are at the start of a run of abutting fields, then
// shorten this field in each pass. If we can't shorten
// this field any more, then the parse of this set of
// abutting numeric fields has failed.
if (fieldPat == abutPat) {
count -= abutPass++;
if (count == 0) {
parsePos.setIndex(start);
parsePos.setErrorIndex(pos);
return;
1999-08-16 21:50:52 +00:00
}
}
pos = subParse(text, pos, ch, count,
TRUE, FALSE, ambiguousYear, cal);
// If the parse fails anywhere in the run, back up to the
// start of the run and retry.
if (pos < 0) {
i = abutPat - 1;
pos = abutStart;
continue;
1999-08-16 21:50:52 +00:00
}
}
// Handle non-numeric fields and non-abutting numeric
// fields.
else {
int32_t s = pos;
pos = subParse(text, pos, ch, count,
FALSE, TRUE, ambiguousYear, cal);
if (pos < 0) {
parsePos.setErrorIndex(s);
parsePos.setIndex(start);
return;
1999-08-16 21:50:52 +00:00
}
}
}
// Handle literal pattern characters. These are any
// quoted characters and non-alphabetic unquoted
// characters.
else {
abutPat = -1; // End of any abutting fields
// Handle quotes. Two consecutive quotes is a quote
// literal, inside or outside of quotes. Otherwise a
// quote indicates entry or exit from a quoted region.
if (ch == QUOTE) {
// Match a quote literal '' within OR outside of quotes
if ((i+1)<fPattern.length() && fPattern.charAt(i+1)==ch) {
++i; // Skip over doubled quote
// Fall through and treat quote as a literal
} else {
// Enter or exit quoted region
inQuote = !inQuote;
continue;
}
}
// A run of white space in the pattern matches a run
// of white space in the input text.
if (uprv_isRuleWhiteSpace(ch)) {
// Advance over run in pattern
while ((i+1)<fPattern.length() &&
uprv_isRuleWhiteSpace(fPattern.charAt(i+1))) {
++i;
}
// Advance over run in input text
int32_t s = pos;
while (pos<text.length() &&
( u_isUWhiteSpace(text.charAt(pos)) || uprv_isRuleWhiteSpace(text.charAt(pos)))) {
++pos;
}
// Must see at least one white space char in input
if (pos > s) {
continue;
}
} else if (pos<text.length() && text.charAt(pos)==ch) {
// Match a literal
++pos;
continue;
}
// We fall through to this point if the match fails
parsePos.setIndex(start);
parsePos.setErrorIndex(pos);
return;
1999-08-16 21:50:52 +00:00
}
}
// At this point the fields of Calendar have been set. Calendar
// will fill in default values for missing fields when the time
// is computed.
parsePos.setIndex(pos);
1999-08-16 21:50:52 +00:00
// This part is a problem: When we call parsedDate.after, we compute the time.
// Take the date April 3 2004 at 2:30 am. When this is first set up, the year
// will be wrong if we're parsing a 2-digit year pattern. It will be 1904.
// April 3 1904 is a Sunday (unlike 2004) so it is the DST onset day. 2:30 am
// is therefore an "impossible" time, since the time goes from 1:59 to 3:00 am
// on that day. It is therefore parsed out to fields as 3:30 am. Then we
// add 100 years, and get April 3 2004 at 3:30 am. Note that April 3 2004 is
// a Saturday, so it can have a 2:30 am -- and it should. [LIU]
/*
UDate parsedDate = calendar.getTime();
if( ambiguousYear[0] && !parsedDate.after(fDefaultCenturyStart) ) {
calendar.add(Calendar.YEAR, 100);
parsedDate = calendar.getTime();
}
*/
// Because of the above condition, save off the fields in case we need to readjust.
// The procedure we use here is not particularly efficient, but there is no other
// way to do this given the API restrictions present in Calendar. We minimize
// inefficiency by only performing this computation when it might apply, that is,
// when the two-digit year is equal to the start year, and thus might fall at the
// front or the back of the default century. This only works because we adjust
// the year correctly to start with in other cases -- see subParse().
UErrorCode status = U_ZERO_ERROR;
if (ambiguousYear[0] || tztype != TZTYPE_UNK) // If this is true then the two-digit year == the default start year
1999-08-16 21:50:52 +00:00
{
// We need a copy of the fields, and we need to avoid triggering a call to
// complete(), which will recalculate the fields. Since we can't access
// the fields[] array in Calendar, we clone the entire object. This will
// stop working if Calendar.clone() is ever rewritten to call complete().
Calendar *copy;
if (ambiguousYear[0]) {
copy = cal.clone();
// Check for failed cloning.
if (copy == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto ExitParse;
}
UDate parsedDate = copy->getTime(status);
// {sfb} check internalGetDefaultCenturyStart
if (fHaveDefaultCentury && (parsedDate < fDefaultCenturyStart)) {
// We can't use add here because that does a complete() first.
cal.set(UCAL_YEAR, fDefaultCenturyStartYear + 100);
}
delete copy;
}
if (tztype != TZTYPE_UNK) {
copy = cal.clone();
// Check for failed cloning.
if (copy == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto ExitParse;
}
const TimeZone & tz = cal.getTimeZone();
BasicTimeZone *btz = NULL;
if (tz.getDynamicClassID() == OlsonTimeZone::getStaticClassID()
|| tz.getDynamicClassID() == SimpleTimeZone::getStaticClassID()
|| tz.getDynamicClassID() == RuleBasedTimeZone::getStaticClassID()
|| tz.getDynamicClassID() == VTimeZone::getStaticClassID()) {
btz = (BasicTimeZone*)&tz;
}
// Get local millis
copy->set(UCAL_ZONE_OFFSET, 0);
copy->set(UCAL_DST_OFFSET, 0);
UDate localMillis = copy->getTime(status);
// Make sure parsed time zone type (Standard or Daylight)
// matches the rule used by the parsed time zone.
int32_t raw, dst;
if (btz != NULL) {
if (tztype == TZTYPE_STD) {
btz->getOffsetFromLocal(localMillis,
BasicTimeZone::kStandard, BasicTimeZone::kStandard, raw, dst, status);
} else {
btz->getOffsetFromLocal(localMillis,
BasicTimeZone::kDaylight, BasicTimeZone::kDaylight, raw, dst, status);
}
} else {
// No good way to resolve ambiguous time at transition,
// but following code work in most case.
tz.getOffset(localMillis, TRUE, raw, dst, status);
}
// Now, compare the results with parsed type, either standard or daylight saving time
int32_t resolvedSavings = dst;
if (tztype == TZTYPE_STD) {
if (dst != 0) {
// Override DST_OFFSET = 0 in the result calendar
resolvedSavings = 0;
}
} else { // tztype == TZTYPE_DST
if (dst == 0) {
if (btz != NULL) {
UDate time = localMillis + raw;
// We use the nearest daylight saving time rule.
TimeZoneTransition beforeTrs, afterTrs;
UDate beforeT = time, afterT = time;
int32_t beforeSav = 0, afterSav = 0;
UBool beforeTrsAvail, afterTrsAvail;
// Search for DST rule before or on the time
while (TRUE) {
beforeTrsAvail = btz->getPreviousTransition(beforeT, TRUE, beforeTrs);
if (!beforeTrsAvail) {
break;
}
beforeT = beforeTrs.getTime() - 1;
beforeSav = beforeTrs.getFrom()->getDSTSavings();
if (beforeSav != 0) {
break;
}
}
// Search for DST rule after the time
while (TRUE) {
afterTrsAvail = btz->getNextTransition(afterT, FALSE, afterTrs);
if (!afterTrsAvail) {
break;
}
afterT = afterTrs.getTime();
afterSav = afterTrs.getTo()->getDSTSavings();
if (afterSav != 0) {
break;
}
}
if (beforeTrsAvail && afterTrsAvail) {
if (time - beforeT > afterT - time) {
resolvedSavings = afterSav;
} else {
resolvedSavings = beforeSav;
}
} else if (beforeTrsAvail && beforeSav != 0) {
resolvedSavings = beforeSav;
} else if (afterTrsAvail && afterSav != 0) {
resolvedSavings = afterSav;
} else {
resolvedSavings = btz->getDSTSavings();
}
} else {
resolvedSavings = tz.getDSTSavings();
}
if (resolvedSavings == 0) {
// final fallback
resolvedSavings = U_MILLIS_PER_HOUR;
}
}
}
cal.set(UCAL_ZONE_OFFSET, raw);
cal.set(UCAL_DST_OFFSET, resolvedSavings);
delete copy;
}
1999-08-16 21:50:52 +00:00
}
ExitParse:
1999-08-16 21:50:52 +00:00
// If any Calendar calls failed, we pretend that we
// couldn't parse the string, when in reality this isn't quite accurate--
// we did parse it; the Calendar calls just failed.
if (U_FAILURE(status)) {
parsePos.setErrorIndex(pos);
parsePos.setIndex(start);
1999-08-16 21:50:52 +00:00
}
}
1999-08-16 21:50:52 +00:00
UDate
SimpleDateFormat::parse( const UnicodeString& text,
ParsePosition& pos) const {
// redefined here because the other parse() function hides this function's
// cunterpart on DateFormat
return DateFormat::parse(text, pos);
1999-08-16 21:50:52 +00:00
}
UDate
SimpleDateFormat::parse(const UnicodeString& text, UErrorCode& status) const
{
// redefined here because the other parse() function hides this function's
// counterpart on DateFormat
1999-08-16 21:50:52 +00:00
return DateFormat::parse(text, status);
}
//----------------------------------------------------------------------
int32_t SimpleDateFormat::matchQuarterString(const UnicodeString& text,
int32_t start,
UCalendarDateFields field,
const UnicodeString* data,
int32_t dataCount,
Calendar& cal) const
{
int32_t i = 0;
int32_t count = dataCount;
// There may be multiple strings in the data[] array which begin with
// the same prefix (e.g., Cerven and Cervenec (June and July) in Czech).
// We keep track of the longest match, and return that. Note that this
// unfortunately requires us to test all array elements.
int32_t bestMatchLength = 0, bestMatch = -1;
// {sfb} kludge to support case-insensitive comparison
// {markus 2002oct11} do not just use caseCompareBetween because we do not know
// the length of the match after case folding
// {alan 20040607} don't case change the whole string, since the length
// can change
// TODO we need a case-insensitive startsWith function
UnicodeString lcase, lcaseText;
text.extract(start, INT32_MAX, lcaseText);
lcaseText.foldCase();
for (; i < count; ++i)
{
// Always compare if we have no match yet; otherwise only compare
// against potentially better matches (longer strings).
lcase.fastCopyFrom(data[i]).foldCase();
int32_t length = lcase.length();
if (length > bestMatchLength &&
lcaseText.compareBetween(0, length, lcase, 0, length) == 0)
{
bestMatch = i;
bestMatchLength = length;
}
}
if (bestMatch >= 0)
{
cal.set(field, bestMatch * 3);
// Once we have a match, we have to determine the length of the
// original source string. This will usually be == the length of
// the case folded string, but it may differ (e.g. sharp s).
lcase.fastCopyFrom(data[bestMatch]).foldCase();
// Most of the time, the length will be the same as the length
// of the string from the locale data. Sometimes it will be
// different, in which case we will have to figure it out by
// adding a character at a time, until we have a match. We do
// this all in one loop, where we try 'len' first (at index
// i==0).
int32_t len = data[bestMatch].length(); // 99+% of the time
int32_t n = text.length() - start;
for (i=0; i<=n; ++i) {
int32_t j=i;
if (i == 0) {
j = len;
} else if (i == len) {
continue; // already tried this when i was 0
}
text.extract(start, j, lcaseText);
lcaseText.foldCase();
if (lcase == lcaseText) {
return start + j;
}
}
}
return -start;
}
//----------------------------------------------------------------------
1999-08-16 21:50:52 +00:00
int32_t SimpleDateFormat::matchString(const UnicodeString& text,
int32_t start,
UCalendarDateFields field,
1999-08-16 21:50:52 +00:00
const UnicodeString* data,
int32_t dataCount,
Calendar& cal) const
1999-08-16 21:50:52 +00:00
{
int32_t i = 0;
int32_t count = dataCount;
if (field == UCAL_DAY_OF_WEEK) i = 1;
1999-08-16 21:50:52 +00:00
// There may be multiple strings in the data[] array which begin with
// the same prefix (e.g., Cerven and Cervenec (June and July) in Czech).
// We keep track of the longest match, and return that. Note that this
// unfortunately requires us to test all array elements.
int32_t bestMatchLength = 0, bestMatch = -1;
// {sfb} kludge to support case-insensitive comparison
// {markus 2002oct11} do not just use caseCompareBetween because we do not know
// the length of the match after case folding
// {alan 20040607} don't case change the whole string, since the length
// can change
// TODO we need a case-insensitive startsWith function
UnicodeString lcase, lcaseText;
text.extract(start, INT32_MAX, lcaseText);
lcaseText.foldCase();
1999-08-16 21:50:52 +00:00
for (; i < count; ++i)
{
// Always compare if we have no match yet; otherwise only compare
// against potentially better matches (longer strings).
lcase.fastCopyFrom(data[i]).foldCase();
int32_t length = lcase.length();
1999-08-16 21:50:52 +00:00
if (length > bestMatchLength &&
lcaseText.compareBetween(0, length, lcase, 0, length) == 0)
1999-08-16 21:50:52 +00:00
{
bestMatch = i;
bestMatchLength = length;
}
}
if (bestMatch >= 0)
{
cal.set(field, bestMatch);
// Once we have a match, we have to determine the length of the
// original source string. This will usually be == the length of
// the case folded string, but it may differ (e.g. sharp s).
lcase.fastCopyFrom(data[bestMatch]).foldCase();
// Most of the time, the length will be the same as the length
// of the string from the locale data. Sometimes it will be
// different, in which case we will have to figure it out by
// adding a character at a time, until we have a match. We do
// this all in one loop, where we try 'len' first (at index
// i==0).
int32_t len = data[bestMatch].length(); // 99+% of the time
int32_t n = text.length() - start;
for (i=0; i<=n; ++i) {
int32_t j=i;
if (i == 0) {
j = len;
} else if (i == len) {
continue; // already tried this when i was 0
}
text.extract(start, j, lcaseText);
lcaseText.foldCase();
if (lcase == lcaseText) {
return start + j;
}
}
1999-08-16 21:50:52 +00:00
}
return -start;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::set2DigitYearStart(UDate d, UErrorCode& status)
{
parseAmbiguousDatesAsAfter(d, status);
}
/**
* Private member function that converts the parsed date strings into
* timeFields. Returns -start (for ParsePosition) if failed.
* @param text the time text to be parsed.
* @param start where to start parsing.
* @param ch the pattern character for the date field text to be parsed.
* @param count the count of a pattern character.
* @return the new start position if matching succeeded; a negative number
* indicating matching failure, otherwise.
*/
int32_t SimpleDateFormat::subParse(const UnicodeString& text, int32_t& start, UChar ch, int32_t count,
UBool obeyCount, UBool allowNegative, UBool ambiguousYear[], Calendar& cal) const
1999-08-16 21:50:52 +00:00
{
Formattable number;
int32_t value = 0;
int32_t i;
ParsePosition pos(0);
int32_t patternCharIndex;
UnicodeString temp;
UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch);
#if defined (U_DEBUG_CAL)
//fprintf(stderr, "%s:%d - [%c] st=%d \n", __FILE__, __LINE__, (char) ch, start);
#endif
if (patternCharPtr == NULL) {
1999-08-16 21:50:52 +00:00
return -start;
}
patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars());
1999-08-16 21:50:52 +00:00
UCalendarDateFields field = fgPatternIndexToCalendarField[patternCharIndex];
1999-08-16 21:50:52 +00:00
// If there are any spaces here, skip over them. If we hit the end
// of the string, then fail.
for (;;) {
if (start >= text.length()) {
1999-08-16 21:50:52 +00:00
return -start;
}
UChar32 c = text.char32At(start);
if (!u_isUWhiteSpace(c)) {
1999-08-16 21:50:52 +00:00
break;
}
start += UTF_CHAR_LENGTH(c);
1999-08-16 21:50:52 +00:00
}
pos.setIndex(start);
1999-08-16 21:50:52 +00:00
// We handle a few special cases here where we need to parse
// a number value. We handle further, more generic cases below. We need
// to handle some of them here because some fields require extra processing on
// the parsed value.
if (patternCharIndex == UDAT_HOUR_OF_DAY1_FIELD ||
patternCharIndex == UDAT_HOUR1_FIELD ||
(patternCharIndex == UDAT_MONTH_FIELD && count <= 2) ||
(patternCharIndex == UDAT_STANDALONE_MONTH_FIELD && count <= 2) ||
(patternCharIndex == UDAT_QUARTER_FIELD && count <= 2) ||
(patternCharIndex == UDAT_STANDALONE_QUARTER_FIELD && count <= 2) ||
patternCharIndex == UDAT_YEAR_FIELD ||
patternCharIndex == UDAT_YEAR_WOY_FIELD ||
patternCharIndex == UDAT_FRACTIONAL_SECOND_FIELD)
1999-08-16 21:50:52 +00:00
{
int32_t parseStart = pos.getIndex();
1999-08-16 21:50:52 +00:00
// It would be good to unify this with the obeyCount logic below,
// but that's going to be difficult.
const UnicodeString* src;
if (obeyCount) {
if ((start+count) > text.length()) {
1999-08-16 21:50:52 +00:00
return -start;
}
1999-08-16 21:50:52 +00:00
text.extractBetween(0, start + count, temp);
src = &temp;
} else {
src = &text;
1999-08-16 21:50:52 +00:00
}
parseInt(*src, number, pos, allowNegative);
1999-08-16 21:50:52 +00:00
if (pos.getIndex() == parseStart)
return -start;
value = number.getLong();
}
switch (patternCharIndex) {
case UDAT_ERA_FIELD:
if (count == 4) {
return matchString(text, start, UCAL_ERA, fSymbols->fEraNames, fSymbols->fEraNamesCount, cal);
}
return matchString(text, start, UCAL_ERA, fSymbols->fEras, fSymbols->fErasCount, cal);
case UDAT_YEAR_FIELD:
// If there are 3 or more YEAR pattern characters, this indicates
1999-08-16 21:50:52 +00:00
// that the year value is to be treated literally, without any
// two-digit year adjustments (e.g., from "01" to 2001). Otherwise
// we made adjustments to place the 2-digit year in the proper
// century, for parsed strings from "00" to "99". Any other string
// is treated literally: "2250", "-1", "1", "002".
if (count <= 2 && (pos.getIndex() - start) == 2
&& u_isdigit(text.charAt(start))
&& u_isdigit(text.charAt(start+1)))
1999-08-16 21:50:52 +00:00
{
// Assume for example that the defaultCenturyStart is 6/18/1903.
// This means that two-digit years will be forced into the range
// 6/18/1903 to 6/17/2003. As a result, years 00, 01, and 02
// correspond to 2000, 2001, and 2002. Years 04, 05, etc. correspond
// to 1904, 1905, etc. If the year is 03, then it is 2003 if the
// other fields specify a date before 6/18, or 1903 if they specify a
// date afterwards. As a result, 03 is an ambiguous year. All other
// two-digit years are unambiguous.
if(fHaveDefaultCentury) { // check if this formatter even has a pivot year
int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100;
ambiguousYear[0] = (value == ambiguousTwoDigitYear);
value += (fDefaultCenturyStartYear/100)*100 +
1999-08-16 21:50:52 +00:00
(value < ambiguousTwoDigitYear ? 100 : 0);
}
1999-08-16 21:50:52 +00:00
}
cal.set(UCAL_YEAR, value);
1999-08-16 21:50:52 +00:00
return pos.getIndex();
case UDAT_YEAR_WOY_FIELD:
// Comment is the same as for UDAT_Year_FIELDs - look above
if (count <= 2 && (pos.getIndex() - start) == 2
&& u_isdigit(text.charAt(start))
&& u_isdigit(text.charAt(start+1))
&& fHaveDefaultCentury )
{
int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100;
ambiguousYear[0] = (value == ambiguousTwoDigitYear);
value += (fDefaultCenturyStartYear/100)*100 +
(value < ambiguousTwoDigitYear ? 100 : 0);
}
cal.set(UCAL_YEAR_WOY, value);
return pos.getIndex();
case UDAT_MONTH_FIELD:
1999-08-16 21:50:52 +00:00
if (count <= 2) // i.e., M or MM.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: M or MM.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, value - 1);
1999-08-16 21:50:52 +00:00
return pos.getIndex();
} else {
1999-08-16 21:50:52 +00:00
// count >= 3 // i.e., MMM or MMMM
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_MONTH,
fSymbols->fMonths, fSymbols->fMonthsCount, cal)) > 0)
1999-08-16 21:50:52 +00:00
return newStart;
else // count == 4 failed, now try count == 3
return matchString(text, start, UCAL_MONTH,
fSymbols->fShortMonths, fSymbols->fShortMonthsCount, cal);
1999-08-16 21:50:52 +00:00
}
case UDAT_STANDALONE_MONTH_FIELD:
if (count <= 2) // i.e., L or LL.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: M or MM.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, value - 1);
return pos.getIndex();
} else {
// count >= 3 // i.e., LLL or LLLL
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_MONTH,
fSymbols->fStandaloneMonths, fSymbols->fStandaloneMonthsCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchString(text, start, UCAL_MONTH,
fSymbols->fStandaloneShortMonths, fSymbols->fStandaloneShortMonthsCount, cal);
}
case UDAT_HOUR_OF_DAY1_FIELD:
1999-08-16 21:50:52 +00:00
// [We computed 'value' above.]
if (value == cal.getMaximum(UCAL_HOUR_OF_DAY) + 1)
1999-08-16 21:50:52 +00:00
value = 0;
cal.set(UCAL_HOUR_OF_DAY, value);
1999-08-16 21:50:52 +00:00
return pos.getIndex();
case UDAT_FRACTIONAL_SECOND_FIELD:
// Fractional seconds left-justify
i = pos.getIndex() - start;
if (i < 3) {
while (i < 3) {
value *= 10;
i++;
}
} else {
int32_t a = 1;
while (i > 3) {
a *= 10;
i--;
}
value = (value + (a>>1)) / a;
}
cal.set(UCAL_MILLISECOND, value);
return pos.getIndex();
case UDAT_DAY_OF_WEEK_FIELD:
1999-08-16 21:50:52 +00:00
{
// Want to be able to parse both short and long forms.
// Try count == 4 (DDDD) first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fWeekdays, fSymbols->fWeekdaysCount, cal)) > 0)
1999-08-16 21:50:52 +00:00
return newStart;
else // DDDD failed, now try DDD
return matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fShortWeekdays, fSymbols->fShortWeekdaysCount, cal);
1999-08-16 21:50:52 +00:00
}
case UDAT_STANDALONE_DAY_FIELD:
{
// Want to be able to parse both short and long forms.
// Try count == 4 (DDDD) first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fStandaloneWeekdays, fSymbols->fStandaloneWeekdaysCount, cal)) > 0)
return newStart;
else // DDDD failed, now try DDD
return matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fStandaloneShortWeekdays, fSymbols->fStandaloneShortWeekdaysCount, cal);
}
case UDAT_AM_PM_FIELD:
return matchString(text, start, UCAL_AM_PM, fSymbols->fAmPms, fSymbols->fAmPmsCount, cal);
case UDAT_HOUR1_FIELD:
1999-08-16 21:50:52 +00:00
// [We computed 'value' above.]
if (value == cal.getLeastMaximum(UCAL_HOUR)+1)
1999-08-16 21:50:52 +00:00
value = 0;
cal.set(UCAL_HOUR, value);
1999-08-16 21:50:52 +00:00
return pos.getIndex();
case UDAT_QUARTER_FIELD:
if (count <= 2) // i.e., Q or QQ.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: Q or QQ.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, (value - 1) * 3);
return pos.getIndex();
} else {
// count >= 3 // i.e., QQQ or QQQQ
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fQuarters, fSymbols->fQuartersCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fShortQuarters, fSymbols->fShortQuartersCount, cal);
}
case UDAT_STANDALONE_QUARTER_FIELD:
if (count <= 2) // i.e., q or qq.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: q or q.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, (value - 1) * 3);
return pos.getIndex();
} else {
// count >= 3 // i.e., qqq or qqqq
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fStandaloneQuarters, fSymbols->fStandaloneQuartersCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fStandaloneShortQuarters, fSymbols->fStandaloneShortQuartersCount, cal);
}
case UDAT_TIMEZONE_FIELD:
case UDAT_TIMEZONE_RFC_FIELD:
case UDAT_TIMEZONE_GENERIC_FIELD:
case UDAT_TIMEZONE_SPECIAL_FIELD:
1999-08-16 21:50:52 +00:00
{
int32_t offset = 0;
UBool parsed = FALSE;
// Step 1
// Check if this is a long GMT offset string (either localized or default)
offset = parseGMT(text, pos);
if (pos.getIndex() - start > 0) {
parsed = TRUE;
}
if (!parsed) {
// Step 2
// Check if this is an RFC822 time zone offset.
// ICU supports the standard RFC822 format [+|-]HHmm
// and its extended form [+|-]HHmmSS.
do {
int32_t sign = 0;
UChar signChar = text.charAt(start);
if (signChar == (UChar)0x002B /* '+' */) {
sign = 1;
} else if (signChar == (UChar)0x002D /* '-' */) {
sign = -1;
} else {
// Not an RFC822 offset string
break;
}
1999-08-16 21:50:52 +00:00
// Parse digits
int32_t orgPos = start + 1;
pos.setIndex(orgPos);
parseInt(text, number, 6, pos, FALSE);
int32_t numLen = pos.getIndex() - orgPos;
if (numLen <= 0) {
break;
}
1999-08-16 21:50:52 +00:00
// Followings are possible format (excluding sign char)
// HHmmSS
// HmmSS
// HHmm
// Hmm
// HH
// H
int32_t val = number.getLong();
int32_t hour = 0, min = 0, sec = 0;
switch(numLen) {
case 1: // H
case 2: // HH
hour = val;
break;
case 3: // Hmm
case 4: // HHmm
hour = val / 100;
min = val % 100;
break;
case 5: // Hmmss
case 6: // HHmmss
hour = val / 10000;
min = (val % 10000) / 100;
sec = val % 100;
break;
}
if (hour > 23 || min > 59 || sec > 59) {
// Invalid value range
break;
}
offset = (((hour * 60) + min) * 60 + sec) * 1000 * sign;
parsed = TRUE;
} while (FALSE);
1999-08-16 21:50:52 +00:00
if (!parsed) {
// Failed to parse. Reset the position.
pos.setIndex(start);
}
1999-08-16 21:50:52 +00:00
}
if (parsed) {
// offset was successfully parsed as either a long GMT string or RFC822 zone offset
// string. Create normalized zone ID for the offset.
UnicodeString tzID(gGmt);
formatRFC822TZ(tzID, offset);
//TimeZone *customTZ = TimeZone::createTimeZone(tzID);
TimeZone *customTZ = new SimpleTimeZone(offset, tzID); // faster than TimeZone::createTimeZone
cal.adoptTimeZone(customTZ);
return pos.getIndex();
1999-08-16 21:50:52 +00:00
}
// Step 3
1999-08-16 21:50:52 +00:00
// At this point, check for named time zones by looking through
// the locale data from the DateFormatZoneData strings.
// Want to be able to parse both short and long forms.
// optimize for calendar's current time zone
const ZoneStringFormat *zsf = fSymbols->getZoneStringFormat();
if (zsf) {
UErrorCode status = U_ZERO_ERROR;
const ZoneStringInfo *zsinfo = NULL;
int32_t matchLen;
switch (patternCharIndex) {
case UDAT_TIMEZONE_FIELD: // 'z'
if (count < 4) {
zsinfo = zsf->findSpecificShort(text, start, matchLen, status);
} else {
zsinfo = zsf->findSpecificLong(text, start, matchLen, status);
}
break;
case UDAT_TIMEZONE_GENERIC_FIELD: // 'v'
if (count == 1) {
zsinfo = zsf->findGenericShort(text, start, matchLen, status);
} else if (count == 4) {
zsinfo = zsf->findGenericLong(text, start, matchLen, status);
}
break;
case UDAT_TIMEZONE_SPECIAL_FIELD: // 'V'
if (count == 1) {
zsinfo = zsf->findSpecificShort(text, start, matchLen, status);
} else if (count == 4) {
zsinfo = zsf->findGenericLocation(text, start, matchLen, status);
}
break;
}
1999-08-16 21:50:52 +00:00
if (U_SUCCESS(status) && zsinfo != NULL) {
if (zsinfo->isStandard()) {
((SimpleDateFormat*)this)->tztype = TZTYPE_STD;
} else if (zsinfo->isDaylight()) {
((SimpleDateFormat*)this)->tztype = TZTYPE_DST;
}
UnicodeString tzid;
zsinfo->getID(tzid);
UnicodeString current;
cal.getTimeZone().getID(current);
if (tzid != current) {
TimeZone *tz = TimeZone::createTimeZone(tzid);
cal.adoptTimeZone(tz);
}
return start + matchLen;
}
1999-08-16 21:50:52 +00:00
}
// complete failure
return -start;
1999-08-16 21:50:52 +00:00
}
1999-08-16 21:50:52 +00:00
default:
// Handle "generic" fields
int32_t parseStart = pos.getIndex();
const UnicodeString* src;
if (obeyCount) {
if ((start+count) > text.length()) {
1999-08-16 21:50:52 +00:00
return -start;
}
text.extractBetween(0, start + count, temp);
src = &temp;
} else {
src = &text;
1999-08-16 21:50:52 +00:00
}
parseInt(*src, number, pos, allowNegative);
1999-08-16 21:50:52 +00:00
if (pos.getIndex() != parseStart) {
cal.set(field, number.getLong());
1999-08-16 21:50:52 +00:00
return pos.getIndex();
}
return -start;
}
}
/**
* Parse an integer using fNumberFormat. This method is semantically
* const, but actually may modify fNumberFormat.
*/
void SimpleDateFormat::parseInt(const UnicodeString& text,
Formattable& number,
ParsePosition& pos,
UBool allowNegative) const {
parseInt(text, number, -1, pos, allowNegative);
}
/**
* Parse an integer using fNumberFormat up to maxDigits.
*/
void SimpleDateFormat::parseInt(const UnicodeString& text,
Formattable& number,
int32_t maxDigits,
ParsePosition& pos,
UBool allowNegative) const {
UnicodeString oldPrefix;
DecimalFormat* df = NULL;
if (!allowNegative &&
fNumberFormat->getDynamicClassID() == DecimalFormat::getStaticClassID()) {
df = (DecimalFormat*)fNumberFormat;
df->getNegativePrefix(oldPrefix);
df->setNegativePrefix(SUPPRESS_NEGATIVE_PREFIX);
}
int32_t oldPos = pos.getIndex();
fNumberFormat->parse(text, number, pos);
if (df != NULL) {
df->setNegativePrefix(oldPrefix);
}
if (maxDigits > 0) {
// adjust the result to fit into
// the maxDigits and move the position back
int32_t nDigits = pos.getIndex() - oldPos;
if (nDigits > maxDigits) {
int32_t val = number.getLong();
nDigits -= maxDigits;
while (nDigits > 0) {
val /= 10;
nDigits--;
}
pos.setIndex(oldPos + maxDigits);
number.setLong(val);
}
}
}
1999-08-16 21:50:52 +00:00
//----------------------------------------------------------------------
void SimpleDateFormat::translatePattern(const UnicodeString& originalPattern,
UnicodeString& translatedPattern,
const UnicodeString& from,
const UnicodeString& to,
UErrorCode& status)
{
// run through the pattern and convert any pattern symbols from the version
// in "from" to the corresponding character ion "to". This code takes
// quoted strings into account (it doesn't try to translate them), and it signals
// an error if a particular "pattern character" doesn't appear in "from".
// Depending on the values of "from" and "to" this can convert from generic
// to localized patterns or localized to generic.
if (U_FAILURE(status))
1999-08-16 21:50:52 +00:00
return;
translatedPattern.remove();
UBool inQuote = FALSE;
for (int32_t i = 0; i < originalPattern.length(); ++i) {
1999-08-16 21:50:52 +00:00
UChar c = originalPattern[i];
if (inQuote) {
if (c == QUOTE)
1999-08-16 21:50:52 +00:00
inQuote = FALSE;
}
else {
if (c == QUOTE)
1999-08-16 21:50:52 +00:00
inQuote = TRUE;
else if ((c >= 0x0061 /*'a'*/ && c <= 0x007A) /*'z'*/
|| (c >= 0x0041 /*'A'*/ && c <= 0x005A /*'Z'*/)) {
int32_t ci = from.indexOf(c);
1999-08-16 21:50:52 +00:00
if (ci == -1) {
status = U_INVALID_FORMAT_ERROR;
1999-08-16 21:50:52 +00:00
return;
}
c = to[ci];
}
}
translatedPattern += c;
}
if (inQuote) {
status = U_INVALID_FORMAT_ERROR;
1999-08-16 21:50:52 +00:00
return;
}
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::toPattern(UnicodeString& result) const
{
result = fPattern;
return result;
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::toLocalizedPattern(UnicodeString& result,
UErrorCode& status) const
{
translatePattern(fPattern, result, DateFormatSymbols::getPatternUChars(), fSymbols->fLocalPatternChars, status);
return result;
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
void
SimpleDateFormat::applyPattern(const UnicodeString& pattern)
{
fPattern = pattern;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::applyLocalizedPattern(const UnicodeString& pattern,
UErrorCode &status)
{
translatePattern(pattern, fPattern, fSymbols->fLocalPatternChars, DateFormatSymbols::getPatternUChars(), status);
1999-08-16 21:50:52 +00:00
}
//----------------------------------------------------------------------
const DateFormatSymbols*
SimpleDateFormat::getDateFormatSymbols() const
{
return fSymbols;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::adoptDateFormatSymbols(DateFormatSymbols* newFormatSymbols)
{
delete fSymbols;
fSymbols = newFormatSymbols;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::setDateFormatSymbols(const DateFormatSymbols& newFormatSymbols)
{
delete fSymbols;
fSymbols = new DateFormatSymbols(newFormatSymbols);
}
//----------------------------------------------------------------------
void SimpleDateFormat::adoptCalendar(Calendar* calendarToAdopt)
{
UErrorCode status = U_ZERO_ERROR;
DateFormat::adoptCalendar(calendarToAdopt);
delete fSymbols;
fSymbols=NULL;
initializeSymbols(fLocale, fCalendar, status); // we need new symbols
initializeDefaultCentury(); // we need a new century (possibly)
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
1999-08-16 21:50:52 +00:00
//eof