scuffed-code/icu4c/source/i18n/decimfmt.cpp

1342 lines
47 KiB
C++
Raw Normal View History

// © 2018 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING && !UPRV_INCOMPLETE_CPP11_SUPPORT
// Allow implicit conversion from char16_t* to UnicodeString for this file:
// Helpful in toString methods and elsewhere.
#define UNISTR_FROM_STRING_EXPLICIT
#include <cmath>
#include <stdlib.h>
#include "unicode/errorcode.h"
#include "unicode/decimfmt.h"
#include "number_decimalquantity.h"
#include "number_types.h"
#include "numparse_impl.h"
#include "number_mapper.h"
#include "number_patternstring.h"
#include "putilimp.h"
#include "number_utils.h"
#include "number_utypes.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
using namespace icu::numparse;
using namespace icu::numparse::impl;
using ERoundingMode = icu::DecimalFormat::ERoundingMode;
using EPadPosition = icu::DecimalFormat::EPadPosition;
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
DecimalFormat::DecimalFormat(UErrorCode& status)
: DecimalFormat(nullptr, status) {
// Use the default locale and decimal pattern.
const char* localeName = Locale::getDefault().getName();
LocalPointer<NumberingSystem> ns(NumberingSystem::createInstance(status));
UnicodeString patternString = utils::getPatternForStyle(
localeName,
ns->getName(),
CLDR_PATTERN_STYLE_DECIMAL,
status);
setPropertiesFromPattern(patternString, IGNORE_ROUNDING_IF_CURRENCY, status);
touch(status);
}
DecimalFormat::DecimalFormat(const UnicodeString& pattern, UErrorCode& status)
: DecimalFormat(nullptr, status) {
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status);
touch(status);
}
DecimalFormat::DecimalFormat(const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt,
UErrorCode& status)
: DecimalFormat(symbolsToAdopt, status) {
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status);
touch(status);
}
DecimalFormat::DecimalFormat(const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt,
UNumberFormatStyle style, UErrorCode& status)
: DecimalFormat(symbolsToAdopt, status) {
// If choice is a currency type, ignore the rounding information.
if (style == UNumberFormatStyle::UNUM_CURRENCY || style == UNumberFormatStyle::UNUM_CURRENCY_ISO ||
style == UNumberFormatStyle::UNUM_CURRENCY_ACCOUNTING ||
style == UNumberFormatStyle::UNUM_CASH_CURRENCY ||
style == UNumberFormatStyle::UNUM_CURRENCY_STANDARD ||
style == UNumberFormatStyle::UNUM_CURRENCY_PLURAL) {
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_ALWAYS, status);
} else {
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status);
}
// Note: in Java, CurrencyPluralInfo is set in NumberFormat.java, but in C++, it is not set there,
// so we have to set it here.
if (style == UNumberFormatStyle::UNUM_CURRENCY_PLURAL) {
LocalPointer<CurrencyPluralInfo> cpi(
new CurrencyPluralInfo(fSymbols->getLocale(), status),
status);
if (U_FAILURE(status)) { return; }
fProperties->currencyPluralInfo.fPtr.adoptInstead(cpi.orphan());
}
touch(status);
}
DecimalFormat::DecimalFormat(const DecimalFormatSymbols* symbolsToAdopt, UErrorCode& status) {
fProperties.adoptInsteadAndCheckErrorCode(new DecimalFormatProperties(), status);
fExportedProperties.adoptInsteadAndCheckErrorCode(new DecimalFormatProperties(), status);
fWarehouse.adoptInsteadAndCheckErrorCode(new DecimalFormatWarehouse(), status);
if (symbolsToAdopt == nullptr) {
fSymbols.adoptInsteadAndCheckErrorCode(new DecimalFormatSymbols(status), status);
} else {
fSymbols.adoptInsteadAndCheckErrorCode(symbolsToAdopt, status);
}
}
#if UCONFIG_HAVE_PARSEALLINPUT
void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
if (value == fProperties->parseAllInput) { return; }
fProperties->parseAllInput = value;
}
#endif
DecimalFormat&
DecimalFormat::setAttribute(UNumberFormatAttribute attr, int32_t newValue, UErrorCode& status) {
if (U_FAILURE(status)) { return *this; }
switch (attr) {
case UNUM_LENIENT_PARSE:
setLenient(newValue != 0);
break;
case UNUM_PARSE_INT_ONLY:
setParseIntegerOnly(newValue != 0);
break;
case UNUM_GROUPING_USED:
setGroupingUsed(newValue != 0);
break;
case UNUM_DECIMAL_ALWAYS_SHOWN:
setDecimalSeparatorAlwaysShown(newValue != 0);
break;
case UNUM_MAX_INTEGER_DIGITS:
setMaximumIntegerDigits(newValue);
break;
case UNUM_MIN_INTEGER_DIGITS:
setMinimumIntegerDigits(newValue);
break;
case UNUM_INTEGER_DIGITS:
setMinimumIntegerDigits(newValue);
setMaximumIntegerDigits(newValue);
break;
case UNUM_MAX_FRACTION_DIGITS:
setMaximumFractionDigits(newValue);
break;
case UNUM_MIN_FRACTION_DIGITS:
setMinimumFractionDigits(newValue);
break;
case UNUM_FRACTION_DIGITS:
setMinimumFractionDigits(newValue);
setMaximumFractionDigits(newValue);
break;
case UNUM_SIGNIFICANT_DIGITS_USED:
setSignificantDigitsUsed(newValue != 0);
break;
case UNUM_MAX_SIGNIFICANT_DIGITS:
setMaximumSignificantDigits(newValue);
break;
case UNUM_MIN_SIGNIFICANT_DIGITS:
setMinimumSignificantDigits(newValue);
break;
case UNUM_MULTIPLIER:
setMultiplier(newValue);
break;
case UNUM_SCALE:
setMultiplierScale(newValue);
break;
case UNUM_GROUPING_SIZE:
setGroupingSize(newValue);
break;
case UNUM_ROUNDING_MODE:
setRoundingMode((DecimalFormat::ERoundingMode) newValue);
break;
case UNUM_FORMAT_WIDTH:
setFormatWidth(newValue);
break;
case UNUM_PADDING_POSITION:
/** The position at which padding will take place. */
setPadPosition((DecimalFormat::EPadPosition) newValue);
break;
case UNUM_SECONDARY_GROUPING_SIZE:
setSecondaryGroupingSize(newValue);
break;
#if UCONFIG_HAVE_PARSEALLINPUT
case UNUM_PARSE_ALL_INPUT:
setParseAllInput((UNumberFormatAttributeValue) newValue);
break;
#endif
case UNUM_PARSE_NO_EXPONENT:
setParseNoExponent((UBool) newValue);
break;
case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
setDecimalPatternMatchRequired((UBool) newValue);
break;
case UNUM_CURRENCY_USAGE:
setCurrencyUsage((UCurrencyUsage) newValue, &status);
break;
case UNUM_MINIMUM_GROUPING_DIGITS:
setMinimumGroupingDigits(newValue);
break;
case UNUM_PARSE_CASE_SENSITIVE:
setParseCaseSensitive(static_cast<UBool>(newValue));
break;
case UNUM_SIGN_ALWAYS_SHOWN:
setSignAlwaysShown(static_cast<UBool>(newValue));
break;
case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
setFormatFailIfMoreThanMaxDigits(static_cast<UBool>(newValue));
break;
default:
status = U_UNSUPPORTED_ERROR;
break;
}
return *this;
}
int32_t DecimalFormat::getAttribute(UNumberFormatAttribute attr, UErrorCode& status) const {
if (U_FAILURE(status)) { return -1; }
switch (attr) {
case UNUM_LENIENT_PARSE:
return isLenient();
case UNUM_PARSE_INT_ONLY:
return isParseIntegerOnly();
case UNUM_GROUPING_USED:
return isGroupingUsed();
case UNUM_DECIMAL_ALWAYS_SHOWN:
return isDecimalSeparatorAlwaysShown();
case UNUM_MAX_INTEGER_DIGITS:
return getMaximumIntegerDigits();
case UNUM_MIN_INTEGER_DIGITS:
return getMinimumIntegerDigits();
case UNUM_INTEGER_DIGITS:
// TBD: what should this return?
return getMinimumIntegerDigits();
case UNUM_MAX_FRACTION_DIGITS:
return getMaximumFractionDigits();
case UNUM_MIN_FRACTION_DIGITS:
return getMinimumFractionDigits();
case UNUM_FRACTION_DIGITS:
// TBD: what should this return?
return getMinimumFractionDigits();
case UNUM_SIGNIFICANT_DIGITS_USED:
return areSignificantDigitsUsed();
case UNUM_MAX_SIGNIFICANT_DIGITS:
return getMaximumSignificantDigits();
case UNUM_MIN_SIGNIFICANT_DIGITS:
return getMinimumSignificantDigits();
case UNUM_MULTIPLIER:
return getMultiplier();
case UNUM_SCALE:
return getMultiplierScale();
case UNUM_GROUPING_SIZE:
return getGroupingSize();
case UNUM_ROUNDING_MODE:
return getRoundingMode();
case UNUM_FORMAT_WIDTH:
return getFormatWidth();
case UNUM_PADDING_POSITION:
return getPadPosition();
case UNUM_SECONDARY_GROUPING_SIZE:
return getSecondaryGroupingSize();
case UNUM_PARSE_NO_EXPONENT:
return isParseNoExponent();
case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
return isDecimalPatternMatchRequired();
case UNUM_CURRENCY_USAGE:
return getCurrencyUsage();
case UNUM_MINIMUM_GROUPING_DIGITS:
return getMinimumGroupingDigits();
case UNUM_PARSE_CASE_SENSITIVE:
return isParseCaseSensitive();
case UNUM_SIGN_ALWAYS_SHOWN:
return isSignAlwaysShown();
case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
return isFormatFailIfMoreThanMaxDigits();
default:
status = U_UNSUPPORTED_ERROR;
break;
}
// TODO: UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS?
return -1; /* undefined */
}
void DecimalFormat::setGroupingUsed(UBool enabled) {
if (enabled == fProperties->groupingUsed) { return; }
NumberFormat::setGroupingUsed(enabled); // to set field for compatibility
fProperties->groupingUsed = enabled;
touchNoError();
}
void DecimalFormat::setParseIntegerOnly(UBool value) {
if (value == fProperties->parseIntegerOnly) { return; }
NumberFormat::setParseIntegerOnly(value); // to set field for compatibility
fProperties->parseIntegerOnly = value;
touchNoError();
}
void DecimalFormat::setLenient(UBool enable) {
ParseMode mode = enable ? PARSE_MODE_LENIENT : PARSE_MODE_STRICT;
if (!fProperties->parseMode.isNull() && mode == fProperties->parseMode.getNoError()) { return; }
NumberFormat::setLenient(enable); // to set field for compatibility
fProperties->parseMode = mode;
touchNoError();
}
DecimalFormat::DecimalFormat(const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt,
UParseError&, UErrorCode& status)
: DecimalFormat(symbolsToAdopt, status) {
// TODO: What is parseError for?
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status);
touch(status);
}
DecimalFormat::DecimalFormat(const UnicodeString& pattern, const DecimalFormatSymbols& symbols,
UErrorCode& status)
: DecimalFormat(new DecimalFormatSymbols(symbols), status) {
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status);
touch(status);
}
DecimalFormat::DecimalFormat(const DecimalFormat& source) : NumberFormat(source) {
// Note: it is not safe to copy fFormatter or fWarehouse directly because fFormatter might have
// dangling pointers to fields inside fWarehouse. The safe thing is to re-construct fFormatter from
// the property bag, despite being somewhat slower.
fProperties.adoptInstead(new DecimalFormatProperties(*source.fProperties));
fSymbols.adoptInstead(new DecimalFormatSymbols(*source.fSymbols));
fExportedProperties.adoptInstead(new DecimalFormatProperties());
fWarehouse.adoptInstead(new DecimalFormatWarehouse());
if (fProperties == nullptr || fSymbols == nullptr || fExportedProperties == nullptr ||
fWarehouse == nullptr) {
return;
}
touchNoError();
}
DecimalFormat& DecimalFormat::operator=(const DecimalFormat& rhs) {
*fProperties = *rhs.fProperties;
fExportedProperties->clear();
fSymbols.adoptInstead(new DecimalFormatSymbols(*rhs.fSymbols));
touchNoError();
return *this;
}
DecimalFormat::~DecimalFormat() {
delete fAtomicParser.exchange(nullptr);
delete fAtomicCurrencyParser.exchange(nullptr);
};
Format* DecimalFormat::clone() const {
return new DecimalFormat(*this);
}
UBool DecimalFormat::operator==(const Format& other) const {
auto* otherDF = dynamic_cast<const DecimalFormat*>(&other);
if (otherDF == nullptr) {
return false;
}
return *fProperties == *otherDF->fProperties && *fSymbols == *otherDF->fSymbols;
}
UnicodeString& DecimalFormat::format(double number, UnicodeString& appendTo, FieldPosition& pos) const {
if (pos.getField() == FieldPosition::DONT_CARE && fastFormatDouble(number, appendTo)) {
return appendTo;
}
UErrorCode localStatus = U_ZERO_ERROR;
FormattedNumber output = fFormatter->formatDouble(number, localStatus);
output.populateFieldPosition(pos, localStatus);
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString& DecimalFormat::format(double number, UnicodeString& appendTo, FieldPosition& pos,
UErrorCode& status) const {
if (pos.getField() == FieldPosition::DONT_CARE && fastFormatDouble(number, appendTo)) {
return appendTo;
}
FormattedNumber output = fFormatter->formatDouble(number, status);
output.populateFieldPosition(pos, status);
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString&
DecimalFormat::format(double number, UnicodeString& appendTo, FieldPositionIterator* posIter,
UErrorCode& status) const {
if (posIter == nullptr && fastFormatDouble(number, appendTo)) {
return appendTo;
}
FormattedNumber output = fFormatter->formatDouble(number, status);
if (posIter != nullptr) {
output.populateFieldPositionIterator(*posIter, status);
}
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPosition& pos) const {
return format(static_cast<int64_t> (number), appendTo, pos);
}
UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPosition& pos,
UErrorCode& status) const {
return format(static_cast<int64_t> (number), appendTo, pos, status);
}
UnicodeString&
DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPositionIterator* posIter,
UErrorCode& status) const {
return format(static_cast<int64_t> (number), appendTo, posIter, status);
}
UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPosition& pos) const {
if (pos.getField() == FieldPosition::DONT_CARE && fastFormatInt64(number, appendTo)) {
return appendTo;
}
UErrorCode localStatus = U_ZERO_ERROR;
FormattedNumber output = fFormatter->formatInt(number, localStatus);
output.populateFieldPosition(pos, localStatus);
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPosition& pos,
UErrorCode& status) const {
if (pos.getField() == FieldPosition::DONT_CARE && fastFormatInt64(number, appendTo)) {
return appendTo;
}
FormattedNumber output = fFormatter->formatInt(number, status);
output.populateFieldPosition(pos, status);
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString&
DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPositionIterator* posIter,
UErrorCode& status) const {
if (posIter == nullptr && fastFormatInt64(number, appendTo)) {
return appendTo;
}
FormattedNumber output = fFormatter->formatInt(number, status);
if (posIter != nullptr) {
output.populateFieldPositionIterator(*posIter, status);
}
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString&
DecimalFormat::format(StringPiece number, UnicodeString& appendTo, FieldPositionIterator* posIter,
UErrorCode& status) const {
FormattedNumber output = fFormatter->formatDecimal(number, status);
if (posIter != nullptr) {
output.populateFieldPositionIterator(*posIter, status);
}
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString& DecimalFormat::format(const DecimalQuantity& number, UnicodeString& appendTo,
FieldPositionIterator* posIter, UErrorCode& status) const {
FormattedNumber output = fFormatter->formatDecimalQuantity(number, status);
if (posIter != nullptr) {
output.populateFieldPositionIterator(*posIter, status);
}
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
UnicodeString&
DecimalFormat::format(const DecimalQuantity& number, UnicodeString& appendTo, FieldPosition& pos,
UErrorCode& status) const {
FormattedNumber output = fFormatter->formatDecimalQuantity(number, status);
output.populateFieldPosition(pos, status);
auto appendable = UnicodeStringAppendable(appendTo);
output.appendTo(appendable);
return appendTo;
}
void DecimalFormat::parse(const UnicodeString& text, Formattable& output,
ParsePosition& parsePosition) const {
if (parsePosition.getIndex() < 0 || parsePosition.getIndex() >= text.length()) {
return;
}
ErrorCode status;
ParsedNumber result;
// Note: if this is a currency instance, currencies will be matched despite the fact that we are not in the
// parseCurrency method (backwards compatibility)
int32_t startIndex = parsePosition.getIndex();
const NumberParserImpl* parser = getParser(status);
if (U_FAILURE(status)) { return; }
parser->parse(text, startIndex, true, result, status);
// TODO: Do we need to check for fProperties->parseAllInput (UCONFIG_HAVE_PARSEALLINPUT) here?
if (result.success()) {
parsePosition.setIndex(result.charEnd);
result.populateFormattable(output, parser->getParseFlags());
} else {
parsePosition.setErrorIndex(startIndex + result.charEnd);
}
}
CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text, ParsePosition& parsePosition) const {
if (parsePosition.getIndex() < 0 || parsePosition.getIndex() >= text.length()) {
return nullptr;
}
ErrorCode status;
ParsedNumber result;
// Note: if this is a currency instance, currencies will be matched despite the fact that we are not in the
// parseCurrency method (backwards compatibility)
int32_t startIndex = parsePosition.getIndex();
const NumberParserImpl* parser = getCurrencyParser(status);
if (U_FAILURE(status)) { return nullptr; }
parser->parse(text, startIndex, true, result, status);
// TODO: Do we need to check for fProperties->parseAllInput (UCONFIG_HAVE_PARSEALLINPUT) here?
if (result.success()) {
parsePosition.setIndex(result.charEnd);
Formattable formattable;
result.populateFormattable(formattable, parser->getParseFlags());
return new CurrencyAmount(formattable, result.currencyCode, status);
} else {
parsePosition.setErrorIndex(startIndex + result.charEnd);
return nullptr;
}
}
const DecimalFormatSymbols* DecimalFormat::getDecimalFormatSymbols(void) const {
return fSymbols.getAlias();
}
void DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt) {
if (symbolsToAdopt == nullptr) {
return; // do not allow caller to set fSymbols to NULL
}
fSymbols.adoptInstead(symbolsToAdopt);
touchNoError();
}
void DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols) {
fSymbols.adoptInstead(new DecimalFormatSymbols(symbols));
touchNoError();
}
const CurrencyPluralInfo* DecimalFormat::getCurrencyPluralInfo(void) const {
return fProperties->currencyPluralInfo.fPtr.getAlias();
}
void DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt) {
fProperties->currencyPluralInfo.fPtr.adoptInstead(toAdopt);
touchNoError();
}
void DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info) {
*fProperties->currencyPluralInfo.fPtr = info; // copy-assignment operator
touchNoError();
}
UnicodeString& DecimalFormat::getPositivePrefix(UnicodeString& result) const {
ErrorCode localStatus;
fFormatter->getAffixImpl(true, false, result, localStatus);
return result;
}
void DecimalFormat::setPositivePrefix(const UnicodeString& newValue) {
if (newValue == fProperties->positivePrefix) { return; }
fProperties->positivePrefix = newValue;
touchNoError();
}
UnicodeString& DecimalFormat::getNegativePrefix(UnicodeString& result) const {
ErrorCode localStatus;
fFormatter->getAffixImpl(true, true, result, localStatus);
return result;
}
void DecimalFormat::setNegativePrefix(const UnicodeString& newValue) {
if (newValue == fProperties->negativePrefix) { return; }
fProperties->negativePrefix = newValue;
touchNoError();
}
UnicodeString& DecimalFormat::getPositiveSuffix(UnicodeString& result) const {
ErrorCode localStatus;
fFormatter->getAffixImpl(false, false, result, localStatus);
return result;
}
void DecimalFormat::setPositiveSuffix(const UnicodeString& newValue) {
if (newValue == fProperties->positiveSuffix) { return; }
fProperties->positiveSuffix = newValue;
touchNoError();
}
UnicodeString& DecimalFormat::getNegativeSuffix(UnicodeString& result) const {
ErrorCode localStatus;
fFormatter->getAffixImpl(false, true, result, localStatus);
return result;
}
void DecimalFormat::setNegativeSuffix(const UnicodeString& newValue) {
if (newValue == fProperties->negativeSuffix) { return; }
fProperties->negativeSuffix = newValue;
touchNoError();
}
UBool DecimalFormat::isSignAlwaysShown() const {
return fProperties->signAlwaysShown;
}
void DecimalFormat::setSignAlwaysShown(UBool value) {
if (value == fProperties->signAlwaysShown) { return; }
fProperties->signAlwaysShown = value;
touchNoError();
}
int32_t DecimalFormat::getMultiplier(void) const {
if (fProperties->multiplier != 1) {
return fProperties->multiplier;
} else if (fProperties->magnitudeMultiplier != 0) {
return static_cast<int32_t>(uprv_pow10(fProperties->magnitudeMultiplier));
} else {
return 1;
}
}
void DecimalFormat::setMultiplier(int32_t multiplier) {
if (multiplier == 0) {
multiplier = 1; // one being the benign default value for a multiplier.
}
// Try to convert to a magnitude multiplier first
int delta = 0;
int value = multiplier;
while (value != 1) {
delta++;
int temp = value / 10;
if (temp * 10 != value) {
delta = -1;
break;
}
value = temp;
}
if (delta != -1) {
fProperties->magnitudeMultiplier = delta;
fProperties->multiplier = 1;
} else {
fProperties->magnitudeMultiplier = 0;
fProperties->multiplier = multiplier;
}
touchNoError();
}
int32_t DecimalFormat::getMultiplierScale() const {
return fProperties->multiplierScale;
}
void DecimalFormat::setMultiplierScale(int32_t newValue) {
if (newValue == fProperties->multiplierScale) { return; }
fProperties->multiplierScale = newValue;
touchNoError();
}
double DecimalFormat::getRoundingIncrement(void) const {
return fExportedProperties->roundingIncrement;
}
void DecimalFormat::setRoundingIncrement(double newValue) {
if (newValue == fProperties->roundingIncrement) { return; }
fProperties->roundingIncrement = newValue;
touchNoError();
}
ERoundingMode DecimalFormat::getRoundingMode(void) const {
// UNumberFormatRoundingMode and ERoundingMode have the same values.
return static_cast<ERoundingMode>(fExportedProperties->roundingMode.getNoError());
}
void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
auto uRoundingMode = static_cast<UNumberFormatRoundingMode>(roundingMode);
if (!fProperties->roundingMode.isNull() && uRoundingMode == fProperties->roundingMode.getNoError()) {
return;
}
NumberFormat::setMaximumIntegerDigits(roundingMode); // to set field for compatibility
fProperties->roundingMode = uRoundingMode;
touchNoError();
}
int32_t DecimalFormat::getFormatWidth(void) const {
return fProperties->formatWidth;
}
void DecimalFormat::setFormatWidth(int32_t width) {
if (width == fProperties->formatWidth) { return; }
fProperties->formatWidth = width;
touchNoError();
}
UnicodeString DecimalFormat::getPadCharacterString() const {
if (fProperties->padString.isBogus()) {
// Readonly-alias the static string kFallbackPaddingString
return {TRUE, kFallbackPaddingString, -1};
} else {
return fProperties->padString;
}
}
void DecimalFormat::setPadCharacter(const UnicodeString& padChar) {
if (padChar == fProperties->padString) { return; }
if (padChar.length() > 0) {
fProperties->padString = UnicodeString(padChar.char32At(0));
} else {
fProperties->padString.setToBogus();
}
touchNoError();
}
EPadPosition DecimalFormat::getPadPosition(void) const {
if (fProperties->padPosition.isNull()) {
return EPadPosition::kPadBeforePrefix;
} else {
// UNumberFormatPadPosition and EPadPosition have the same values.
return static_cast<EPadPosition>(fProperties->padPosition.getNoError());
}
}
void DecimalFormat::setPadPosition(EPadPosition padPos) {
auto uPadPos = static_cast<UNumberFormatPadPosition>(padPos);
if (!fProperties->padPosition.isNull() && uPadPos == fProperties->padPosition.getNoError()) {
return;
}
fProperties->padPosition = uPadPos;
touchNoError();
}
UBool DecimalFormat::isScientificNotation(void) const {
return fProperties->minimumExponentDigits != -1;
}
void DecimalFormat::setScientificNotation(UBool useScientific) {
int32_t minExp = useScientific ? 1 : -1;
if (fProperties->minimumExponentDigits == minExp) { return; }
if (useScientific) {
fProperties->minimumExponentDigits = 1;
} else {
fProperties->minimumExponentDigits = -1;
}
touchNoError();
}
int8_t DecimalFormat::getMinimumExponentDigits(void) const {
return static_cast<int8_t>(fProperties->minimumExponentDigits);
}
void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
if (minExpDig == fProperties->minimumExponentDigits) { return; }
fProperties->minimumExponentDigits = minExpDig;
touchNoError();
}
UBool DecimalFormat::isExponentSignAlwaysShown(void) const {
return fProperties->exponentSignAlwaysShown;
}
void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
if (expSignAlways == fProperties->exponentSignAlwaysShown) { return; }
fProperties->exponentSignAlwaysShown = expSignAlways;
touchNoError();
}
int32_t DecimalFormat::getGroupingSize(void) const {
if (fProperties->groupingSize < 0) {
return 0;
}
return fProperties->groupingSize;
}
void DecimalFormat::setGroupingSize(int32_t newValue) {
if (newValue == fProperties->groupingSize) { return; }
fProperties->groupingSize = newValue;
touchNoError();
}
int32_t DecimalFormat::getSecondaryGroupingSize(void) const {
int grouping2 = fProperties->secondaryGroupingSize;
if (grouping2 < 0) {
return 0;
}
return grouping2;
}
void DecimalFormat::setSecondaryGroupingSize(int32_t newValue) {
if (newValue == fProperties->secondaryGroupingSize) { return; }
fProperties->secondaryGroupingSize = newValue;
touchNoError();
}
int32_t DecimalFormat::getMinimumGroupingDigits() const {
return fProperties->minimumGroupingDigits;
}
void DecimalFormat::setMinimumGroupingDigits(int32_t newValue) {
if (newValue == fProperties->minimumGroupingDigits) { return; }
fProperties->minimumGroupingDigits = newValue;
touchNoError();
}
UBool DecimalFormat::isDecimalSeparatorAlwaysShown(void) const {
return fProperties->decimalSeparatorAlwaysShown;
}
void DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue) {
if (newValue == fProperties->decimalSeparatorAlwaysShown) { return; }
fProperties->decimalSeparatorAlwaysShown = newValue;
touchNoError();
}
UBool DecimalFormat::isDecimalPatternMatchRequired(void) const {
return fProperties->decimalPatternMatchRequired;
}
void DecimalFormat::setDecimalPatternMatchRequired(UBool newValue) {
if (newValue == fProperties->decimalPatternMatchRequired) { return; }
fProperties->decimalPatternMatchRequired = newValue;
touchNoError();
}
UBool DecimalFormat::isParseNoExponent() const {
return fProperties->parseNoExponent;
}
void DecimalFormat::setParseNoExponent(UBool value) {
if (value == fProperties->parseNoExponent) { return; }
fProperties->parseNoExponent = value;
touchNoError();
}
UBool DecimalFormat::isParseCaseSensitive() const {
return fProperties->parseCaseSensitive;
}
void DecimalFormat::setParseCaseSensitive(UBool value) {
if (value == fProperties->parseCaseSensitive) { return; }
fProperties->parseCaseSensitive = value;
touchNoError();
}
UBool DecimalFormat::isFormatFailIfMoreThanMaxDigits() const {
return fProperties->formatFailIfMoreThanMaxDigits;
}
void DecimalFormat::setFormatFailIfMoreThanMaxDigits(UBool value) {
if (value == fProperties->formatFailIfMoreThanMaxDigits) { return; }
fProperties->formatFailIfMoreThanMaxDigits = value;
touchNoError();
}
UnicodeString& DecimalFormat::toPattern(UnicodeString& result) const {
// Pull some properties from exportedProperties and others from properties
// to keep affix patterns intact. In particular, pull rounding properties
// so that CurrencyUsage is reflected properly.
// TODO: Consider putting this logic in number_patternstring.cpp instead.
ErrorCode localStatus;
DecimalFormatProperties tprops(*fProperties);
bool useCurrency = ((!tprops.currency.isNull()) || !tprops.currencyPluralInfo.fPtr.isNull() ||
!tprops.currencyUsage.isNull() || AffixUtils::hasCurrencySymbols(
UnicodeStringCharSequence(tprops.positivePrefixPattern), localStatus) ||
AffixUtils::hasCurrencySymbols(
UnicodeStringCharSequence(tprops.positiveSuffixPattern), localStatus) ||
AffixUtils::hasCurrencySymbols(
UnicodeStringCharSequence(tprops.negativePrefixPattern), localStatus) ||
AffixUtils::hasCurrencySymbols(
UnicodeStringCharSequence(tprops.negativeSuffixPattern), localStatus));
if (useCurrency) {
tprops.minimumFractionDigits = fExportedProperties->minimumFractionDigits;
tprops.maximumFractionDigits = fExportedProperties->maximumFractionDigits;
tprops.roundingIncrement = fExportedProperties->roundingIncrement;
}
result = PatternStringUtils::propertiesToPatternString(tprops, localStatus);
return result;
}
UnicodeString& DecimalFormat::toLocalizedPattern(UnicodeString& result) const {
ErrorCode localStatus;
result = toPattern(result);
result = PatternStringUtils::convertLocalized(result, *fSymbols, true, localStatus);
return result;
}
void DecimalFormat::applyPattern(const UnicodeString& pattern, UParseError&, UErrorCode& status) {
// TODO: What is parseError for?
applyPattern(pattern, status);
}
void DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status) {
setPropertiesFromPattern(pattern, IGNORE_ROUNDING_NEVER, status);
touch(status);
}
void DecimalFormat::applyLocalizedPattern(const UnicodeString& localizedPattern, UParseError&,
UErrorCode& status) {
// TODO: What is parseError for?
applyLocalizedPattern(localizedPattern, status);
}
void DecimalFormat::applyLocalizedPattern(const UnicodeString& localizedPattern, UErrorCode& status) {
UnicodeString pattern = PatternStringUtils::convertLocalized(
localizedPattern, *fSymbols, false, status);
applyPattern(pattern, status);
}
void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
if (newValue == fProperties->maximumIntegerDigits) { return; }
// For backwards compatibility, conflicting min/max need to keep the most recent setting.
int32_t min = fProperties->minimumIntegerDigits;
if (min >= 0 && min > newValue) {
fProperties->minimumIntegerDigits = newValue;
}
fProperties->maximumIntegerDigits = newValue;
touchNoError();
}
void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
if (newValue == fProperties->minimumIntegerDigits) { return; }
// For backwards compatibility, conflicting min/max need to keep the most recent setting.
int32_t max = fProperties->maximumIntegerDigits;
if (max >= 0 && max < newValue) {
fProperties->maximumIntegerDigits = newValue;
}
fProperties->minimumIntegerDigits = newValue;
touchNoError();
}
void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
if (newValue == fProperties->maximumFractionDigits) { return; }
// For backwards compatibility, conflicting min/max need to keep the most recent setting.
int32_t min = fProperties->minimumFractionDigits;
if (min >= 0 && min > newValue) {
fProperties->minimumFractionDigits = newValue;
}
fProperties->maximumFractionDigits = newValue;
touchNoError();
}
void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
if (newValue == fProperties->minimumFractionDigits) { return; }
// For backwards compatibility, conflicting min/max need to keep the most recent setting.
int32_t max = fProperties->maximumFractionDigits;
if (max >= 0 && max < newValue) {
fProperties->maximumFractionDigits = newValue;
}
fProperties->minimumFractionDigits = newValue;
touchNoError();
}
int32_t DecimalFormat::getMinimumSignificantDigits() const {
return fExportedProperties->minimumSignificantDigits;
}
int32_t DecimalFormat::getMaximumSignificantDigits() const {
return fExportedProperties->maximumSignificantDigits;
}
void DecimalFormat::setMinimumSignificantDigits(int32_t value) {
if (value == fProperties->minimumSignificantDigits) { return; }
int32_t max = fProperties->maximumSignificantDigits;
if (max >= 0 && max < value) {
fProperties->maximumSignificantDigits = value;
}
fProperties->minimumSignificantDigits = value;
touchNoError();
}
void DecimalFormat::setMaximumSignificantDigits(int32_t value) {
if (value == fProperties->maximumSignificantDigits) { return; }
int32_t min = fProperties->minimumSignificantDigits;
if (min >= 0 && min > value) {
fProperties->minimumSignificantDigits = value;
}
fProperties->maximumSignificantDigits = value;
touchNoError();
}
UBool DecimalFormat::areSignificantDigitsUsed() const {
return fProperties->minimumSignificantDigits != -1 || fProperties->maximumSignificantDigits != -1;
}
void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
// These are the default values from the old implementation.
int32_t minSig = useSignificantDigits ? 1 : -1;
int32_t maxSig = useSignificantDigits ? 6 : -1;
if (fProperties->minimumSignificantDigits == minSig &&
fProperties->maximumSignificantDigits == maxSig) {
return;
}
fProperties->minimumSignificantDigits = minSig;
fProperties->maximumSignificantDigits = maxSig;
touchNoError();
}
void DecimalFormat::setCurrency(const char16_t* theCurrency, UErrorCode& ec) {
CurrencyUnit currencyUnit(theCurrency, ec);
if (U_FAILURE(ec)) { return; }
if (!fProperties->currency.isNull() && fProperties->currency.getNoError() == currencyUnit) {
return;
}
NumberFormat::setCurrency(theCurrency, ec); // to set field for compatibility
fProperties->currency = currencyUnit;
// TODO: Set values in fSymbols, too?
touchNoError();
}
void DecimalFormat::setCurrency(const char16_t* theCurrency) {
ErrorCode localStatus;
setCurrency(theCurrency, localStatus);
}
void DecimalFormat::setCurrencyUsage(UCurrencyUsage newUsage, UErrorCode* ec) {
if (!fProperties->currencyUsage.isNull() && newUsage == fProperties->currencyUsage.getNoError()) {
return;
}
fProperties->currencyUsage = newUsage;
touch(*ec);
}
UCurrencyUsage DecimalFormat::getCurrencyUsage() const {
// CurrencyUsage is not exported, so we have to get it from the input property bag.
// TODO: Should we export CurrencyUsage instead?
if (fProperties->currencyUsage.isNull()) {
return UCURR_USAGE_STANDARD;
}
return fProperties->currencyUsage.getNoError();
}
void
DecimalFormat::formatToDecimalQuantity(double number, DecimalQuantity& output, UErrorCode& status) const {
fFormatter->formatDouble(number, status).getDecimalQuantity(output, status);
}
void DecimalFormat::formatToDecimalQuantity(const Formattable& number, DecimalQuantity& output,
UErrorCode& status) const {
UFormattedNumberData obj;
number.populateDecimalQuantity(obj.quantity, status);
fFormatter->formatImpl(&obj, status);
output = std::move(obj.quantity);
}
number::LocalizedNumberFormatter&
DecimalFormat::toNumberFormatter(number::LocalizedNumberFormatter& output) const {
output = *fFormatter; // copy assignment
return output;
}
/** Rebuilds the formatter object from the property bag. */
void DecimalFormat::touch(UErrorCode& status) {
if (fExportedProperties == nullptr) {
// fExportedProperties is null only when the formatter is not ready yet.
// The only time when this happens is during legacy deserialization.
return;
}
// In C++, fSymbols is the source of truth for the locale.
Locale locale = fSymbols->getLocale();
// Note: The formatter is relatively cheap to create, and we need it to populate fExportedProperties,
// so automatically compute it here. The parser is a bit more expensive and is not needed until the
// parse method is called, so defer that until needed.
// TODO: Only update the pieces that changed instead of re-computing the whole formatter?
fFormatter.adoptInstead(
new LocalizedNumberFormatter(
NumberPropertyMapper::create(
*fProperties, *fSymbols, *fWarehouse, *fExportedProperties, status).locale(
locale)));
// Do this after fExportedProperties are set up
setupFastFormat();
// Delete the parsers if they were made previously
delete fAtomicParser.exchange(nullptr);
delete fAtomicCurrencyParser.exchange(nullptr);
// In order for the getters to work, we need to populate some fields in NumberFormat.
NumberFormat::setCurrency(fExportedProperties->currency.get(status).getISOCurrency(), status);
NumberFormat::setMaximumIntegerDigits(fExportedProperties->maximumIntegerDigits);
NumberFormat::setMinimumIntegerDigits(fExportedProperties->minimumIntegerDigits);
NumberFormat::setMaximumFractionDigits(fExportedProperties->maximumFractionDigits);
NumberFormat::setMinimumFractionDigits(fExportedProperties->minimumFractionDigits);
// fProperties, not fExportedProperties, since this information comes from the pattern:
NumberFormat::setGroupingUsed(fProperties->groupingUsed);
}
void DecimalFormat::touchNoError() {
UErrorCode localStatus = U_ZERO_ERROR;
touch(localStatus);
}
void DecimalFormat::setPropertiesFromPattern(const UnicodeString& pattern, int32_t ignoreRounding,
UErrorCode& status) {
// Cast workaround to get around putting the enum in the public header file
auto actualIgnoreRounding = static_cast<IgnoreRounding>(ignoreRounding);
PatternParser::parseToExistingProperties(pattern, *fProperties, actualIgnoreRounding, status);
}
const numparse::impl::NumberParserImpl* DecimalFormat::getParser(UErrorCode& status) const {
if (U_FAILURE(status)) { return nullptr; }
// First try to get the pre-computed parser
auto* ptr = fAtomicParser.load();
if (ptr != nullptr) {
return ptr;
}
// Try computing the parser on our own
auto* temp = NumberParserImpl::createParserFromProperties(*fProperties, *fSymbols, false, status);
if (temp == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
// although we may still dereference, call sites should be guarded
}
// Note: ptr starts as nullptr; during compare_exchange, it is set to what is actually stored in the
// atomic if another thread beat us to computing the parser object.
auto* nonConstThis = const_cast<DecimalFormat*>(this);
if (!nonConstThis->fAtomicParser.compare_exchange_strong(ptr, temp)) {
// Another thread beat us to computing the parser
delete temp;
return ptr;
} else {
// Our copy of the parser got stored in the atomic
return temp;
}
}
const numparse::impl::NumberParserImpl* DecimalFormat::getCurrencyParser(UErrorCode& status) const {
if (U_FAILURE(status)) { return nullptr; }
// First try to get the pre-computed parser
auto* ptr = fAtomicCurrencyParser.load();
if (ptr != nullptr) {
return ptr;
}
// Try computing the parser on our own
auto* temp = NumberParserImpl::createParserFromProperties(*fProperties, *fSymbols, true, status);
if (temp == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
// although we may still dereference, call sites should be guarded
}
// Note: ptr starts as nullptr; during compare_exchange, it is set to what is actually stored in the
// atomic if another thread beat us to computing the parser object.
auto* nonConstThis = const_cast<DecimalFormat*>(this);
if (!nonConstThis->fAtomicCurrencyParser.compare_exchange_strong(ptr, temp)) {
// Another thread beat us to computing the parser
delete temp;
return ptr;
} else {
// Our copy of the parser got stored in the atomic
return temp;
}
}
// To debug fast-format, change void(x) to printf(x)
#define trace(x) void(x)
void DecimalFormat::setupFastFormat() {
// Check the majority of properties:
if (!fProperties->equalsDefaultExceptFastFormat()) {
trace("no fast format: equality\n");
fCanUseFastFormat = false;
return;
}
// Now check the remaining properties.
// Nontrivial affixes:
UBool trivialPP = fProperties->positivePrefixPattern.isEmpty();
UBool trivialPS = fProperties->positiveSuffixPattern.isEmpty();
UBool trivialNP = fProperties->negativePrefixPattern.isBogus() || (
fProperties->negativePrefixPattern.length() == 1 &&
fProperties->negativePrefixPattern.charAt(0) == u'-');
UBool trivialNS = fProperties->negativeSuffixPattern.isEmpty();
if (!trivialPP || !trivialPS || !trivialNP || !trivialNS) {
trace("no fast format: affixes\n");
fCanUseFastFormat = false;
return;
}
// Grouping (secondary grouping is forbidden in equalsDefaultExceptFastFormat):
bool groupingUsed = fProperties->groupingUsed;
bool unusualGroupingSize = fProperties->groupingSize > 0 && fProperties->groupingSize != 3;
const UnicodeString& groupingString = fSymbols->getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
if (groupingUsed && (unusualGroupingSize || groupingString.length() != 1)) {
trace("no fast format: grouping\n");
fCanUseFastFormat = false;
return;
}
// Integer length:
int32_t minInt = fExportedProperties->minimumIntegerDigits;
int32_t maxInt = fExportedProperties->maximumIntegerDigits;
// Fastpath supports up to only 10 digits (length of INT32_MIN)
if (minInt > 10) {
trace("no fast format: integer\n");
fCanUseFastFormat = false;
return;
}
// Fraction length (no fraction part allowed in fast path):
int32_t minFrac = fExportedProperties->minimumFractionDigits;
if (minFrac > 0) {
trace("no fast format: fraction\n");
fCanUseFastFormat = false;
return;
}
// Other symbols:
const UnicodeString& minusSignString = fSymbols->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
UChar32 codePointZero = fSymbols->getCodePointZero();
if (minusSignString.length() != 1 || U16_LENGTH(codePointZero) != 1) {
trace("no fast format: symbols\n");
fCanUseFastFormat = false;
return;
}
// Good to go!
trace("can use fast format!\n");
fCanUseFastFormat = true;
fFastData.cpZero = static_cast<char16_t>(codePointZero);
fFastData.cpGroupingSeparator = groupingUsed ? groupingString.charAt(0) : 0;
fFastData.cpMinusSign = minusSignString.charAt(0);
fFastData.minInt = (minInt < 0 || minInt > 127) ? 0 : static_cast<int8_t>(minInt);
fFastData.maxInt = (maxInt < 0 || maxInt > 127) ? 127 : static_cast<int8_t>(maxInt);
}
bool DecimalFormat::fastFormatDouble(double input, UnicodeString& output) const {
if (!fCanUseFastFormat) {
return false;
}
auto i32 = static_cast<int32_t>(input);
if (i32 != input || i32 == INT32_MIN) {
return false;
}
doFastFormatInt32(i32, std::signbit(input), output);
return true;
}
bool DecimalFormat::fastFormatInt64(int64_t input, UnicodeString& output) const {
if (!fCanUseFastFormat) {
return false;
}
auto i32 = static_cast<int32_t>(input);
if (i32 != input || i32 == INT32_MIN) {
return false;
}
doFastFormatInt32(i32, std::signbit(input), output);
return true;
}
void DecimalFormat::doFastFormatInt32(int32_t input, bool isNegative, UnicodeString& output) const {
U_ASSERT(fCanUseFastFormat);
if (isNegative) {
output.append(fFastData.cpMinusSign);
U_ASSERT(input != INT32_MIN); // handled by callers
input = -input;
}
// Cap at int32_t to make the buffer small and operations fast.
// Longest string: "2,147,483,648" (13 chars in length)
static constexpr int32_t localCapacity = 13;
char16_t localBuffer[localCapacity];
char16_t* ptr = localBuffer + localCapacity;
int8_t group = 0;
for (int8_t i = 0; i < fFastData.maxInt && (input != 0 || i < fFastData.minInt); i++) {
if (group++ == 3 && fFastData.cpGroupingSeparator != 0) {
*(--ptr) = fFastData.cpGroupingSeparator;
group = 1;
}
std::div_t res = std::div(input, 10);
*(--ptr) = static_cast<char16_t>(fFastData.cpZero + res.rem);
input = res.quot;
}
int32_t len = localCapacity - static_cast<int32_t>(ptr - localBuffer);
output.append(ptr, len);
}
#endif /* #if !UCONFIG_NO_FORMATTING */