scuffed-code/icu4c/source/tools/makeconv/genmbcs.c

1436 lines
51 KiB
C
Raw Normal View History

/*
*******************************************************************************
*
* Copyright (C) 2000-2007, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: genmbcs.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000jul06
* created by: Markus W. Scherer
*/
#include <stdio.h>
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "unewdata.h"
#include "ucnv_cnv.h"
#include "ucnvmbcs.h"
#include "ucm.h"
#include "makeconv.h"
#include "genmbcs.h"
/*
* TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
* Reduce tests for maxCharLength.
*/
typedef struct MBCSData {
NewConverter newConverter;
UCMFile *ucm;
/* toUnicode (state table in ucm->states) */
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
int32_t countToUFallbacks;
uint16_t *unicodeCodeUnits;
/* fromUnicode */
uint16_t stage1[MBCS_STAGE_1_SIZE];
uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
uint8_t *fromUBytes;
uint32_t stage2Top, stage3Top;
/* fromUTF8 */
uint16_t stageUTF8[MBCS_UTF8_STAGE_SIZE];
UBool utf8Friendly;
} MBCSData;
/* prototypes */
static void
MBCSClose(NewConverter *cnvData);
static UBool
MBCSStartMappings(MBCSData *mbcsData);
static UBool
MBCSAddToUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag);
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length);
static UBool
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag);
static UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag);
static void
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
static UBool
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
UNewDataMemory *pData, int32_t tableType);
/* helper ------------------------------------------------------------------- */
static U_INLINE char
hexDigit(uint8_t digit) {
return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
}
static U_INLINE char *
printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
char *s=buffer;
while(length>0) {
*s++=hexDigit((uint8_t)(*bytes>>4));
*s++=hexDigit((uint8_t)(*bytes&0xf));
++bytes;
--length;
}
*s=0;
return buffer;
}
/* implementation ----------------------------------------------------------- */
static void
MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
uprv_memset(mbcsData, 0, sizeof(MBCSData));
mbcsData->ucm=ucm; /* aliased, not owned */
mbcsData->newConverter.close=MBCSClose;
mbcsData->newConverter.isValid=MBCSIsValid;
mbcsData->newConverter.addTable=MBCSAddTable;
mbcsData->newConverter.write=MBCSWrite;
}
NewConverter *
MBCSOpen(UCMFile *ucm) {
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
if(mbcsData==NULL) {
printf("out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
MBCSInit(mbcsData, ucm);
return &mbcsData->newConverter;
}
static void
MBCSDestruct(MBCSData *mbcsData) {
uprv_free(mbcsData->unicodeCodeUnits);
uprv_free(mbcsData->fromUBytes);
}
static void
MBCSClose(NewConverter *cnvData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
if(mbcsData!=NULL) {
MBCSDestruct(mbcsData);
uprv_free(mbcsData);
}
}
static UBool
MBCSStartMappings(MBCSData *mbcsData) {
int32_t i, sum, maxCharLength,
stage2NullLength, stage2AllocLength,
stage3NullLength, stage3AllocLength;
/* toUnicode */
/* allocate the code unit array and prefill it with "unassigned" values */
sum=mbcsData->ucm->states.countToUCodeUnits;
if(VERBOSE) {
printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
}
if(sum>0) {
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==NULL) {
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
(long)sum);
return FALSE;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
}
/* fromUnicode */
maxCharLength=mbcsData->ucm->states.maxCharLength;
/* allocate the codepage mappings and preset the first 16 characters to 0 */
if(maxCharLength==1) {
/* allocate 64k 16-bit results for single-byte codepages */
sum=0x20000;
} else {
/* allocate 1M * maxCharLength bytes for at most 1M mappings */
sum=0x100000*maxCharLength;
}
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
if(mbcsData->fromUBytes==NULL) {
fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
return FALSE;
}
uprv_memset(mbcsData->fromUBytes, 0, sum);
/*
* UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
* See ucnvmbcs.h for details.
*
* There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
* assumes that the initial stage 2/3 blocks are the all-unassigned ones.
* Therefore, we refine the data structure while maintaining this placement
* even though it would be convenient to allocate the ASCII block at the
* beginning of stage 3, for example.
*
* UTF-8-friendly fromUnicode tries work from sorted tables and are built
* pre-compacted, overlapping adjacent stage 2/3 blocks.
* This is necessary because the block allocation and compaction changes
* at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
* stage table uses direct indexes into stage 3, without a multiplier and
* thus with a smaller reach.
*
* Non-UTF-8-friendly fromUnicode tries work from unsorted tables
* (because implicit precision is used), and are compacted
* in post-processing.
*
* Preallocation for UTF-8-friendly fromUnicode tries:
*
* Stage 3:
* 64-entry all-unassigned first block followed by ASCII (128 entries).
*
* Stage 2:
* 64-entry all-unassigned first block followed by preallocated
* 64-block for ASCII.
*/
/* Preallocate ASCII as a linear 128-entry stage 3 block. */
stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
stage3AllocLength=128; /* ASCII U+0000..U+007f */
/* Initialize stage 1 for the preallocated blocks. */
sum=stage2NullLength;
for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
mbcsData->stage1[i]=sum;
sum+=MBCS_STAGE_2_BLOCK_SIZE;
}
mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
/*
* Stage 2 indexes count 16-blocks in stage 3 as follows:
* SBCS: directly, indexes increment by 16
* MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
* MBCS UTF-8: directly, indexes increment by 16
*/
if(maxCharLength==1) {
sum=stage3NullLength;
for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
sum+=MBCS_STAGE_3_BLOCK_SIZE;
}
} else {
sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
}
}
sum=stage3NullLength;
for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
mbcsData->stageUTF8[i]=sum;
sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
}
/*
* Allocate a 64-entry all-unassigned first stage 3 block,
* for UTF-8-friendly lookup with a trail byte,
* plus 128 entries for ASCII.
*/
mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
return TRUE;
}
/* return TRUE for success */
static UBool
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
if(i>=0) {
/* if there is already a fallback for this offset, then overwrite it */
mbcsData->toUFallbacks[i].codePoint=c;
return TRUE;
} else {
/* if there is no fallback for this offset, then add one */
i=mbcsData->countToUFallbacks;
if(i>=MBCS_MAX_FALLBACK_COUNT) {
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
return FALSE;
} else {
mbcsData->toUFallbacks[i].offset=offset;
mbcsData->toUFallbacks[i].codePoint=c;
mbcsData->countToUFallbacks=i+1;
return TRUE;
}
}
}
/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
static int32_t
removeFallback(MBCSData *mbcsData, uint32_t offset) {
int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
if(i>=0) {
_MBCSToUFallback *toUFallbacks;
int32_t limit, old;
toUFallbacks=mbcsData->toUFallbacks;
limit=mbcsData->countToUFallbacks;
old=(int32_t)toUFallbacks[i].codePoint;
/* copy the last fallback entry here to keep the list contiguous */
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
mbcsData->countToUFallbacks=limit-1;
return old;
} else {
return -1;
}
}
/*
* isFallback is almost a boolean:
* 1 (TRUE) this is a fallback mapping
* 0 (FALSE) this is a precise mapping
* -1 the precision of this mapping is not specified
*/
static UBool
MBCSAddToUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag) {
char buffer[10];
uint32_t offset=0;
int32_t i=0, entry, old;
uint8_t state=0;
if(mbcsData->ucm->states.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return FALSE;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
(short)state, printBytes(buffer, bytes, length), (int)c);
return FALSE;
}
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n",
(int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
return FALSE;
}
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
case MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
case MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
case MBCS_STATE_FALLBACK_DIRECT_16:
case MBCS_STATE_VALID_DIRECT_16:
case MBCS_STATE_FALLBACK_DIRECT_20:
case MBCS_STATE_VALID_DIRECT_20:
if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
/* the "direct" action's value is not "valid-direct-16-unassigned" any more */
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
old=MBCS_ENTRY_FINAL_VALUE(entry);
} else {
old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
}
if(flag>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
}
/*
* Continue after the above warning
* if the precision of the mapping is unspecified.
*/
}
/* reassign the correct action code */
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
if(c<=0xffff) {
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
} else {
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
}
mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
break;
case MBCS_STATE_VALID_16:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
/* check that this byte sequence is still unassigned */
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
if(flag>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
}
}
if(c>=0x10000) {
fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
}
if(flag>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
}
break;
case MBCS_STATE_VALID_16_PAIR:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to two 16-bit code units */
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
/* check that this byte sequence is still unassigned */
old=mbcsData->unicodeCodeUnits[offset];
if(old<0xfffe) {
int32_t real;
if(old<0xd800) {
real=old;
} else if(old<=0xdfff) {
real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
} else /* old<=0xe001 */ {
real=mbcsData->unicodeCodeUnits[offset+1];
}
if(flag>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)real);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)real);
}
}
if(flag>0) {
/* assign only if there is no precise mapping */
if(old<=0xdbff || old==0xe000) {
/* do nothing */
} else if(c<=0xffff) {
/* set a BMP fallback code point as a pair with 0xe001 */
mbcsData->unicodeCodeUnits[offset++]=0xe001;
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a fallback surrogate pair with two second surrogates */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
} else {
if(c<0xd800) {
/* set a BMP code point */
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else if(c<=0xffff) {
/* set a BMP code point above 0xd800 as a pair with 0xe000 */
mbcsData->unicodeCodeUnits[offset++]=0xe000;
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a surrogate pair */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
}
break;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
(int)entry, printBytes(buffer, bytes, length), (int)c);
return FALSE;
}
return TRUE;
}
}
}
/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length) {
MBCSData *mbcsData=(MBCSData *)cnvData;
return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
}
static UBool
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag) {
uint16_t *stage3, *p;
uint32_t index;
uint16_t old;
uint8_t b;
uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
/* ignore |2 SUB mappings */
if(flag==2) {
return TRUE;
}
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
stage3=(uint16_t *)mbcsData->fromUBytes;
b=*bytes;
/* inspect stage 1 */
index=c>>MBCS_STAGE_1_SHIFT;
if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
} else {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
}
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
newBlock=mbcsData->stage2Top;
if(mbcsData->utf8Friendly) {
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
--newBlock;
}
}
newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
if(newTop>MBCS_MAX_STAGE_2_TOP) {
fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
return FALSE;
}
/*
* each stage 2 block contains 64 16-bit words:
* 6 code point bits 9..4 with 1 stage 3 index
*/
mbcsData->stage1[index]=(uint16_t)newBlock;
mbcsData->stage2Top=newTop;
}
/* inspect stage 2 */
index=mbcsData->stage1[index]+nextOffset;
if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
/* allocate 64-entry blocks for UTF-8-friendly lookup */
blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
} else {
blockSize=MBCS_STAGE_3_BLOCK_SIZE;
nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
}
if(mbcsData->stage2Single[index]==0) {
/* allocate another block in stage 3 */
newBlock=mbcsData->stage3Top;
if(mbcsData->utf8Friendly) {
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && stage3[newBlock-1]==0) {
--newBlock;
}
}
newTop=newBlock+blockSize;
if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
return FALSE;
}
/* each block has 16 uint16_t entries */
i=index;
while(newBlock<newTop) {
mbcsData->stage2Single[i++]=(uint16_t)newBlock;
newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
}
mbcsData->stage3Top=newTop; /* ==newBlock */
}
/* write the codepage entry into stage 3 and get the previous entry */
p=stage3+mbcsData->stage2Single[index]+nextOffset;
old=*p;
if(flag<=0) {
*p=(uint16_t)(0xf00|b);
} else if(IS_PRIVATE_USE(c)) {
*p=(uint16_t)(0xc00|b);
} else {
*p=(uint16_t)(0x800|b);
}
/* check that this Unicode code point was still unassigned */
if(old>=0x100) {
if(flag>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
(int)c, b, old&0xff);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
(int)c, b, old&0xff);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
return TRUE;
}
static UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag) {
char buffer[10];
const uint8_t *pb;
uint8_t *stage3, *p;
uint32_t index, b, old, stage3Index;
int32_t maxCharLength;
uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
maxCharLength=mbcsData->ucm->states.maxCharLength;
if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
(*bytes==0xe || *bytes==0xf)
) {
fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
}
if(flag==1 && length==1 && *bytes==0) {
fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
(int)c, *bytes);
return FALSE;
}
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for
* all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
stage3=mbcsData->fromUBytes;
/* inspect stage 1 */
index=c>>MBCS_STAGE_1_SHIFT;
if(mbcsData->utf8Friendly && c<=MBCS_UTF8_MAX) {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
} else {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
}
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
newBlock=mbcsData->stage2Top;
if(mbcsData->utf8Friendly) {
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
--newBlock;
}
}
newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
if(newTop>MBCS_MAX_STAGE_2_TOP) {
fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
}
/*
* each stage 2 block contains 64 32-bit words:
* 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
*/
i=index;
while(newBlock<newTop) {
mbcsData->stage1[i++]=(uint16_t)newBlock;
newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
}
mbcsData->stage2Top=newTop; /* ==newBlock */
}
/* inspect stage 2 */
index=mbcsData->stage1[index]+nextOffset;
if(mbcsData->utf8Friendly && c<=MBCS_UTF8_MAX) {
/* allocate 64-entry blocks for UTF-8-friendly lookup */
blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
} else {
blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
}
if(mbcsData->stage2[index]==0) {
/* allocate another block in stage 3 */
newBlock=mbcsData->stage3Top;
if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
/*
* Overlap stage 3 blocks only in multiples of 16-entry blocks
* because of the indexing granularity in stage 2.
*/
maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
for(overlap=0;
overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
++overlap) {}
overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
newBlock-=overlap;
}
newTop=newBlock+blockSize;
if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
}
/* each block has 16*maxCharLength bytes */
i=index;
while(newBlock<newTop) {
mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
}
mbcsData->stage3Top=newTop; /* ==newBlock */
}
stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[index];
/* Build an alternate, UTF-8-friendly stage table as well. */
if(mbcsData->utf8Friendly && c<=MBCS_UTF8_MAX) {
/* Overflow for uint16_t entries in stageUTF8? */
if(stage3Index>0xffff) {
/*
* This can occur only if the mapping table is nearly perfectly filled and if
* MBCS_UTF8_MAX==0xffff.
* (There is no known charset like this. GB 18030 does not map
* surrogate code points and LMBCS does not map 256 PUA code points.)
*
* Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
* (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
* because we have a sorted table and there are at most MBCS_UTF8_LIMIT
* mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
* the initial all-unassigned block in stage3.
*
* (See svn revision 20866 of the markus/ucnvutf8 feature branch for
* code that causes MBCSAddTable() to rebuild the table not utf8Friendly
* in case of overflow. That code was not tested.)
*/
fprintf(stderr, "too many stage 3 entries for UTF-8-friendly format, processing U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return FALSE;
}
/*
* The stage 3 block has been assigned for the regular trie.
* Just copy its index into stageUTF8[], without the granularity.
*/
mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
}
/* write the codepage bytes into stage 3 and get the previous bytes */
/* assemble the bytes into a single integer */
pb=bytes;
b=0;
switch(length) {
case 4:
b=*pb++;
case 3:
b=(b<<8)|*pb++;
case 2:
b=(b<<8)|*pb++;
case 1:
default:
b=(b<<8)|*pb++;
break;
}
old=0;
p=stage3+(stage3Index+nextOffset)*maxCharLength;
switch(maxCharLength) {
case 2:
old=*(uint16_t *)p;
*(uint16_t *)p=(uint16_t)b;
break;
case 3:
old=(uint32_t)*p<<16;
*p++=(uint8_t)(b>>16);
old|=(uint32_t)*p<<8;
*p++=(uint8_t)(b>>8);
old|=*p;
*p=(uint8_t)b;
break;
case 4:
old=*(uint32_t *)p;
*(uint32_t *)p=b;
break;
default:
/* will never occur */
break;
}
/* check that this Unicode code point was still unassigned */
if((mbcsData->stage2[index+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
if(flag>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
}
/* continue after the above warning if the precision of the mapping is
unspecified */
}
if(flag<=0) {
/* set the roundtrip flag */
mbcsData->stage2[index+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
}
return TRUE;
}
U_CFUNC UBool
MBCSOkForBaseFromUnicode(UBool utf8Friendly,
const uint8_t *bytes, int32_t length,
UChar32 c, int8_t flag) {
/*
* A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
* the following conditions:
*
* - a |2 SUB mapping for <subchar1> (no base table data structure for them)
* - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
* - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
*
* Some of these tests are redundant with ucm_mappingType().
*/
if( (flag==2 && length==1) ||
(flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
(flag<=1 && length>1 && bytes[0]==0)
) {
return FALSE;
}
/*
* Additional restrictions for UTF-8-friendly fromUnicode tables,
* for code points up to the maximum optimized one:
*
* - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
* - any |1 fallback (no roundtrip flags in the optimized table)
*/
if(utf8Friendly && flag<=1 && c<=MBCS_UTF8_MAX && (bytes[0]==0 || flag==1)) {
return FALSE;
}
/* All other mappings do fit into the base table. */
return TRUE;
}
/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
static UBool
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
MBCSData *mbcsData;
UCMapping *m;
UChar32 c;
int32_t i, maxCharLength;
int8_t f;
UBool isOK, utf8Friendly;
staticData->unicodeMask=table->unicodeMask;
if(staticData->unicodeMask==3) {
fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
return FALSE;
}
staticData->conversionType=UCNV_MBCS;
mbcsData=(MBCSData *)cnvData;
maxCharLength=mbcsData->ucm->states.maxCharLength;
/*
* Generation of UTF-8-friendly data requires
* a sorted table, which makeconv generates when explicit precision
* indicators are used.
*/
mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
if(!MBCSStartMappings(mbcsData)) {
return FALSE;
}
staticData->hasFromUnicodeFallback=FALSE;
staticData->hasToUnicodeFallback=FALSE;
isOK=TRUE;
m=table->mappings;
for(i=0; i<table->mappingsLength; ++m, ++i) {
c=m->u;
f=m->f;
switch(f) {
case -1:
/* there was no precision/fallback indicator */
/* fall through to set the mappings */
case 0:
/* set roundtrip mappings */
isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
if(maxCharLength==1) {
isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else if(MBCSOkForBaseFromUnicode(utf8Friendly, m->b.bytes, m->bLen, c, f)) {
isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else {
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
}
break;
case 1:
/* set only a fallback mapping from Unicode to codepage */
if(maxCharLength==1) {
staticData->hasFromUnicodeFallback=TRUE;
isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else if(MBCSOkForBaseFromUnicode(utf8Friendly, m->b.bytes, m->bLen, c, f)) {
staticData->hasFromUnicodeFallback=TRUE;
isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else {
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
}
break;
case 2:
/* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
if(maxCharLength>1 && !MBCSOkForBaseFromUnicode(utf8Friendly, m->b.bytes, m->bLen, c, f)) {
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
}
break;
case 3:
/* set only a fallback mapping from codepage to Unicode */
staticData->hasToUnicodeFallback=TRUE;
isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
break;
default:
/* will not occur because the parser checked it already */
fprintf(stderr, "error: illegal fallback indicator %d\n", f);
return FALSE;
}
}
MBCSPostprocess(mbcsData, staticData);
return isOK;
}
static UBool
transformEUC(MBCSData *mbcsData) {
uint8_t *p8;
uint32_t i, value, oldLength, old3Top, new3Top;
uint8_t b;
oldLength=mbcsData->ucm->states.maxCharLength;
if(oldLength<3) {
return FALSE;
}
old3Top=mbcsData->stage3Top;
/* careful: 2-byte and 4-byte codes are stored in platform endianness! */
/* test if all first bytes are in {0, 0x8e, 0x8f} */
p8=mbcsData->fromUBytes;
#if !U_IS_BIG_ENDIAN
if(oldLength==4) {
p8+=3;
}
#endif
for(i=0; i<old3Top; i+=oldLength) {
b=p8[i];
if(b!=0 && b!=0x8e && b!=0x8f) {
/* some first byte does not fit the EUC pattern, nothing to be done */
return FALSE;
}
}
/* restore p if it was modified above */
p8=mbcsData->fromUBytes;
/* modify outputType and adjust stage3Top */
mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
/*
* EUC-encode all byte sequences;
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
* p. 161 in chapter 4 "Encoding Methods"
*
* This also must reverse the byte order if the platform is little-endian!
*/
if(oldLength==3) {
uint16_t *q=(uint16_t *)p8;
for(i=0; i<old3Top; i+=oldLength) {
b=*p8;
if(b==0) {
/* short sequences are stored directly */
/* code set 0 or 1 */
(*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
} else if(b==0x8e) {
/* code set 2 */
(*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
} else /* b==0x8f */ {
/* code set 3 */
(*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
}
p8+=3;
}
} else /* oldLength==4 */ {
uint8_t *q=p8;
uint32_t *p32=(uint32_t *)p8;
for(i=0; i<old3Top; i+=4) {
value=(*p32++);
if(value<=0xffffff) {
/* short sequences are stored directly */
/* code set 0 or 1 */
(*q++)=(uint8_t)(value>>16);
(*q++)=(uint8_t)(value>>8);
(*q++)=(uint8_t)value;
} else if(value<=0x8effffff) {
/* code set 2 */
(*q++)=(uint8_t)((value>>16)&0x7f);
(*q++)=(uint8_t)(value>>8);
(*q++)=(uint8_t)value;
} else /* first byte is 0x8f */ {
/* code set 3 */
(*q++)=(uint8_t)(value>>16);
(*q++)=(uint8_t)((value>>8)&0x7f);
(*q++)=(uint8_t)value;
}
}
}
return TRUE;
}
/*
* Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
singleCompactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
(long)(mbcsData->stage2Top-newStart)*2);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
/* Compact stage 3 for SBCS - same algorithm as above. */
static void
singleCompactStage3(MBCSData *mbcsData) {
uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
/* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
uint16_t map[0x1000];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 3 block into the map */
map[0]=0;
/* begin with the first block after the all-unassigned one */
start=newStart=16;
while(start<mbcsData->stage3Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>4]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(16-i); i>0; --i) {
stage3[newStart++]=stage3[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>4]=newStart;
for(i=16; i>0; --i) {
stage3[newStart++]=stage3[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>4]=start;
start=newStart+=16;
}
}
/* adjust stage3Top */
if(VERBOSE && newStart<mbcsData->stage3Top) {
printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
(long)(mbcsData->stage3Top-newStart)*2);
}
mbcsData->stage3Top=newStart;
/* now adjust stage 2 */
for(i=0; i<mbcsData->stage2Top; ++i) {
mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
}
}
/*
* Compact stage 2 by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
compactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
(long)(mbcsData->stage2Top-newStart)*4);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
static void
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) {
UCMStates *states;
int32_t maxCharLength, stage3Width;
states=&mbcsData->ucm->states;
stage3Width=maxCharLength=states->maxCharLength;
ucm_optimizeStates(states,
&mbcsData->unicodeCodeUnits,
mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
VERBOSE);
/* try to compact the fromUnicode tables */
if(transformEUC(mbcsData)) {
--stage3Width;
}
/*
* UTF-8-friendly tries are built precompacted, to cope with variable
* stage 3 allocation block sizes.
*
* Tables without precision indicators cannot be built that way,
* because if a block was overlapped with a previous one, then a smaller
* code point for the same block would not fit.
* Therefore, such tables are not marked UTF-8-friendly and must be
* compacted after all mappings are entered.
*/
if(!mbcsData->utf8Friendly) {
if(maxCharLength==1) {
singleCompactStage3(mbcsData);
singleCompactStage2(mbcsData);
} else {
compactStage2(mbcsData);
}
}
if(VERBOSE) {
/*uint32_t c, i1, i2, i2Limit, i3;*/
printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
maxCharLength==1 ? "16" : "32",
(unsigned long)mbcsData->stage2Top,
(unsigned long)mbcsData->stage2Top);
printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
(int)stage3Width,
(unsigned long)mbcsData->stage3Top/stage3Width,
(unsigned long)mbcsData->stage3Top/stage3Width);
#if 0
c=0;
for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
i2=mbcsData->stage1[i1];
if(i2==0) {
c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
continue;
}
for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
if(maxCharLength==1) {
i3=mbcsData->stage2Single[i2];
} else {
i3=(uint16_t)mbcsData->stage2[i2];
}
if(i3==0) {
c+=MBCS_STAGE_3_BLOCK_SIZE;
continue;
}
printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
(unsigned long)c,
(unsigned long)i1,
(unsigned long)i2,
(unsigned long)i3);
c+=MBCS_STAGE_3_BLOCK_SIZE;
}
}
#endif
}
}
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
UNewDataMemory *pData, int32_t tableType) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint32_t top, stageUTF8Length=0;
int32_t i, stage1Top;
_MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
/* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
if(mbcsData->ucm->states.maxCharLength==1) {
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
} else {
stage1Top=0x40; /* 0x40==64 */
}
for(i=0; i<stage1Top; ++i) {
mbcsData->stage1[i]+=(uint16_t)stage1Top;
}
/* stage2Top has counted 16-bit results, now we need to count bytes */
mbcsData->stage2Top*=2;
/* stage3Top has counted 16-bit results, now we need to count bytes */
mbcsData->stage3Top*=2;
if(mbcsData->utf8Friendly) {
header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
}
} else {
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
} else {
stage1Top=0x40; /* 0x40==64 */
}
for(i=0; i<stage1Top; ++i) {
mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
}
/* stage2Top has counted 32-bit results, now we need to count bytes */
mbcsData->stage2Top*=4;
if(mbcsData->utf8Friendly) {
stageUTF8Length=MBCS_UTF8_STAGE_SIZE;
header.version[2]=(uint8_t)(MBCS_UTF8_MAX>>8); /* store 0xd7 for max==0xd7ff */
}
/* stage3Top has already counted bytes */
}
/* round up stage2Top and stage3Top so that the sizes of all data blocks are multiples of 4 */
mbcsData->stage2Top=(mbcsData->stage2Top+3)&~3;
mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
/* fill the header */
header.version[0]=4;
header.version[1]=3;
/* header.version[2] set above for utf8Friendly data */
header.countStates=mbcsData->ucm->states.countStates;
header.countToUFallbacks=mbcsData->countToUFallbacks;
header.offsetToUCodeUnits=
sizeof(_MBCSHeader)+
mbcsData->ucm->states.countStates*1024+
mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
header.offsetFromUTable=
header.offsetToUCodeUnits+
mbcsData->ucm->states.countToUCodeUnits*2;
header.offsetFromUBytes=
header.offsetFromUTable+
stage1Top*2+
mbcsData->stage2Top;
header.fromUBytesLength=mbcsData->stage3Top;
top=header.offsetFromUBytes+header.fromUBytesLength+stageUTF8Length*2;
header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
if(tableType&TABLE_EXT) {
if(top>0xffffff) {
fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
return 0;
}
header.flags|=top<<8;
}
/* write the MBCS data */
udata_writeBlock(pData, &header, sizeof(_MBCSHeader));
udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
if(mbcsData->ucm->states.maxCharLength==1) {
udata_writeBlock(pData, mbcsData->stage2Single, mbcsData->stage2Top);
} else {
udata_writeBlock(pData, mbcsData->stage2, mbcsData->stage2Top);
}
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
if(stageUTF8Length>0) {
udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
}
/* return the number of bytes that should have been written */
return top;
}