1999-10-26 17:15:44 +00:00
|
|
|
/*
|
|
|
|
**********************************************************************
|
1999-11-23 01:31:13 +00:00
|
|
|
* Copyright (C) 1999, International Business Machines
|
|
|
|
* Corporation and others. All Rights Reserved.
|
1999-10-26 17:15:44 +00:00
|
|
|
**********************************************************************
|
|
|
|
* Date Name Description
|
|
|
|
* 10/20/99 alan Creation.
|
|
|
|
**********************************************************************
|
|
|
|
*/
|
1999-10-20 22:08:09 +00:00
|
|
|
|
1999-12-28 23:57:50 +00:00
|
|
|
#include "unicode/uniset.h"
|
|
|
|
#include "unicode/parsepos.h"
|
2000-01-12 18:03:53 +00:00
|
|
|
#include "rbt_data.h"
|
1999-10-20 22:08:09 +00:00
|
|
|
|
1999-10-26 17:15:44 +00:00
|
|
|
// N.B.: This mapping is different in ICU and Java
|
1999-10-20 22:08:09 +00:00
|
|
|
const UnicodeString UnicodeSet::CATEGORY_NAMES(
|
2000-01-13 07:28:08 +00:00
|
|
|
"CnLuLlLtLmLoMnMeMcNdNlNoZsZlZpCcCfCoCsPdPsPePcPoSmScSkSoPiPf", "");
|
1999-10-20 22:08:09 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* A cache mapping character category integers, as returned by
|
1999-10-26 17:15:44 +00:00
|
|
|
* Unicode::getType(), to pairs strings. Entries are initially
|
|
|
|
* zero length and are filled in on demand.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
|
|
|
UnicodeString* UnicodeSet::CATEGORY_PAIRS_CACHE =
|
|
|
|
new UnicodeString[Unicode::GENERAL_TYPES_COUNT];
|
|
|
|
|
2000-01-12 18:03:53 +00:00
|
|
|
/**
|
|
|
|
* Delimiter string used in patterns to close a category reference:
|
|
|
|
* ":]". Example: "[:Lu:]".
|
|
|
|
*/
|
2000-01-13 07:28:08 +00:00
|
|
|
const UnicodeString UnicodeSet::CATEGORY_CLOSE = UNICODE_STRING(":]", 2);
|
2000-01-12 18:03:53 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Delimiter char beginning a variable reference:
|
|
|
|
* "{". Example: "{var}".
|
|
|
|
*/
|
|
|
|
const UChar UnicodeSet::VARIABLE_REF_OPEN = '{';
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Delimiter char ending a variable reference:
|
|
|
|
* "}". Example: "{var}".
|
|
|
|
*/
|
|
|
|
const UChar UnicodeSet::VARIABLE_REF_CLOSE = '}';
|
|
|
|
|
1999-10-20 22:08:09 +00:00
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Debugging and testing
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return the representation of this set as a list of character
|
|
|
|
* ranges. Ranges are listed in ascending Unicode order. For
|
|
|
|
* example, the set [a-zA-M3] is represented as "33AMaz".
|
|
|
|
*/
|
1999-12-22 22:57:04 +00:00
|
|
|
const UnicodeString& UnicodeSet::getPairs(void) const {
|
1999-10-20 22:08:09 +00:00
|
|
|
return pairs;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
1999-10-26 17:15:44 +00:00
|
|
|
// Constructors &c
|
1999-10-20 22:08:09 +00:00
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs an empty set.
|
|
|
|
*/
|
1999-10-26 17:15:44 +00:00
|
|
|
UnicodeSet::UnicodeSet() : pairs() {}
|
1999-10-20 22:08:09 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a set from the given pattern, optionally ignoring
|
|
|
|
* white space. See the class description for the syntax of the
|
|
|
|
* pattern language.
|
|
|
|
* @param pattern a string specifying what characters are in the set
|
|
|
|
* @exception <code>IllegalArgumentException</code> if the pattern
|
|
|
|
* contains a syntax error.
|
|
|
|
*/
|
|
|
|
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
|
1999-10-26 17:15:44 +00:00
|
|
|
UErrorCode& status) : pairs() {
|
1999-10-20 22:08:09 +00:00
|
|
|
applyPattern(pattern, status);
|
|
|
|
}
|
|
|
|
|
2000-01-13 07:28:08 +00:00
|
|
|
UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos,
|
|
|
|
const TransliterationRuleData* data,
|
|
|
|
UErrorCode& status) {
|
|
|
|
parse(pairs, pattern, pos, data, status);
|
|
|
|
}
|
|
|
|
|
1999-10-20 22:08:09 +00:00
|
|
|
/**
|
|
|
|
* Constructs a set from the given Unicode character category.
|
|
|
|
* @param category an integer indicating the character category as
|
|
|
|
* returned by <code>Character.getType()</code>.
|
|
|
|
* @exception <code>IllegalArgumentException</code> if the given
|
|
|
|
* category is invalid.
|
|
|
|
*/
|
1999-10-26 17:15:44 +00:00
|
|
|
UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) : pairs() {
|
1999-10-20 22:08:09 +00:00
|
|
|
if (U_SUCCESS(status)) {
|
|
|
|
if (category < 0 || category >= Unicode::GENERAL_TYPES_COUNT) {
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
} else {
|
|
|
|
pairs = getCategoryPairs(category);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1999-10-26 17:15:44 +00:00
|
|
|
/**
|
|
|
|
* Constructs a set that is identical to the given UnicodeSet.
|
|
|
|
*/
|
|
|
|
UnicodeSet::UnicodeSet(const UnicodeSet& o) : pairs(o.pairs) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Destructs the set.
|
|
|
|
*/
|
|
|
|
UnicodeSet::~UnicodeSet() {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Assigns this object to be a copy of another.
|
|
|
|
*/
|
|
|
|
UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) {
|
|
|
|
pairs = o.pairs;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compares the specified object with this set for equality. Returns
|
|
|
|
* <tt>true</tt> if the two sets
|
|
|
|
* have the same size, and every member of the specified set is
|
|
|
|
* contained in this set (or equivalently, every member of this set is
|
|
|
|
* contained in the specified set).
|
|
|
|
*
|
|
|
|
* @param o set to be compared for equality with this set.
|
|
|
|
* @return <tt>true</tt> if the specified set is equal to this set.
|
|
|
|
*/
|
|
|
|
bool_t UnicodeSet::operator==(const UnicodeSet& o) const {
|
|
|
|
return pairs == o.pairs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the hash code value for this set.
|
|
|
|
*
|
|
|
|
* @return the hash code value for this set.
|
|
|
|
* @see Object#hashCode()
|
|
|
|
*/
|
1999-12-22 22:57:04 +00:00
|
|
|
int32_t UnicodeSet::hashCode(void) const {
|
1999-10-26 17:15:44 +00:00
|
|
|
return pairs.hashCode();
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Public API
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
1999-10-20 22:08:09 +00:00
|
|
|
/**
|
|
|
|
* Modifies this set to represent the set specified by the given
|
|
|
|
* pattern, optionally ignoring white space. See the class
|
|
|
|
* description for the syntax of the pattern language.
|
|
|
|
* @param pattern a string specifying what characters are in the set
|
|
|
|
* @param ignoreSpaces if <code>true</code>, all spaces in the
|
|
|
|
* pattern are ignored. Spaces are those characters for which
|
|
|
|
* <code>Character.isSpaceChar()</code> is <code>true</code>.
|
|
|
|
* Characters preceded by '\\' are escaped, losing any special
|
|
|
|
* meaning they otherwise have. Spaces may be included by
|
|
|
|
* escaping them.
|
|
|
|
* @exception <code>IllegalArgumentException</code> if the pattern
|
|
|
|
* contains a syntax error.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::applyPattern(const UnicodeString& pattern,
|
|
|
|
UErrorCode& status) {
|
|
|
|
if (U_FAILURE(status)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ParsePosition pos(0);
|
2000-01-13 07:28:08 +00:00
|
|
|
parse(pairs, pattern, pos, NULL, status);
|
2000-01-12 18:03:53 +00:00
|
|
|
|
2000-01-13 07:28:08 +00:00
|
|
|
// Skip over trailing whitespace
|
|
|
|
int32_t i = pos.getIndex();
|
|
|
|
int32_t n = pattern.length();
|
|
|
|
while (i<n && Unicode::isWhitespace(pattern.charAt(i))) {
|
|
|
|
++i;
|
2000-01-12 18:03:53 +00:00
|
|
|
}
|
|
|
|
|
2000-01-13 07:28:08 +00:00
|
|
|
if (i != n) {
|
1999-10-20 22:08:09 +00:00
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a string representation of this set. If the result of
|
|
|
|
* calling this function is passed to a UnicodeSet constructor, it
|
|
|
|
* will produce another set that is equal to this one.
|
|
|
|
*/
|
|
|
|
UnicodeString& UnicodeSet::toPattern(UnicodeString& result) const {
|
|
|
|
result.remove().append((UChar)'[');
|
|
|
|
|
1999-10-26 17:15:44 +00:00
|
|
|
// iterate through the ranges in the UnicodeSet
|
1999-10-20 22:08:09 +00:00
|
|
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
|
|
|
// for a range with the same beginning and ending point,
|
|
|
|
// output that character, otherwise, output the start and
|
|
|
|
// end points of the range separated by a dash
|
|
|
|
result.append(pairs.charAt(i));
|
|
|
|
if (pairs.charAt(i) != pairs.charAt(i+1)) {
|
|
|
|
result.append((UChar)'-').append(pairs.charAt(i+1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return result.append((UChar)']');
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
1999-10-26 17:15:44 +00:00
|
|
|
* Returns the number of elements in this set (its cardinality),
|
|
|
|
* <em>n</em>, where <code>0 <= </code><em>n</em><code> <= 65536</code>.
|
1999-10-20 22:08:09 +00:00
|
|
|
*
|
|
|
|
* @return the number of elements in this set (its cardinality).
|
|
|
|
*/
|
1999-12-22 22:57:04 +00:00
|
|
|
int32_t UnicodeSet::size(void) const {
|
1999-10-20 22:08:09 +00:00
|
|
|
int32_t n = 0;
|
|
|
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
|
|
|
n += pairs.charAt(i+1) - pairs.charAt(i) + 1;
|
|
|
|
}
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns <tt>true</tt> if this set contains no elements.
|
|
|
|
*
|
|
|
|
* @return <tt>true</tt> if this set contains no elements.
|
|
|
|
*/
|
1999-12-22 22:57:04 +00:00
|
|
|
bool_t UnicodeSet::isEmpty(void) const {
|
1999-10-20 22:08:09 +00:00
|
|
|
return pairs.length() == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns <tt>true</tt> if this set contains the specified range
|
|
|
|
* of chars.
|
|
|
|
*
|
|
|
|
* @return <tt>true</tt> if this set contains the specified range
|
|
|
|
* of chars.
|
|
|
|
*/
|
|
|
|
bool_t UnicodeSet::contains(UChar first, UChar last) const {
|
|
|
|
// Set i to the end of the smallest range such that its end
|
|
|
|
// point >= last, or pairs.length() if no such range exists.
|
|
|
|
int32_t i = 1;
|
|
|
|
while (i<pairs.length() && last>pairs.charAt(i)) i+=2;
|
|
|
|
return i<pairs.length() && first>=pairs.charAt(i-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns <tt>true</tt> if this set contains the specified char.
|
|
|
|
*
|
|
|
|
* @return <tt>true</tt> if this set contains the specified char.
|
|
|
|
*/
|
|
|
|
bool_t UnicodeSet::contains(UChar c) const {
|
|
|
|
return contains(c, c);
|
|
|
|
}
|
|
|
|
|
2000-01-13 07:28:08 +00:00
|
|
|
/**
|
|
|
|
* Returns <tt>true</tt> if this set contains any character whose low byte
|
|
|
|
* is the given value. This is used by <tt>RuleBasedTransliterator</tt> for
|
|
|
|
* indexing.
|
|
|
|
*/
|
|
|
|
bool_t UnicodeSet::containsIndexValue(uint8_t v) const {
|
|
|
|
/* The index value v, in the range [0,255], is contained in this set if
|
|
|
|
* it is contained in any pair of this set. Pairs either have the high
|
|
|
|
* bytes equal, or unequal. If the high bytes are equal, then we have
|
|
|
|
* aaxx..aayy, where aa is the high byte. Then v is contained if xx <=
|
|
|
|
* v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa.
|
|
|
|
* Then v is contained if xx <= v || v <= yy. (This is identical to the
|
|
|
|
* time zone month containment logic.)
|
|
|
|
*/
|
|
|
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
|
|
|
UChar low = pairs.charAt(i);
|
|
|
|
UChar high = pairs.charAt(i+1);
|
|
|
|
if ((low & 0xFF00) == (high & 0xFF00)) {
|
|
|
|
if (uint8_t(low) <= v && v <= uint8_t(high)) {
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
} else if (uint8_t(low) <= v || v <= uint8_t(high)) {
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
1999-10-20 22:08:09 +00:00
|
|
|
/**
|
|
|
|
* Adds the specified range to this set if it is not already
|
|
|
|
* present. If this set already contains the specified range,
|
|
|
|
* the call leaves this set unchanged. If <code>last > first</code>
|
|
|
|
* then an empty range is added, leaving the set unchanged.
|
|
|
|
*
|
|
|
|
* @param first first character, inclusive, of range to be added
|
|
|
|
* to this set.
|
|
|
|
* @param last last character, inclusive, of range to be added
|
|
|
|
* to this set.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::add(UChar first, UChar last) {
|
|
|
|
if (first <= last) {
|
|
|
|
addPair(pairs, first, last);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds the specified character to this set if it is not already
|
|
|
|
* present. If this set already contains the specified character,
|
|
|
|
* the call leaves this set unchanged.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::add(UChar c) {
|
|
|
|
add(c, c);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes the specified range from this set if it is present.
|
|
|
|
* The set will not contain the specified range once the call
|
|
|
|
* returns. If <code>last > first</code> then an empty range is
|
|
|
|
* removed, leaving the set unchanged.
|
|
|
|
*
|
|
|
|
* @param first first character, inclusive, of range to be removed
|
|
|
|
* from this set.
|
|
|
|
* @param last last character, inclusive, of range to be removed
|
|
|
|
* from this set.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::remove(UChar first, UChar last) {
|
|
|
|
if (first <= last) {
|
|
|
|
removePair(pairs, first, last);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes the specified character from this set if it is present.
|
|
|
|
* The set will not contain the specified range once the call
|
|
|
|
* returns.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::remove(UChar c) {
|
|
|
|
remove(c, c);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns <tt>true</tt> if the specified set is a <i>subset</i>
|
|
|
|
* of this set.
|
|
|
|
*
|
|
|
|
* @param c set to be checked for containment in this set.
|
|
|
|
* @return <tt>true</tt> if this set contains all of the elements of the
|
|
|
|
* specified set.
|
|
|
|
*/
|
|
|
|
bool_t UnicodeSet::containsAll(const UnicodeSet& c) const {
|
|
|
|
// The specified set is a subset if all of its pairs are contained
|
|
|
|
// in this set.
|
|
|
|
int32_t i = 1;
|
|
|
|
for (int32_t j=0; j<c.pairs.length(); j+=2) {
|
|
|
|
UChar last = c.pairs.charAt(j+1);
|
|
|
|
// Set i to the end of the smallest range such that its
|
|
|
|
// end point >= last, or pairs.length() if no such range
|
|
|
|
// exists.
|
|
|
|
while (i<pairs.length() && last>pairs.charAt(i)) i+=2;
|
|
|
|
if (i>pairs.length() || c.pairs.charAt(j) < pairs.charAt(i-1)) {
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds all of the elements in the specified set to this set if
|
|
|
|
* they're not already present. This operation effectively
|
|
|
|
* modifies this set so that its value is the <i>union</i> of the two
|
|
|
|
* sets. The behavior of this operation is unspecified if the specified
|
|
|
|
* collection is modified while the operation is in progress.
|
|
|
|
*
|
|
|
|
* @param c set whose elements are to be added to this set.
|
|
|
|
* @see #add(char, char)
|
|
|
|
*/
|
|
|
|
void UnicodeSet::addAll(const UnicodeSet& c) {
|
|
|
|
doUnion(pairs, c.pairs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Retains only the elements in this set that are contained in the
|
|
|
|
* specified set. In other words, removes from this set all of
|
|
|
|
* its elements that are not contained in the specified set. This
|
|
|
|
* operation effectively modifies this set so that its value is
|
|
|
|
* the <i>intersection</i> of the two sets.
|
|
|
|
*
|
|
|
|
* @param c set that defines which elements this set will retain.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::retainAll(const UnicodeSet& c) {
|
|
|
|
doIntersection(pairs, c.pairs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes from this set all of its elements that are contained in the
|
|
|
|
* specified set. This operation effectively modifies this
|
|
|
|
* set so that its value is the <i>asymmetric set difference</i> of
|
|
|
|
* the two sets.
|
|
|
|
*
|
|
|
|
* @param c set that defines which elements will be removed from
|
|
|
|
* this set.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::removeAll(const UnicodeSet& c) {
|
|
|
|
doDifference(pairs, c.pairs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inverts this set. This operation modifies this set so that
|
|
|
|
* its value is its complement. This is equivalent to the pseudo code:
|
1999-10-26 17:15:44 +00:00
|
|
|
* <code>this = new UnicodeSet("[\u0000-\uFFFF]").removeAll(this)</code>.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
1999-12-22 22:57:04 +00:00
|
|
|
void UnicodeSet::complement(void) {
|
1999-10-20 22:08:09 +00:00
|
|
|
doComplement(pairs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes all of the elements from this set. This set will be
|
|
|
|
* empty after this call returns.
|
|
|
|
*/
|
1999-12-22 22:57:04 +00:00
|
|
|
void UnicodeSet::clear(void) {
|
1999-10-20 22:08:09 +00:00
|
|
|
pairs.remove();
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Implementation: Pattern parsing
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Parses the given pattern, starting at the given position. The
|
|
|
|
* character at pattern.charAt(pos.getIndex()) must be '[', or the
|
|
|
|
* parse fails. Parsing continues until the corresponding closing
|
|
|
|
* ']'. If a syntax error is encountered between the opening and
|
|
|
|
* closing brace, the parse fails. Upon return from a U_SUCCESSful
|
|
|
|
* parse, the ParsePosition is updated to point to the character
|
|
|
|
* following the closing ']', and a StringBuffer containing a
|
|
|
|
* pairs list for the parsed pattern is returned. This method calls
|
|
|
|
* itself recursively to parse embedded subpatterns.
|
|
|
|
*
|
|
|
|
* @param pattern the string containing the pattern to be parsed.
|
|
|
|
* The portion of the string from pos.getIndex(), which must be a
|
|
|
|
* '[', to the corresponding closing ']', is parsed.
|
|
|
|
* @param pos upon entry, the position at which to being parsing.
|
|
|
|
* The character at pattern.charAt(pos.getIndex()) must be a '['.
|
|
|
|
* Upon return from a U_SUCCESSful parse, pos.getIndex() is either
|
|
|
|
* the character after the closing ']' of the parsed pattern, or
|
|
|
|
* pattern.length() if the closing ']' is the last character of
|
|
|
|
* the pattern string.
|
|
|
|
* @return a StringBuffer containing a pairs list for the parsed
|
|
|
|
* substring of <code>pattern</code>
|
|
|
|
* @exception IllegalArgumentException if the parse fails.
|
|
|
|
*/
|
|
|
|
UnicodeString& UnicodeSet::parse(UnicodeString& pairsBuf /*result*/,
|
|
|
|
const UnicodeString& pattern,
|
|
|
|
ParsePosition& pos,
|
2000-01-12 18:03:53 +00:00
|
|
|
const TransliterationRuleData* data,
|
1999-10-20 22:08:09 +00:00
|
|
|
UErrorCode& status) {
|
|
|
|
if (U_FAILURE(status)) {
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool_t invert = FALSE;
|
|
|
|
pairsBuf.remove();
|
|
|
|
|
2000-01-12 18:03:53 +00:00
|
|
|
int32_t lastChar = -1; // This is either a char (0..FFFF) or -1
|
|
|
|
UChar lastOp = 0;
|
|
|
|
|
|
|
|
/* This loop iterates over the characters in the pattern. We start at
|
|
|
|
* the position specified by pos. We exit the loop when either a
|
|
|
|
* matching closing ']' is seen, or we read all characters of the
|
|
|
|
* pattern. In the latter case an error will be thrown.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
2000-01-12 18:03:53 +00:00
|
|
|
|
|
|
|
/* Pattern syntax:
|
|
|
|
* pat := '[' '^'? elem* ']'
|
|
|
|
* elem := a | a '-' a | set | set op set
|
|
|
|
* set := pat | (a set variable)
|
|
|
|
* op := '&' | '-'
|
|
|
|
* a := (a character, possibly defined by a var)
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
2000-01-12 18:03:53 +00:00
|
|
|
|
|
|
|
// mode 0: No chars parsed yet; next must be '['
|
|
|
|
// mode 1: '[' seen; if next is '^' or ':' then special
|
|
|
|
// mode 2: '[' '^'? seen; parse pattern and close with ']'
|
|
|
|
// mode 3: '[:' seen; parse category and close with ':]'
|
|
|
|
int8_t mode = 0;
|
|
|
|
int32_t openPos = 0; // offset to opening '['
|
|
|
|
int32_t i = pos.getIndex();
|
|
|
|
int32_t limit = pattern.length();
|
|
|
|
UnicodeString nestedAux;
|
|
|
|
UnicodeString* nestedPairs;
|
|
|
|
UnicodeString scratch;
|
|
|
|
for (; i<limit; ++i) {
|
|
|
|
/* If the next element is a single character, c will be set to it,
|
|
|
|
* and nestedPairs will be null. In this case isLiteral indicates
|
|
|
|
* whether the character should assume special meaning if it has
|
|
|
|
* one. If the next element is a nested set, either via a variable
|
|
|
|
* reference, or via an embedded "[..]" or "[:..:]" pattern, then
|
|
|
|
* nestedPairs will be set to the pairs list for the nested set, and
|
|
|
|
* c's value should be ignored.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
2000-01-12 18:03:53 +00:00
|
|
|
UChar c = pattern.charAt(i);
|
|
|
|
nestedPairs = NULL;
|
1999-10-20 22:08:09 +00:00
|
|
|
bool_t isLiteral = FALSE;
|
2000-01-12 18:03:53 +00:00
|
|
|
|
|
|
|
// Ignore whitespace. This is not Unicode whitespace, but Java
|
|
|
|
// whitespace, a subset of Unicode whitespace.
|
|
|
|
if (Unicode::isWhitespace(c)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Parse the opening '[' and optional following '^'
|
|
|
|
switch (mode) {
|
|
|
|
case 0:
|
|
|
|
if (c == '[') {
|
|
|
|
mode = 1; // Next look for '^'
|
|
|
|
openPos = i;
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
// throw new IllegalArgumentException("Missing opening '['");
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
case 1:
|
|
|
|
mode = 2;
|
|
|
|
switch (c) {
|
|
|
|
case '^':
|
|
|
|
invert = TRUE;
|
|
|
|
continue; // Back to top to fetch next character
|
|
|
|
case ':':
|
|
|
|
if (i == openPos+1) {
|
|
|
|
// '[:' cannot have whitespace in it
|
|
|
|
--i;
|
|
|
|
c = '[';
|
|
|
|
mode = 3;
|
|
|
|
// Fall through and parse category normally
|
|
|
|
}
|
|
|
|
break; // Fall through
|
|
|
|
case '-':
|
|
|
|
isLiteral = TRUE; // Treat leading '-' as a literal
|
|
|
|
break; // Fall through
|
|
|
|
}
|
|
|
|
// else fall through and parse this character normally
|
|
|
|
}
|
|
|
|
|
|
|
|
// After opening matter is parsed ("[", "[^", or "[:"), the mode
|
|
|
|
// will be 2 if we want a closing ']', or 3 if we should parse a
|
|
|
|
// category and close with ":]".
|
|
|
|
|
|
|
|
/* Handle escapes. If a character is escaped, then it assumes its
|
|
|
|
* literal value. This is true for all characters, both special
|
|
|
|
* characters and characters with no special meaning. We also
|
|
|
|
* interpret '\\uxxxx' Unicode escapes here (as literals).
|
|
|
|
*/
|
1999-10-20 22:08:09 +00:00
|
|
|
if (c == '\\') {
|
|
|
|
++i;
|
|
|
|
if (i < pattern.length()) {
|
|
|
|
c = pattern.charAt(i);
|
|
|
|
isLiteral = TRUE;
|
|
|
|
if (c == 'u') {
|
|
|
|
if ((i+4) >= pattern.length()) {
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
c = (UChar)0x0000;
|
|
|
|
for (int32_t j=(++i)+4; i<j; ++i) { // [sic]
|
1999-11-23 01:31:13 +00:00
|
|
|
int32_t digit = Unicode::digit(pattern.charAt(i), 16);
|
1999-10-20 22:08:09 +00:00
|
|
|
if (digit<0) {
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
c = (UChar) ((c << 4) | digit);
|
|
|
|
}
|
|
|
|
--i; // Move i back to last parsed character
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
|
|
|
|
/* Parse variable references. These are treated as literals. If a
|
|
|
|
* variable refers to a UnicodeSet, nestedPairs is assigned here.
|
|
|
|
* Variable names are only parsed if varNameToChar is not null.
|
|
|
|
* Set variables are only looked up if varCharToSet is not null.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
2000-01-12 18:03:53 +00:00
|
|
|
else if (data != NULL && !isLiteral && c == VARIABLE_REF_OPEN) {
|
|
|
|
++i;
|
|
|
|
int32_t j = pattern.indexOf(VARIABLE_REF_CLOSE, i);
|
|
|
|
if (i == j || j < 0) { // empty or unterminated
|
|
|
|
// throw new IllegalArgumentException("Illegal variable reference");
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
} else {
|
|
|
|
scratch.truncate(0);
|
|
|
|
pattern.extractBetween(i, j, scratch);
|
|
|
|
++j;
|
|
|
|
c = data->lookupVariable(scratch, status);
|
|
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
|
|
// Either the reference was ill-formed (empty name, or no
|
|
|
|
// closing '}', or the specified name is not defined.
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
isLiteral = TRUE;
|
|
|
|
|
|
|
|
UnicodeSet* set = data->lookupSet(c);
|
|
|
|
if (set != NULL) {
|
|
|
|
nestedPairs = &set->pairs;
|
|
|
|
}
|
|
|
|
}
|
1999-10-20 22:08:09 +00:00
|
|
|
|
2000-01-12 18:03:53 +00:00
|
|
|
/* An opening bracket indicates the first bracket of a nested
|
|
|
|
* subpattern, either a normal pattern or a category pattern. We
|
|
|
|
* recognize these here and set nestedPairs accordingly.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
2000-01-12 18:03:53 +00:00
|
|
|
else if (!isLiteral && c == '[') {
|
|
|
|
// Handle "[:...:]", representing a character category
|
1999-10-20 22:08:09 +00:00
|
|
|
UChar d = charAfter(pattern, i);
|
|
|
|
if (d == ':') {
|
|
|
|
i += 2;
|
2000-01-12 18:03:53 +00:00
|
|
|
int32_t j = pattern.indexOf(CATEGORY_CLOSE, i);
|
1999-10-20 22:08:09 +00:00
|
|
|
if (j < 0) {
|
2000-01-12 18:03:53 +00:00
|
|
|
// throw new IllegalArgumentException("Missing \":]\"");
|
1999-10-20 22:08:09 +00:00
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
scratch.truncate(0);
|
|
|
|
pattern.extractBetween(i, j, scratch);
|
|
|
|
nestedPairs = &getCategoryPairs(nestedAux, scratch, status);
|
1999-10-20 22:08:09 +00:00
|
|
|
if (U_FAILURE(status)) {
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
i = j+1; // Make i point to ']'
|
|
|
|
if (mode == 3) {
|
|
|
|
// Entire pattern is a category; leave parse loop
|
|
|
|
pairsBuf.append(*nestedPairs);
|
1999-10-20 22:08:09 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
2000-01-12 18:03:53 +00:00
|
|
|
// Recurse to get the pairs for this nested set.
|
|
|
|
pos.setIndex(i);
|
|
|
|
nestedPairs = &parse(nestedAux, pattern, pos, data, status);
|
|
|
|
if (U_FAILURE(status)) {
|
|
|
|
return pairsBuf;
|
1999-10-20 22:08:09 +00:00
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
i = pos.getIndex() - 1; // - 1 to point at ']'
|
1999-10-20 22:08:09 +00:00
|
|
|
}
|
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
|
|
|
|
/* At this point we have either a character c, or a nested set. If
|
|
|
|
* we have encountered a nested set, either embedded in the pattern,
|
|
|
|
* or as a variable, we have a non-null nestedPairs, and c should be
|
|
|
|
* ignored. Otherwise c is the current character, and isLiteral
|
|
|
|
* indicates whether it is an escaped literal (or variable) or a
|
|
|
|
* normal unescaped character. Unescaped characters '-', '&', and
|
|
|
|
* ']' have special meanings.
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
2000-01-12 18:03:53 +00:00
|
|
|
if (nestedPairs != NULL) {
|
|
|
|
if (lastChar >= 0) {
|
|
|
|
if (lastOp != 0) {
|
|
|
|
// throw new IllegalArgumentException("Illegal rhs for " + lastChar + lastOp);
|
1999-10-20 22:08:09 +00:00
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
addPair(pairsBuf, (UChar)lastChar, (UChar)lastChar);
|
|
|
|
lastChar = -1;
|
|
|
|
}
|
|
|
|
switch (lastOp) {
|
|
|
|
case '-':
|
|
|
|
doDifference(pairsBuf, *nestedPairs);
|
|
|
|
break;
|
|
|
|
case '&':
|
|
|
|
doIntersection(pairsBuf, *nestedPairs);
|
|
|
|
break;
|
|
|
|
case 0:
|
|
|
|
doUnion(pairsBuf, *nestedPairs);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
lastOp = 0;
|
|
|
|
} else if (!isLiteral && c == ']') {
|
|
|
|
// Final closing delimiter. This is the only way we leave this
|
|
|
|
// loop if the pattern is well-formed.
|
|
|
|
break;
|
|
|
|
} else if (lastOp == 0 && !isLiteral && (c == '-' || c == '&')) {
|
|
|
|
lastOp = c;
|
|
|
|
} else if (lastOp == '-') {
|
|
|
|
addPair(pairsBuf, (UChar)lastChar, c);
|
|
|
|
lastOp = 0;
|
|
|
|
lastChar = -1;
|
|
|
|
} else if (lastOp != 0) {
|
|
|
|
// We have <set>&<char> or <char>&<char>
|
|
|
|
// throw new IllegalArgumentException("Unquoted " + lastOp);
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
} else {
|
|
|
|
if (lastChar >= 0) {
|
|
|
|
// We have <char><char>
|
|
|
|
addPair(pairsBuf, (UChar)lastChar, (UChar)lastChar);
|
1999-10-20 22:08:09 +00:00
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
lastChar = c;
|
1999-10-20 22:08:09 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2000-01-12 18:03:53 +00:00
|
|
|
// Handle unprocessed stuff preceding the closing ']'
|
|
|
|
if (lastOp == '-') {
|
|
|
|
// Trailing '-' is treated as literal
|
|
|
|
addPair(pairsBuf, lastOp, lastOp);
|
|
|
|
} else if (lastOp == '&') {
|
|
|
|
// throw new IllegalArgumentException("Unquoted trailing " + lastOp);
|
1999-10-20 22:08:09 +00:00
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
2000-01-12 18:03:53 +00:00
|
|
|
if (lastChar >= 0) {
|
|
|
|
addPair(pairsBuf, (UChar)lastChar, (UChar)lastChar);
|
|
|
|
}
|
|
|
|
|
1999-10-20 22:08:09 +00:00
|
|
|
/**
|
2000-01-12 18:03:53 +00:00
|
|
|
* If we saw a '^' after the initial '[' of this pattern, then perform
|
|
|
|
* the complement. (Inversion after '[:' is handled elsewhere.)
|
1999-10-20 22:08:09 +00:00
|
|
|
*/
|
|
|
|
if (invert) {
|
|
|
|
doComplement(pairsBuf);
|
|
|
|
}
|
|
|
|
|
2000-01-12 18:03:53 +00:00
|
|
|
/**
|
|
|
|
* i indexes the last character we parsed or is pattern.length(). In
|
|
|
|
* the latter case, we have run off the end without finding a closing
|
|
|
|
* ']'. Otherwise, we know i < pattern.length(), and we set the
|
|
|
|
* ParsePosition to the next character to be parsed.
|
|
|
|
*/
|
|
|
|
if (i == limit) {
|
|
|
|
// throw new IllegalArgumentException("Missing ']'");
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
|
|
|
|
pos.setIndex(i+1);
|
|
|
|
|
1999-10-20 22:08:09 +00:00
|
|
|
return pairsBuf;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Implementation: Efficient in-place union & difference
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs a union operation: adds the range 'c'-'d' to the given
|
|
|
|
* pairs list. The pairs list is modified in place. The result
|
|
|
|
* is normalized (in order and as short as possible). For
|
|
|
|
* example, addPair("am", 'l', 'q') => "aq". addPair("ampz", 'n',
|
|
|
|
* 'o') => "az".
|
|
|
|
*/
|
|
|
|
void UnicodeSet::addPair(UnicodeString& pairs, UChar c, UChar d) {
|
|
|
|
UChar a = 0;
|
|
|
|
UChar b = 0;
|
|
|
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
|
|
|
UChar e = pairs.charAt(i);
|
|
|
|
UChar f = pairs.charAt(i+1);
|
|
|
|
if (e <= (d+1) && c <= (f+1)) {
|
|
|
|
// Merge with this range
|
1999-12-28 23:57:50 +00:00
|
|
|
f = (UChar) uprv_max(d, f);
|
1999-10-20 22:08:09 +00:00
|
|
|
|
|
|
|
// Check to see if we need to merge with the
|
|
|
|
// subsequent range also. This happens if we have
|
|
|
|
// "abdf" and are merging in "cc". We only need to
|
|
|
|
// check on the right side -- never on the left.
|
|
|
|
if ((i+2) < pairs.length() &&
|
|
|
|
pairs.charAt(i+2) == (f+1)) {
|
|
|
|
f = pairs.charAt(i+3);
|
|
|
|
pairs.remove(i+2, 2);
|
|
|
|
}
|
1999-12-28 23:57:50 +00:00
|
|
|
pairs.setCharAt(i, (UChar) uprv_min(c, e));
|
1999-10-20 22:08:09 +00:00
|
|
|
pairs.setCharAt(i+1, f);
|
|
|
|
return;
|
|
|
|
} else if ((b+1) < c && (d+1) < e) {
|
|
|
|
// Insert before this range c, then d
|
|
|
|
pairs.insert(i, d); // d gets moved to i+1 by next insert
|
|
|
|
pairs.insert(i, c);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
a = e;
|
|
|
|
b = f;
|
|
|
|
}
|
|
|
|
// If nothing else, fall through and append this new range to
|
|
|
|
// the end.
|
|
|
|
pairs.append(c).append(d);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs an asymmetric difference: removes the range 'c'-'d'
|
|
|
|
* from the pairs list. The pairs list is modified in place. The
|
|
|
|
* result is normalized (in order and as short as possible). For
|
|
|
|
* example, removePair("am", 'l', 'q') => "ak".
|
|
|
|
* removePair("ampz", 'l', 'q') => "akrz".
|
|
|
|
*/
|
|
|
|
void UnicodeSet::removePair(UnicodeString& pairs, UChar c, UChar d) {
|
|
|
|
// Iterate over pairs until we find a pair that overlaps
|
|
|
|
// with the given range.
|
|
|
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
|
|
|
UChar b = pairs.charAt(i+1);
|
|
|
|
if (b < c) {
|
|
|
|
// Range at i is entirely before the given range,
|
|
|
|
// since we have a-b < c-d. No overlap yet...keep
|
|
|
|
// iterating.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
UChar a = pairs.charAt(i);
|
|
|
|
if (d < a) {
|
|
|
|
// Range at i is entirely after the given range; c-d <
|
|
|
|
// a-b. Since ranges are in order, nothing else will
|
|
|
|
// overlap.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// Once we get here, we know c <= b and d >= a.
|
|
|
|
// rangeEdited is set to true if we have modified the
|
|
|
|
// range a-b (the range at i) in place.
|
|
|
|
bool_t rangeEdited = FALSE;
|
|
|
|
if (c > a) {
|
|
|
|
// If c is after a and before b, then we have overlap
|
|
|
|
// of this sort: a--c==b--d or a--c==d--b, where a-b
|
|
|
|
// and c-d are the ranges of interest. We need to
|
|
|
|
// add the range a,c-1.
|
|
|
|
pairs.setCharAt(i+1, (UChar)(c-1));
|
|
|
|
// i is already a
|
|
|
|
rangeEdited = TRUE;
|
|
|
|
}
|
|
|
|
if (d < b) {
|
|
|
|
// If d is after a and before b, we overlap like this:
|
|
|
|
// c--a==d--b or a--c==d--b, where a-b is the range at
|
|
|
|
// i and c-d is the range being removed. We need to
|
|
|
|
// add the range d+1,b.
|
|
|
|
if (rangeEdited) {
|
|
|
|
// Insert {d+1, b}
|
|
|
|
pairs.insert(i+2, b); // b moves to i+3 by next insert:
|
|
|
|
pairs.insert(i+2, (UChar)(d+1));
|
|
|
|
i += 2;
|
|
|
|
} else {
|
|
|
|
pairs.setCharAt(i, (UChar)(d+1));
|
|
|
|
// i+1 is already b
|
|
|
|
rangeEdited = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!rangeEdited) {
|
|
|
|
// If we didn't add any ranges, that means the entire
|
|
|
|
// range a-b must be deleted, since we have
|
|
|
|
// c--a==b--d.
|
|
|
|
pairs.remove(i, 2);
|
|
|
|
i -= 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Implementation: Fundamental operators
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Changes the pairs list to represent the complement of the set it
|
|
|
|
* currently represents. The pairs list will be normalized (in
|
|
|
|
* order and in shortest possible form) if the original pairs list
|
|
|
|
* was normalized.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::doComplement(UnicodeString& pairs) {
|
|
|
|
if (pairs.length() == 0) {
|
|
|
|
pairs.append((UChar)0x0000).append((UChar)0xffff);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Change each end to a start and each start to an end of the
|
|
|
|
// gaps between the ranges. That is, 3-7 9-12 becomes x-2 8-8
|
|
|
|
// 13-x, where 'x' represents a range that must now be fixed
|
|
|
|
// up.
|
|
|
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
|
|
|
pairs.setCharAt(i, (UChar) (pairs.charAt(i) - 1));
|
|
|
|
pairs.setCharAt(i+1, (UChar) (pairs.charAt(i+1) + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fix up the initial range, either by adding a start point of
|
|
|
|
// U+0000, or by deleting the range altogether, if the
|
|
|
|
// original range was U+0000 - x.
|
|
|
|
if (pairs.charAt(0) == (UChar)0xFFFF) {
|
|
|
|
pairs.remove(0, 1);
|
|
|
|
} else {
|
|
|
|
pairs.insert(0, (UChar)0x0000);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fix up the final range, either by adding an end point of
|
|
|
|
// U+FFFF, or by deleting the range altogether, if the
|
|
|
|
// original range was x - U+FFFF.
|
|
|
|
if (pairs.charAt(pairs.length() - 1) == (UChar)0x0000) {
|
|
|
|
pairs.remove(pairs.length() - 1);
|
|
|
|
} else {
|
|
|
|
pairs.append((UChar)0xFFFF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Given two pairs lists, changes the first in place to represent
|
|
|
|
* the union of the two sets.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::doUnion(UnicodeString& c1, const UnicodeString& c2) {
|
|
|
|
UnicodeString result;
|
|
|
|
|
|
|
|
int32_t i = 0;
|
|
|
|
int32_t j = 0;
|
|
|
|
|
|
|
|
// consider all the characters in both strings
|
|
|
|
while (i < c1.length() && j < c2.length()) {
|
|
|
|
UChar ub;
|
|
|
|
|
|
|
|
// the first character in the result is the lower of the
|
|
|
|
// starting characters of the two strings, and "ub" gets
|
|
|
|
// set to the upper bound of that range
|
|
|
|
if (c1.charAt(i) < c2.charAt(j)) {
|
|
|
|
result.append(c1.charAt(i));
|
|
|
|
ub = c1.charAt(++i);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
result.append(c2.charAt(j));
|
|
|
|
ub = c2.charAt(++j);
|
|
|
|
}
|
|
|
|
|
|
|
|
// for as long as one of our two pointers is pointing to a range's
|
|
|
|
// end point, or i is pointing to a character that is less than
|
|
|
|
// "ub" plus one (the "plus one" stitches touching ranges together)...
|
|
|
|
while (i % 2 == 1 || j % 2 == 1 || (i < c1.length() && c1.charAt(i)
|
|
|
|
<= ub + 1)) {
|
|
|
|
// advance i to the first character that is greater than
|
|
|
|
// "ub" plus one
|
|
|
|
while (i < c1.length() && c1.charAt(i) <= ub + 1)
|
|
|
|
++i;
|
|
|
|
|
|
|
|
// if i points to the endpoint of a range, update "ub"
|
|
|
|
// to that character, or if i points to the start of
|
|
|
|
// a range and the endpoint of the preceding range is
|
|
|
|
// greater than "ub", update "up" to _that_ character
|
|
|
|
if (i % 2 == 1)
|
|
|
|
ub = c1.charAt(i);
|
|
|
|
else if (i > 0 && c1.charAt(i - 1) > ub)
|
|
|
|
ub = c1.charAt(i - 1);
|
|
|
|
|
|
|
|
// now advance j to the first character that is greater
|
|
|
|
// that "ub" plus one
|
|
|
|
while (j < c2.length() && c2.charAt(j) <= ub + 1)
|
|
|
|
++j;
|
|
|
|
|
|
|
|
// if j points to the endpoint of a range, update "ub"
|
|
|
|
// to that character, or if j points to the start of
|
|
|
|
// a range and the endpoint of the preceding range is
|
|
|
|
// greater than "ub", update "up" to _that_ character
|
|
|
|
if (j % 2 == 1)
|
|
|
|
ub = c2.charAt(j);
|
|
|
|
else if (j > 0 && c2.charAt(j - 1) > ub)
|
|
|
|
ub = c2.charAt(j - 1);
|
|
|
|
}
|
|
|
|
// when we finally fall out of this loop, we will have stitched
|
|
|
|
// together a series of ranges that overlap or touch, i and j
|
|
|
|
// will both point to starting points of ranges, and "ub" will
|
|
|
|
// be the endpoint of the range we're working on. Write "ub"
|
|
|
|
// to the result
|
|
|
|
result.append(ub);
|
|
|
|
|
|
|
|
// loop back around to create the next range in the result
|
|
|
|
}
|
|
|
|
|
|
|
|
// we fall out to here when we've exhausted all the characters in
|
|
|
|
// one of the operands. We can append all of the remaining characters
|
|
|
|
// in the other operand without doing any extra work.
|
|
|
|
if (i < c1.length())
|
|
|
|
result.append(c1, i, LONG_MAX);
|
|
|
|
if (j < c2.length())
|
|
|
|
result.append(c2, j, LONG_MAX);
|
|
|
|
|
|
|
|
c1 = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Given two pairs lists, changes the first in place to represent
|
|
|
|
* the asymmetric difference of the two sets.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::doDifference(UnicodeString& pairs, const UnicodeString& pairs2) {
|
|
|
|
UnicodeString p2(pairs2);
|
|
|
|
doComplement(p2);
|
|
|
|
doIntersection(pairs, p2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Given two pairs lists, changes the first in place to represent
|
|
|
|
* the intersection of the two sets.
|
|
|
|
*/
|
|
|
|
void UnicodeSet::doIntersection(UnicodeString& c1, const UnicodeString& c2) {
|
|
|
|
UnicodeString result;
|
|
|
|
|
|
|
|
int32_t i = 0;
|
|
|
|
int32_t j = 0;
|
|
|
|
int32_t oldI;
|
|
|
|
int32_t oldJ;
|
|
|
|
|
|
|
|
// iterate until we've exhausted one of the operands
|
|
|
|
while (i < c1.length() && j < c2.length()) {
|
|
|
|
|
|
|
|
// advance j until it points to a character that is larger than
|
|
|
|
// the one i points to. If this is the beginning of a one-
|
|
|
|
// character range, advance j to point to the end
|
|
|
|
if (i < c1.length() && i % 2 == 0) {
|
|
|
|
while (j < c2.length() && c2.charAt(j) < c1.charAt(i))
|
|
|
|
++j;
|
|
|
|
if (j < c2.length() && j % 2 == 0 && c2.charAt(j) == c1.charAt(i))
|
|
|
|
++j;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if j points to the endpoint of a range, save the current
|
|
|
|
// value of i, then advance i until it reaches a character
|
|
|
|
// which is larger than the character pointed at
|
|
|
|
// by j. All of the characters we've advanced over (except
|
|
|
|
// the one currently pointed to by i) are added to the result
|
|
|
|
oldI = i;
|
|
|
|
while (j % 2 == 1 && i < c1.length() && c1.charAt(i) <= c2.charAt(j))
|
|
|
|
++i;
|
|
|
|
result.append(c1, oldI, i-oldI);
|
|
|
|
|
|
|
|
// if i points to the endpoint of a range, save the current
|
|
|
|
// value of j, then advance j until it reaches a character
|
|
|
|
// which is larger than the character pointed at
|
|
|
|
// by i. All of the characters we've advanced over (except
|
|
|
|
// the one currently pointed to by i) are added to the result
|
|
|
|
oldJ = j;
|
|
|
|
while (i % 2 == 1 && j < c2.length() && c2.charAt(j) <= c1.charAt(i))
|
|
|
|
++j;
|
|
|
|
result.append(c2, oldJ, j-oldJ);
|
|
|
|
|
|
|
|
// advance i until it points to a character larger than j
|
|
|
|
// If it points at the beginning of a one-character range,
|
|
|
|
// advance it to the end of that range
|
|
|
|
if (j < c2.length() && j % 2 == 0) {
|
|
|
|
while (i < c1.length() && c1.charAt(i) < c2.charAt(j))
|
|
|
|
++i;
|
|
|
|
if (i < c1.length() && i % 2 == 0 && c2.charAt(j) == c1.charAt(i))
|
|
|
|
++i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
c1 = result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Implementation: Generation of pairs for Unicode categories
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a pairs string for the given category, given its name.
|
|
|
|
* The category name must be either a two-letter name, such as
|
|
|
|
* "Lu", or a one letter name, such as "L". One-letter names
|
|
|
|
* indicate the logical union of all two-letter names that start
|
|
|
|
* with that letter. Case is significant. If the name starts
|
|
|
|
* with the character '^' then the complement of the given
|
|
|
|
* character set is returned.
|
|
|
|
*
|
|
|
|
* Although individual categories such as "Lu" are cached, we do
|
|
|
|
* not currently cache single-letter categories such as "L" or
|
|
|
|
* complements such as "^Lu" or "^L". It would be easy to cache
|
|
|
|
* these as well in a hashtable should the need arise.
|
|
|
|
*/
|
|
|
|
UnicodeString& UnicodeSet::getCategoryPairs(UnicodeString& result,
|
|
|
|
const UnicodeString& catName,
|
|
|
|
UErrorCode& status) {
|
|
|
|
if (U_FAILURE(status)) {
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The temporary cat is only really needed if invert is true.
|
|
|
|
// TO DO: Allocate cat on the heap only if needed.
|
|
|
|
UnicodeString cat(catName);
|
|
|
|
bool_t invert = (catName.length() > 1 &&
|
|
|
|
catName.charAt(0) == '^');
|
|
|
|
if (invert) {
|
|
|
|
cat.remove(0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
result.remove();
|
|
|
|
|
|
|
|
// if we have two characters, search the category map for that
|
|
|
|
// code and either construct and return a UnicodeSet from the
|
|
|
|
// data in the category map or throw an exception
|
|
|
|
if (cat.length() == 2) {
|
|
|
|
int32_t i = CATEGORY_NAMES.indexOf(cat);
|
|
|
|
if (i>=0 && i%2==0) {
|
|
|
|
i /= 2;
|
|
|
|
result = getCategoryPairs((int8_t)i);
|
|
|
|
if (!invert) {
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (cat.length() == 1) {
|
|
|
|
// if we have one character, search the category map for
|
|
|
|
// codes beginning with that letter, and union together
|
|
|
|
// all of the matching sets that we find (or throw an
|
|
|
|
// exception if there are no matches)
|
|
|
|
for (int32_t i=0; i<Unicode::GENERAL_TYPES_COUNT; ++i) {
|
|
|
|
if (CATEGORY_NAMES.charAt(2*i) == cat.charAt(0)) {
|
|
|
|
const UnicodeString& pairs = getCategoryPairs((int8_t)i);
|
|
|
|
if (result.length() == 0) {
|
|
|
|
result = pairs;
|
|
|
|
} else {
|
|
|
|
doUnion(result, pairs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (result.length() == 0) {
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (invert) {
|
|
|
|
doComplement(result);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns a pairs string for the given category. This string is
|
|
|
|
* cached and returned again if this method is called again with
|
|
|
|
* the same parameter.
|
|
|
|
*/
|
|
|
|
const UnicodeString& UnicodeSet::getCategoryPairs(int8_t cat) {
|
|
|
|
// In order to tell what cache entries are empty, we assume
|
|
|
|
// every category specifies at least one character. Thus
|
|
|
|
// pair lists in the cache that are empty are uninitialized.
|
|
|
|
if (CATEGORY_PAIRS_CACHE[cat].length() == 0) {
|
|
|
|
// Walk through all Unicode characters, noting the start
|
|
|
|
// and end of each range for which Character.getType(c)
|
|
|
|
// returns the given category integer. Since we are
|
|
|
|
// iterating in order, we can simply append the resulting
|
|
|
|
// ranges to the pairs string.
|
|
|
|
UnicodeString& pairs = CATEGORY_PAIRS_CACHE[cat];
|
|
|
|
int32_t first = -1;
|
|
|
|
int32_t last = -2;
|
|
|
|
for (int32_t i=0; i<=0xFFFF; ++i) {
|
|
|
|
if (Unicode::getType((UChar)i) == cat) {
|
|
|
|
if ((last+1) == i) {
|
|
|
|
last = i;
|
|
|
|
} else {
|
|
|
|
if (first >= 0) {
|
|
|
|
pairs.append((UChar)first).append((UChar)last);
|
|
|
|
}
|
|
|
|
first = last = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (first >= 0) {
|
|
|
|
pairs.append((UChar)first).append((UChar)last);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return CATEGORY_PAIRS_CACHE[cat];
|
|
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
// Implementation: Utility methods
|
|
|
|
//----------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the character after the given position, or '\uFFFF' if
|
|
|
|
* there is none.
|
|
|
|
*/
|
|
|
|
UChar UnicodeSet::charAfter(const UnicodeString& str, int32_t i) {
|
|
|
|
return ((++i) < str.length()) ? str.charAt(i) : (UChar)0xFFFF;
|
|
|
|
}
|