scuffed-code/icu4c/source/common/uresdata.c

1071 lines
36 KiB
C
Raw Normal View History

/*
*******************************************************************************
* *
* Copyright (C) 1999-2003, International Business Machines Corporation *
* and others. All Rights Reserved. *
* *
*******************************************************************************
* file name: uresdata.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 1999dec08
* created by: Markus W. Scherer
* Modification History:
*
* Date Name Description
* 06/20/2000 helena OS/400 port changes; mostly typecast.
* 06/24/02 weiv Added support for resource sharing
*/
#include "unicode/utypes.h"
#include "unicode/udata.h"
#include "cmemory.h"
#include "cstring.h"
#include "uarrsort.h"
#include "udataswp.h"
#include "ucol_swp.h"
#include "uresdata.h"
#include "uresimp.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
/*
* Resource access helpers
*/
/* get a const char* pointer to the key with the keyOffset byte offset from pRoot */
#define RES_GET_KEY(pRoot, keyOffset) ((const char *)(pRoot)+(keyOffset))
#define URESDATA_ITEM_NOT_FOUND -1
/*
* All the type-access functions assume that
* the resource is of the expected type.
*/
/*
* Array functions
*/
static Resource
_res_getArrayItem(Resource *pRoot, Resource res, int32_t indexR) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res);
if(indexR<*p) {
return ((const Resource *)(p))[1+indexR];
} else {
return RES_BOGUS; /* indexR>itemCount */
}
}
/*
* Table functions
*
* Important: the key offsets are 16-bit byte offsets from pRoot,
* and the itemCount is one more 16-bit, too.
* Thus, there are (count+1) uint16_t values.
* In order to 4-align the Resource item values, there is a padding
* word if count is even, i.e., there is exactly (~count&1)
* 16-bit padding words.
*
* For Table32, both the count and the key offsets are int32_t's
* and need not alignment.
*/
static const char *
_res_getTableKey(const Resource *pRoot, const Resource res, int32_t indexS) {
const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pRoot, res);
if((uint32_t)indexS<(uint32_t)*p) {
return RES_GET_KEY(pRoot, p[indexS+1]);
} else {
return NULL; /* indexS>itemCount */
}
}
static const char *
_res_getTable32Key(const Resource *pRoot, const Resource res, int32_t indexS) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res);
if((uint32_t)indexS<(uint32_t)*p) {
return RES_GET_KEY(pRoot, p[indexS+1]);
} else {
return NULL; /* indexS>itemCount */
}
}
static Resource
_res_getTableItem(const Resource *pRoot, const Resource res, int32_t indexR) {
const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pRoot, res);
int32_t count=*p;
if((uint32_t)indexR<(uint32_t)count) {
return ((const Resource *)(p+1+count+(~count&1)))[indexR];
} else {
return RES_BOGUS; /* indexR>itemCount */
}
}
static Resource
_res_getTable32Item(const Resource *pRoot, const Resource res, int32_t indexR) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res);
int32_t count=*p;
if((uint32_t)indexR<(uint32_t)count) {
return ((const Resource *)(p+1+count))[indexR];
} else {
return RES_BOGUS; /* indexR>itemCount */
}
}
static Resource
_res_findTableItem(const Resource *pRoot, const Resource res, const char *key,
int32_t *index, const char **realKey) {
const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pRoot, res);
int32_t i, start, limit;
limit=*p++; /* number of entries */
if(limit == 0) { /* this table is empty */
*index=URESDATA_ITEM_NOT_FOUND;
return RES_BOGUS;
}
/* do a binary search for the key */
start=0;
while(start<limit-1) {
i=(int32_t)((start+limit)/2);
if(uprv_strcmp(key, RES_GET_KEY(pRoot, p[i]))<0) {
limit=i;
} else {
start=i;
}
}
/* did we really find it? */
if(uprv_strcmp(key, RES_GET_KEY(pRoot, p[start]))==0) {
*index=start;
*realKey=RES_GET_KEY(pRoot, p[start]);
limit=*(p-1); /* itemCount */
return ((const Resource *)(p+limit+(~limit&1)))[start];
} else {
*index=URESDATA_ITEM_NOT_FOUND;
return RES_BOGUS; /* not found */
}
}
static Resource
_res_findTable32Item(const Resource *pRoot, const Resource res, const char *key,
int32_t *index, const char **realKey) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res);
int32_t i, start, limit;
limit=*p++; /* number of entries */
if(limit == 0) { /* this table is empty */
*index=URESDATA_ITEM_NOT_FOUND;
return RES_BOGUS;
}
/* do a binary search for the key */
start=0;
while(start<limit-1) {
i=(int32_t)((start+limit)/2);
if(uprv_strcmp(key, RES_GET_KEY(pRoot, p[i]))<0) {
limit=i;
} else {
start=i;
}
}
/* did we really find it? */
if(uprv_strcmp(key, RES_GET_KEY(pRoot, p[start]))==0) {
*index=start;
*realKey=RES_GET_KEY(pRoot, p[start]);
limit=*(p-1); /* itemCount */
return ((const Resource *)(p+limit))[start];
} else {
*index=URESDATA_ITEM_NOT_FOUND;
return RES_BOGUS; /* not found */
}
}
/* helper for res_load() ---------------------------------------------------- */
static UBool U_CALLCONV
isAcceptable(void *context,
const char *type, const char *name,
const UDataInfo *pInfo) {
return (UBool)(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->sizeofUChar==U_SIZEOF_UCHAR &&
pInfo->dataFormat[0]==0x52 && /* dataFormat="ResB" */
pInfo->dataFormat[1]==0x65 &&
pInfo->dataFormat[2]==0x73 &&
pInfo->dataFormat[3]==0x42 &&
pInfo->formatVersion[0]==1);
}
/* semi-public functions ---------------------------------------------------- */
U_CFUNC UBool
res_load(ResourceData *pResData,
const char *path, const char *name, UErrorCode *errorCode) {
UResType rootType;
/* load the ResourceBundle file */
pResData->data=udata_openChoice(path, "res", name, isAcceptable, NULL, errorCode);
if(U_FAILURE(*errorCode)) {
return FALSE;
}
/* get its memory and root resource */
pResData->pRoot=(Resource *)udata_getMemory(pResData->data);
pResData->rootRes=*pResData->pRoot;
/* currently, we accept only resources that have a Table as their roots */
rootType=RES_GET_TYPE(pResData->rootRes);
if(rootType!=URES_TABLE && rootType!=URES_TABLE32) {
*errorCode=U_INVALID_FORMAT_ERROR;
udata_close(pResData->data);
pResData->data=NULL;
return FALSE;
}
return TRUE;
}
U_CFUNC void
res_unload(ResourceData *pResData) {
if(pResData->data!=NULL) {
udata_close(pResData->data);
pResData->data=NULL;
}
}
U_CFUNC const UChar *
res_getString(const ResourceData *pResData, const Resource res, int32_t *pLength) {
if(res!=RES_BOGUS && RES_GET_TYPE(res)==URES_STRING) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res);
if (pLength) {
*pLength=*p;
}
return (const UChar *)++p;
} else {
if (pLength) {
*pLength=0;
}
return NULL;
}
}
U_CFUNC const UChar *
res_getAlias(const ResourceData *pResData, const Resource res, int32_t *pLength) {
if(res!=RES_BOGUS && RES_GET_TYPE(res)==URES_ALIAS) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res);
if (pLength) {
*pLength=*p;
}
return (const UChar *)++p;
} else {
if (pLength) {
*pLength=0;
}
return NULL;
}
}
U_CFUNC const uint8_t *
res_getBinary(const ResourceData *pResData, const Resource res, int32_t *pLength) {
if(res!=RES_BOGUS) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res);
*pLength=*p++;
if (*pLength == 0) {
p = NULL;
}
return (const uint8_t *)p;
} else {
*pLength=0;
return NULL;
}
}
U_CFUNC const int32_t *
res_getIntVector(const ResourceData *pResData, const Resource res, int32_t *pLength) {
if(res!=RES_BOGUS && RES_GET_TYPE(res)==URES_INT_VECTOR) {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res);
*pLength=*p++;
if (*pLength == 0) {
p = NULL;
}
return (const int32_t *)p;
} else {
*pLength=0;
return NULL;
}
}
U_CFUNC int32_t
res_countArrayItems(const ResourceData *pResData, const Resource res) {
if(res!=RES_BOGUS) {
switch(RES_GET_TYPE(res)) {
case URES_STRING:
case URES_BINARY:
case URES_ALIAS:
case URES_INT:
case URES_INT_VECTOR:
return 1;
case URES_ARRAY:
case URES_TABLE32: {
const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res);
return *p;
}
case URES_TABLE: {
const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pResData->pRoot, res);
return *p;
}
default:
break;
}
}
return 0;
}
U_CFUNC Resource
res_getResource(const ResourceData *pResData, const char *key) {
int32_t index;
const char *realKey;
if(RES_GET_TYPE(pResData->rootRes)==URES_TABLE) {
return _res_findTableItem(pResData->pRoot, pResData->rootRes, key, &index, &realKey);
} else {
return _res_findTable32Item(pResData->pRoot, pResData->rootRes, key, &index, &realKey);
}
}
U_CFUNC Resource
res_getArrayItem(const ResourceData *pResData, Resource array, const int32_t indexR) {
return _res_getArrayItem(pResData->pRoot, array, indexR);
}
U_CFUNC Resource
res_findResource(const ResourceData *pResData, Resource r, char** path, const char** key) {
/* we pass in a path. CollationElements/Sequence or zoneStrings/3/2 etc.
* iterates over a path and stops when a scalar resource is found. This
* CAN be an alias. Path gets set to the part that has not yet been processed.
*/
char *pathP = *path, *nextSepP = *path;
char *closeIndex = NULL;
Resource t1 = r;
Resource t2;
int32_t indexR = 0;
UResType type = RES_GET_TYPE(t1);
/* if you come in with an empty path, you'll be getting back the same resource */
if(!uprv_strlen(pathP)) {
return r;
}
/* one needs to have an aggregate resource in order to search in it */
if(!(type == URES_TABLE || type == URES_TABLE32 || type == URES_ARRAY)) {
return RES_BOGUS;
}
while(nextSepP && *pathP && t1 != RES_BOGUS &&
(type == URES_TABLE || type == URES_TABLE32 || type == URES_ARRAY)
) {
/* Iteration stops if: the path has been consumed, we found a non-existing
* resource (t1 == RES_BOGUS) or we found a scalar resource (including alias)
*/
nextSepP = uprv_strchr(pathP, RES_PATH_SEPARATOR);
/* if there are more separators, terminate string
* and set path to the remaining part of the string
*/
if(nextSepP != NULL) {
*nextSepP = 0; /* overwrite the separator with a NUL to terminate the key */
*path = nextSepP+1;
} else {
*path = uprv_strchr(pathP, 0);
}
/* if the resource is a table */
/* try the key based access */
if(type == URES_TABLE) {
t2 = _res_findTableItem(pResData->pRoot, t1, pathP, &indexR, key);
if(t2 == RES_BOGUS) {
/* if we fail to get the resource by key, maybe we got an index */
indexR = uprv_strtol(pathP, &closeIndex, 10);
if(closeIndex != pathP) {
/* if we indeed have an index, try to get the item by index */
t2 = res_getTableItemByIndex(pResData, t1, indexR, key);
}
}
} else if(type == URES_TABLE32) {
t2 = _res_findTable32Item(pResData->pRoot, t1, pathP, &indexR, key);
if(t2 == RES_BOGUS) {
/* if we fail to get the resource by key, maybe we got an index */
indexR = uprv_strtol(pathP, &closeIndex, 10);
if(closeIndex != pathP) {
/* if we indeed have an index, try to get the item by index */
t2 = res_getTableItemByIndex(pResData, t1, indexR, key);
}
}
} else if(type == URES_ARRAY) {
indexR = uprv_strtol(pathP, &closeIndex, 10);
if(closeIndex != pathP) {
t2 = _res_getArrayItem(pResData->pRoot, t1, indexR);
} else {
t2 = RES_BOGUS; /* have an array, but don't have a valid index */
}
*key = NULL;
} else { /* can't do much here, except setting t2 to bogus */
t2 = RES_BOGUS;
}
t1 = t2;
type = RES_GET_TYPE(t1);
/* position pathP to next resource key/index */
pathP = *path;
}
return t1;
}
U_CFUNC Resource
res_getTableItemByKey(const ResourceData *pResData, Resource table,
int32_t *indexR, const char **key) {
if(key != NULL && *key != NULL) {
if(RES_GET_TYPE(table)==URES_TABLE) {
return _res_findTableItem(pResData->pRoot, table, *key, indexR, key);
} else {
return _res_findTable32Item(pResData->pRoot, table, *key, indexR, key);
}
} else {
return RES_BOGUS;
}
}
U_CFUNC Resource
res_getTableItemByIndex(const ResourceData *pResData, Resource table,
int32_t indexR, const char **key) {
if(indexR>-1) {
if(RES_GET_TYPE(table)==URES_TABLE) {
if(key != NULL) {
*key = _res_getTableKey(pResData->pRoot, table, indexR);
}
return _res_getTableItem(pResData->pRoot, table, indexR);
} else {
if(key != NULL) {
*key = _res_getTable32Key(pResData->pRoot, table, indexR);
}
return _res_getTable32Item(pResData->pRoot, table, indexR);
}
} else {
return RES_BOGUS;
}
}
/* resource bundle swapping ------------------------------------------------- */
/*
* Need to always enumerate the entire item tree,
* track the lowest address of any item to use as the limit for char keys[],
* track the highest address of any item to return the size of the data.
*
* We should have thought of storing those in the data...
* It is possible to extend the data structure by putting additional values
* in places that are inaccessible by ordinary enumeration of the item tree.
* For example, additional integers could be stored at the beginning or
* end of the key strings; this could be indicated by a minor version number,
* and the data swapping would have to know about these values.
*
* The data structure does not forbid keys to be shared, so we must swap
* all keys once instead of each key when it is referenced.
*
* These swapping functions assume that a resource bundle always has a length
* that is a multiple of 4 bytes.
* Currently, this is trivially true because genrb writes bundle tree leaves
* physically first, before their branches, so that the root table with its
* array of resource items (uint32_t values) is always last.
*/
/* definitions for table sorting ------------------------ */
/*
* row of a temporary array
*
* gets platform-endian key string indexes and sorting indexes;
* after sorting this array by keys, the actual key/value arrays are permutated
* according to the sorting indexes
*/
typedef struct Row {
int32_t keyIndex, sortIndex;
} Row;
static int32_t
ures_compareRows(const void *context, const void *left, const void *right) {
const char *keyChars=(const char *)context;
return (int32_t)uprv_strcmp(keyChars+((const Row *)left)->keyIndex,
keyChars+((const Row *)right)->keyIndex);
}
typedef struct TempTable {
const char *keyChars;
Row *rows;
int32_t *resort;
} TempTable;
enum {
STACK_ROW_CAPACITY=200
};
/* binary data with known formats is swapped too */
typedef enum UResSpecialType {
URES_NO_SPECIAL_TYPE,
URES_COLLATION_BINARY,
URES_SPECIAL_TYPE_COUNT
} UResSpecialType;
/* resource table key for collation binaries: "%%CollationBin" */
static const UChar gCollationBinKey[]={
0x25, 0x25,
0x43, 0x6f, 0x6c, 0x6c, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x42, 0x69, 0x6e,
0
};
/*
* preflight one resource item and set bottom and top values;
* length, bottom, and top count Resource item offsets (4 bytes each), not bytes
*/
static void
ures_preflightResource(const UDataSwapper *ds,
const Resource *inBundle, int32_t length,
Resource res,
int32_t *pBottom, int32_t *pTop, int32_t *pMaxTableLength,
UErrorCode *pErrorCode) {
const Resource *p;
int32_t offset;
if(res==0 || RES_GET_TYPE(res)==URES_INT) {
/* empty string or integer, nothing to do */
return;
}
/* all other types use an offset to point to their data */
offset=(int32_t)RES_GET_OFFSET(res);
if(0<=length && length<=offset) {
udata_printError(ds, "ures_preflightResource(res=%08x) resource offset exceeds bundle length %d\n",
res, length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return;
} else if(offset<*pBottom) {
*pBottom=offset;
}
p=inBundle+offset;
switch(RES_GET_TYPE(res)) {
case URES_ALIAS:
/* physically same value layout as string, fall through */
case URES_STRING:
/* top=offset+1+(string length +1)/2 rounded up */
offset+=1+((udata_readInt32(ds, (int32_t)*p)+1)+1)/2;
break;
case URES_BINARY:
/* top=offset+1+(binary length)/4 rounded up */
offset+=1+(udata_readInt32(ds, (int32_t)*p)+3)/4;
break;
case URES_TABLE:
case URES_TABLE32:
{
Resource item;
int32_t i, count;
if(RES_GET_TYPE(res)==URES_TABLE) {
/* get table item count */
const uint16_t *pKey16=(const uint16_t *)p;
count=ds->readUInt16(*pKey16++);
/* top=((1+ table item count)/2 rounded up)+(table item count) */
offset+=((1+count)+1)/2;
} else {
/* get table item count */
const int32_t *pKey32=(const int32_t *)p;
count=udata_readInt32(ds, *pKey32++);
/* top=(1+ table item count)+(table item count) */
offset+=1+count;
}
if(count>*pMaxTableLength) {
*pMaxTableLength=count;
}
p=inBundle+offset; /* pointer to table resources */
offset+=count;
/* recurse */
if(offset<=length) {
for(i=0; i<count; ++i) {
item=ds->readUInt32(*p++);
ures_preflightResource(ds, inBundle, length, item,
pBottom, pTop, pMaxTableLength,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_preflightResource(table res=%08x)[%d].recurse(%08x) failed - %s\n",
res, i, item, u_errorName(*pErrorCode));
break;
}
}
}
}
break;
case URES_ARRAY:
{
Resource item;
int32_t i, count;
/* top=offset+1+(array length) */
count=udata_readInt32(ds, (int32_t)*p++);
offset+=1+count;
/* recurse */
if(offset<=length) {
for(i=0; i<count; ++i) {
item=ds->readUInt32(*p++);
ures_preflightResource(ds, inBundle, length, item,
pBottom, pTop, pMaxTableLength,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_preflightResource(array res=%08x)[%d].recurse(%08x) failed - %s\n",
res, i, item, u_errorName(*pErrorCode));
break;
}
}
}
}
break;
case URES_INT_VECTOR:
/* top=offset+1+(vector length) */
offset+=1+udata_readInt32(ds, (int32_t)*p);
break;
default:
/* also catches RES_BOGUS */
udata_printError(ds, "ures_preflightResource(res=%08x) unknown resource type\n", res);
*pErrorCode=U_UNSUPPORTED_ERROR;
break;
}
if(U_FAILURE(*pErrorCode)) {
/* nothing to do */
} else if(0<=length && length<offset) {
udata_printError(ds, "ures_preflightResource(res=%08x) resource limit exceeds bundle length %d\n",
res, length);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
} else if(offset>*pTop) {
*pTop=offset;
}
}
/*
* swap one resource item
* since preflighting succeeded, we need not check offsets against length any more
*/
static void
ures_swapResource(const UDataSwapper *ds,
const Resource *inBundle, Resource *outBundle,
Resource res, /* caller swaps res itself */
UResSpecialType specialType,
TempTable *pTempTable,
UErrorCode *pErrorCode) {
const Resource *p;
Resource *q;
int32_t offset, count;
if(res==0 || RES_GET_TYPE(res)==URES_INT) {
/* empty string or integer, nothing to do */
return;
}
/* all other types use an offset to point to their data */
offset=(int32_t)RES_GET_OFFSET(res);
p=inBundle+offset;
q=outBundle+offset;
switch(RES_GET_TYPE(res)) {
case URES_ALIAS:
/* physically same value layout as string, fall through */
case URES_STRING:
count=udata_readInt32(ds, (int32_t)*p);
/* swap length */
ds->swapArray32(ds, p, 4, q, pErrorCode);
/* swap each UChar (the terminating NUL would not change) */
ds->swapArray16(ds, p+1, 2*count, q+1, pErrorCode);
break;
case URES_BINARY:
count=udata_readInt32(ds, (int32_t)*p);
/* swap length */
ds->swapArray32(ds, p, 4, q, pErrorCode);
/* no need to swap or copy bytes - ures_swap() copied them all */
/* swap known formats */
if(specialType==URES_COLLATION_BINARY) {
#if !UCONFIG_NO_COLLATION
ucol_swapBinary(ds, p+1, count, q+1, pErrorCode);
#endif
}
break;
case URES_TABLE:
case URES_TABLE32:
{
const uint16_t *pKey16;
uint16_t *qKey16;
const int32_t *pKey32;
int32_t *qKey32;
Resource item;
int32_t i, oldIndex;
if(RES_GET_TYPE(res)==URES_TABLE) {
/* get table item count */
pKey16=(const uint16_t *)p;
qKey16=(uint16_t *)q;
count=ds->readUInt16(*pKey16);
pKey32=qKey32=NULL;
/* swap count */
ds->swapArray16(ds, pKey16++, 2, qKey16++, pErrorCode);
offset+=((1+count)+1)/2;
} else {
/* get table item count */
pKey32=(const int32_t *)p;
qKey32=(int32_t *)q;
count=udata_readInt32(ds, *pKey32);
pKey16=qKey16=NULL;
/* swap count */
ds->swapArray32(ds, pKey32++, 4, qKey32++, pErrorCode);
offset+=1+count;
}
if(count==0) {
break;
}
p=inBundle+offset; /* pointer to table resources */
q=outBundle+offset;
/* recurse */
for(i=0; i<count; ++i) {
/*
* detect a collation binary that is to be swapped via
* ds->compareInvChars(ds, outData+readUInt16(pKey[i]), "%%CollationBin")
* etc.
*
* use some UDataSwapFn pointer from somewhere for collation swapping
* because the common library cannot directly call into the i18n library
*/
if(0==ds->compareInvChars(ds,
((const char *)outBundle)+
(pKey16!=NULL ?
ds->readUInt16(pKey16[i]) :
udata_readInt32(ds, pKey32[i])),
-1,
gCollationBinKey, LENGTHOF(gCollationBinKey)-1)
) {
specialType=URES_COLLATION_BINARY;
} else {
specialType=URES_NO_SPECIAL_TYPE;
}
item=ds->readUInt32(p[i]);
ures_swapResource(ds, inBundle, outBundle, item, specialType, pTempTable, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_swapResource(table res=%08x)[%d].recurse(%08x) failed - %s\n",
res, i, item, u_errorName(*pErrorCode));
return;
}
}
if(ds->inCharset==ds->outCharset) {
/* no need to sort, just swap the offset/value arrays */
if(pKey16!=NULL) {
ds->swapArray16(ds, pKey16, count*2, qKey16, pErrorCode);
ds->swapArray32(ds, p, count*4, q, pErrorCode);
} else {
/* swap key offsets and items as one array */
ds->swapArray32(ds, pKey32, count*2*4, qKey32, pErrorCode);
}
break;
}
/*
* We need to sort tables by outCharset key strings because they
* sort differently for different charset families.
* ures_swap() already set pTempTable->keyChars appropriately.
* First we set up a temporary table with the key indexes and
* sorting indexes and sort that.
* Then we permutate and copy/swap the actual values.
*/
if(pKey16!=NULL) {
for(i=0; i<count; ++i) {
pTempTable->rows[i].keyIndex=ds->readUInt16(pKey16[i]);
pTempTable->rows[i].sortIndex=i;
}
} else {
for(i=0; i<count; ++i) {
pTempTable->rows[i].keyIndex=udata_readInt32(ds, pKey32[i]);
pTempTable->rows[i].sortIndex=i;
}
}
uprv_sortArray(pTempTable->rows, count, sizeof(Row),
ures_compareRows, pTempTable->keyChars,
FALSE, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_swapResource(table res=%08x).uprv_sortArray(%d items) failed - %s\n",
res, count, u_errorName(*pErrorCode));
return;
}
/*
* copy/swap/permutate items
*
* If we swap in-place, then the permutation must use another
* temporary array (pTempTable->resort)
* before the results are copied to the outBundle.
*/
/* keys */
if(pKey16!=NULL) {
uint16_t *rKey16;
if(pKey16!=qKey16) {
rKey16=qKey16;
} else {
rKey16=(uint16_t *)pTempTable->resort;
}
for(i=0; i<count; ++i) {
oldIndex=pTempTable->rows[i].sortIndex;
ds->swapArray16(ds, pKey16+oldIndex, 2, rKey16+i, pErrorCode);
}
if(qKey16!=rKey16) {
uprv_memcpy(qKey16, rKey16, 2*count);
}
} else {
int32_t *rKey32;
if(pKey32!=qKey32) {
rKey32=qKey32;
} else {
rKey32=pTempTable->resort;
}
for(i=0; i<count; ++i) {
oldIndex=pTempTable->rows[i].sortIndex;
ds->swapArray32(ds, pKey32+oldIndex, 4, rKey32+i, pErrorCode);
}
if(qKey32!=rKey32) {
uprv_memcpy(qKey32, rKey32, 4*count);
}
}
/* resources */
{
Resource *r;
if(p!=q) {
r=q;
} else {
r=(Resource *)pTempTable->resort;
}
for(i=0; i<count; ++i) {
oldIndex=pTempTable->rows[i].sortIndex;
ds->swapArray32(ds, p+oldIndex, 4, r+i, pErrorCode);
}
if(q!=r) {
uprv_memcpy(q, r, 4*count);
}
}
}
break;
case URES_ARRAY:
{
Resource item;
int32_t i;
count=udata_readInt32(ds, (int32_t)*p);
/* swap length */
ds->swapArray32(ds, p++, 4, q++, pErrorCode);
/* recurse */
for(i=0; i<count; ++i) {
item=ds->readUInt32(p[i]);
ures_swapResource(ds, inBundle, outBundle, item, URES_NO_SPECIAL_TYPE, pTempTable, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_swapResource(array res=%08x)[%d].recurse(%08x) failed - %s\n",
res, i, item, u_errorName(*pErrorCode));
return;
}
}
/* swap items */
ds->swapArray32(ds, p, 4*count, q, pErrorCode);
}
break;
case URES_INT_VECTOR:
count=udata_readInt32(ds, (int32_t)*p);
/* swap length and each integer */
ds->swapArray32(ds, p, 4*(1+count), q, pErrorCode);
break;
default:
/* also catches RES_BOGUS */
*pErrorCode=U_UNSUPPORTED_ERROR;
break;
}
}
U_CAPI int32_t U_EXPORT2
ures_swap(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode) {
const UDataInfo *pInfo;
const Resource *inBundle;
Resource rootRes;
int32_t headerSize, maxTableLength;
Row rows[STACK_ROW_CAPACITY];
int32_t resort[STACK_ROW_CAPACITY];
TempTable tempTable;
/* the following integers count Resource item offsets (4 bytes each), not bytes */
int32_t bundleLength, stringsBottom, bottom, top;
/* udata_swapDataHeader checks the arguments */
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
/* check data format and format version */
pInfo=(const UDataInfo *)((const char *)inData+4);
if(!(
pInfo->dataFormat[0]==0x52 && /* dataFormat="ResB" */
pInfo->dataFormat[1]==0x65 &&
pInfo->dataFormat[2]==0x73 &&
pInfo->dataFormat[3]==0x42 &&
pInfo->formatVersion[0]==1
)) {
udata_printError(ds, "ures_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not a resource bundle\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
/* a resource bundle must contain at least one resource item */
if(length<0) {
bundleLength=-1;
} else {
bundleLength=(length-headerSize)/4;
/* formatVersion 1.1 must have a root item and at least 5 indexes */
if( bundleLength<
(pInfo->formatVersion[1]==0 ? 1 : 1+5)
) {
udata_printError(ds, "ures_swap(): too few bytes (%d after header) for a resource bundle\n",
length-headerSize);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
}
inBundle=(const Resource *)((const char *)inData+headerSize);
rootRes=ds->readUInt32(*inBundle);
if(pInfo->formatVersion[1]==0) {
/* preflight to get the bottom, top and maxTableLength values */
stringsBottom=1; /* just past root */
bottom=0x7fffffff;
top=maxTableLength=0;
ures_preflightResource(ds, inBundle, bundleLength, rootRes,
&bottom, &top, &maxTableLength,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_preflightResource(root res=%08x) failed - %s\n",
rootRes, u_errorName(*pErrorCode));
return 0;
}
} else {
/* formatVersion 1.1 adds the indexes[] array */
const int32_t *inIndexes;
inIndexes=(const int32_t *)(inBundle+1);
stringsBottom=1+udata_readInt32(ds, inIndexes[URES_INDEX_LENGTH]);
bottom=udata_readInt32(ds, inIndexes[URES_INDEX_STRINGS_TOP]);
top=udata_readInt32(ds, inIndexes[URES_INDEX_BUNDLE_TOP]);
maxTableLength=udata_readInt32(ds, inIndexes[URES_INDEX_MAX_TABLE_LENGTH]);
if(0<=bundleLength && bundleLength<top) {
udata_printError(ds, "ures_swap(): resource top %d exceeds bundle length %d\n",
top, bundleLength);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
}
if(length>=0) {
Resource *outBundle=(Resource *)((char *)outData+headerSize);
/* copy the bundle for binary and inaccessible data */
if(inData!=outData) {
uprv_memcpy(outBundle, inBundle, 4*top);
}
/* swap the key strings, but not the padding bytes (0xaa) after the last string and its NUL */
udata_swapInvStringBlock(ds, inBundle+stringsBottom, 4*(bottom-stringsBottom),
outBundle+stringsBottom, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_swap().udata_swapInvStringBlock(keys[%d]) failed - %s\n", 4*(bottom-1),
u_errorName(*pErrorCode));
return 0;
}
/* allocate the temporary table for sorting resource tables */
tempTable.keyChars=(const char *)outBundle; /* sort by outCharset */
if(maxTableLength<=STACK_ROW_CAPACITY) {
tempTable.rows=rows;
tempTable.resort=resort;
} else {
tempTable.rows=(Row *)uprv_malloc(maxTableLength*sizeof(Row)+maxTableLength*4);
if(tempTable.rows==NULL) {
udata_printError(ds, "ures_swap(): unable to allocate memory for sorting tables (max length: %d)\n",
maxTableLength);
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return 0;
}
tempTable.resort=(int32_t *)(tempTable.rows+maxTableLength);
}
/* swap the resources */
ures_swapResource(ds, inBundle, outBundle, rootRes, URES_NO_SPECIAL_TYPE, &tempTable, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ures_swapResource(root res=%08x) failed - %s\n",
rootRes, u_errorName(*pErrorCode));
}
if(tempTable.rows!=rows) {
uprv_free(tempTable.rows);
}
/* swap the root resource and indexes */
ds->swapArray32(ds, inBundle, stringsBottom*4, outBundle, pErrorCode);
}
return headerSize+4*top;
}