ICU-740 This code isn't used anymore

X-SVN-Rev: 5811
This commit is contained in:
George Rhoten 2001-09-19 01:26:00 +00:00
parent e21eac69b6
commit 69467d4959
4 changed files with 0 additions and 1977 deletions

View File

@ -1,658 +0,0 @@
/*
******************************************************************************
*
* Copyright (C) 1997-2001, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
*/
/*============================================================================
*
* File cmpshrta.cpp
*
* Modification History:
*
* Date Name Description
* 2/5/97 aliu Added CompactIntArray streamIn and streamOut methods.
* 3/4/97 aliu Tuned performance of CompactIntArray constructor,
* 05/07/97 helena Added isBogus()
* based on performance data indicating that this_obj was slow.
* 07/15/98 erm Synched with Java 1.2 CompactShortArray.java.
* 07/30/98 erm Added changes from 07/29/98 code review.
* 11/01/99 weiv Added getArray, getIndex and getCount based on Jitterbug 4
*============================================================================
*/
#include "ucmp16.h"
#include "cmemory.h"
#define arrayRegionMatches(source, sourceStart, target, targetStart, len) (uprv_memcmp(&source[sourceStart], &target[targetStart], len * sizeof(int16_t)) != 0)
static const int32_t UCMP16_kMaxUnicode = UCMP16_kMaxUnicode_int;
static const int32_t UCMP16_kUnicodeCount = UCMP16_kUnicodeCount_int;
static const int32_t UCMP16_kBlockShift = UCMP16_kBlockShift_int;
static const int32_t UCMP16_kBlockCount = UCMP16_kBlockCount_int;
static const int32_t UCMP16_kBlockBytes = UCMP16_kBlockBytes_int;
static const int32_t UCMP16_kIndexShift = UCMP16_kIndexShift_int;
static const int32_t UCMP16_kIndexCount = UCMP16_kIndexCount_int;
static const uint32_t UCMP16_kBlockMask = UCMP16_kBlockMask_int;
/**
* Sets the array to the invalid memory state.
*/
static CompactShortArray* setToBogus(CompactShortArray* array);
static void touchBlock(CompactShortArray* this_obj,
int32_t i,
int16_t value);
static UBool blockTouched(const CompactShortArray* this_obj,
int32_t i);
/* debug flags*/
/*=======================================================*/
int32_t ucmp16_getkUnicodeCount()
{return UCMP16_kUnicodeCount;}
int32_t ucmp16_getkBlockCount()
{return UCMP16_kBlockCount;}
CompactShortArray* ucmp16_open(int16_t defaultValue)
{
int32_t i;
CompactShortArray* this_obj = (CompactShortArray*) uprv_malloc(sizeof(CompactShortArray));
if (this_obj == NULL)
return NULL;
this_obj->fArray = (int16_t*)uprv_malloc(UCMP16_kUnicodeCount * sizeof(int16_t));
if (this_obj->fArray == NULL)
{
uprv_free(this_obj);
return NULL;
}
this_obj->fIndex = (uint16_t*)uprv_malloc(UCMP16_kIndexCount * sizeof(uint16_t));
if (this_obj->fIndex == NULL)
{
uprv_free(this_obj->fArray);
uprv_free(this_obj);
return NULL;
}
this_obj->fHashes =(int32_t*)uprv_malloc(UCMP16_kIndexCount * sizeof(int32_t));
if (this_obj->fHashes == NULL)
{
uprv_free(this_obj->fArray);
uprv_free(this_obj->fIndex);
uprv_free(this_obj);
return NULL;
}
this_obj->fStructSize = sizeof(CompactShortArray);
this_obj->fCount = UCMP16_kUnicodeCount;
this_obj->fCompact = FALSE;
this_obj->fBogus = FALSE;
this_obj->fAlias = FALSE;
this_obj->fIAmOwned = FALSE;
this_obj->fDefaultValue = defaultValue;
this_obj->kBlockShift = UCMP16_kBlockShift;
this_obj->kBlockMask = UCMP16_kBlockMask;
for (i = 0; i < UCMP16_kUnicodeCount; i += 1)
{
this_obj->fArray[i] = defaultValue;
}
for (i = 0; i < UCMP16_kIndexCount; i += 1)
{
this_obj->fIndex[i] = (uint16_t)(i << UCMP16_kBlockShift);
this_obj->fHashes[i] = 0;
}
return this_obj;
}
void ucmp16_initBogus(CompactShortArray *this_obj)
{
if (this_obj == NULL)
return;
this_obj->fStructSize = sizeof(CompactShortArray);
this_obj->fCount = UCMP16_kUnicodeCount;
this_obj->fCompact = FALSE;
this_obj->fBogus = TRUE;
this_obj->fArray = NULL;
this_obj->fAlias = FALSE;
this_obj->fIndex = NULL;
this_obj->fHashes = NULL;
this_obj->fIAmOwned = TRUE;
this_obj->fDefaultValue = 0;
}
void ucmp16_init(CompactShortArray *this_obj, int16_t defaultValue)
{
int32_t i;
if (this_obj == NULL)
return;
this_obj->fStructSize = sizeof(CompactShortArray);
this_obj->fCount = UCMP16_kUnicodeCount;
this_obj->fCompact = FALSE;
this_obj->fBogus = FALSE;
this_obj->fArray = NULL;
this_obj->fAlias = FALSE;
this_obj->fIndex = NULL;
this_obj->fHashes = NULL;
this_obj->fIAmOwned = TRUE;
this_obj->fDefaultValue = defaultValue;
this_obj->fArray = (int16_t*)uprv_malloc(UCMP16_kUnicodeCount * sizeof(int16_t));
if (this_obj->fArray == NULL)
{
setToBogus(this_obj);
return;
}
this_obj->fIndex = (uint16_t*)uprv_malloc(UCMP16_kIndexCount * sizeof(uint16_t));
if (this_obj->fIndex == NULL)
{
setToBogus(this_obj);
return;
}
this_obj->fHashes =(int32_t*)uprv_malloc(UCMP16_kIndexCount * sizeof(int32_t));
if (this_obj->fHashes == NULL)
{
setToBogus(this_obj);
return;
}
this_obj->kBlockShift = UCMP16_kBlockShift;
this_obj->kBlockMask = UCMP16_kBlockMask;
for (i = 0; i < UCMP16_kUnicodeCount; i += 1)
{
this_obj->fArray[i] = defaultValue;
}
for (i = 0; i < UCMP16_kIndexCount; i += 1)
{
this_obj->fIndex[i] = (uint16_t)(i << UCMP16_kBlockShift);
this_obj->fHashes[i] = 0;
}
}
CompactShortArray* ucmp16_openAdopt(uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue)
{
CompactShortArray* this_obj = (CompactShortArray*) uprv_malloc(sizeof(CompactShortArray));
if (this_obj == NULL)
return NULL;
ucmp16_initAdopt(this_obj, indexArray, newValues, count, defaultValue);
this_obj->fIAmOwned = FALSE;
return this_obj;
}
CompactShortArray* ucmp16_openAdoptWithBlockShift(uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue,
int32_t blockShift)
{
CompactShortArray* this_obj = ucmp16_openAdopt(indexArray,
newValues,
count,
defaultValue);
if (this_obj) {
this_obj->kBlockShift = blockShift;
this_obj->kBlockMask = (uint32_t) (((uint32_t)1 << (uint32_t)blockShift) - (uint32_t)1);
}
return this_obj;
}
CompactShortArray* ucmp16_openAlias(uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue)
{
CompactShortArray* this_obj = (CompactShortArray*) uprv_malloc(sizeof(CompactShortArray));
if (this_obj == NULL)
return NULL;
ucmp16_initAlias(this_obj, indexArray, newValues, count, defaultValue);
this_obj->fIAmOwned = FALSE;
return this_obj;
}
/*=======================================================*/
CompactShortArray* ucmp16_initAdopt(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue)
{
if (this_obj) {
this_obj->fHashes = NULL;
this_obj->fCount = count;
this_obj->fDefaultValue = defaultValue;
this_obj->fBogus = FALSE;
this_obj->fArray = newValues;
this_obj->fIndex = indexArray;
this_obj->fCompact = (UBool)(count < UCMP16_kUnicodeCount);
this_obj->fStructSize = sizeof(CompactShortArray);
this_obj->kBlockShift = UCMP16_kBlockShift;
this_obj->kBlockMask = UCMP16_kBlockMask;
this_obj->fAlias = FALSE;
this_obj->fIAmOwned = TRUE;
}
return this_obj;
}
CompactShortArray* ucmp16_initAdoptWithBlockShift(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue,
int32_t blockShift)
{
ucmp16_initAdopt(this_obj, indexArray, newValues, count, defaultValue);
if (this_obj) {
this_obj->kBlockShift = blockShift;
this_obj->kBlockMask = (uint32_t) (((uint32_t)1 << (uint32_t)blockShift) - (uint32_t)1);
}
return this_obj;
}
CompactShortArray* ucmp16_initAlias(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue)
{
if (this_obj) {
this_obj->fHashes = NULL;
this_obj->fCount = count;
this_obj->fDefaultValue = defaultValue;
this_obj->fBogus = FALSE;
this_obj->fArray = newValues;
this_obj->fIndex = indexArray;
this_obj->fCompact = (UBool)(count < UCMP16_kUnicodeCount);
this_obj->fStructSize = sizeof(CompactShortArray);
this_obj->kBlockShift = UCMP16_kBlockShift;
this_obj->kBlockMask = UCMP16_kBlockMask;
this_obj->fAlias = TRUE;
this_obj->fIAmOwned = TRUE;
}
return this_obj;
}
CompactShortArray* ucmp16_initAliasWithBlockShift(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue,
int32_t blockShift)
{
ucmp16_initAlias(this_obj, indexArray, newValues, count, defaultValue);
if (this_obj) {
this_obj->kBlockShift = blockShift;
this_obj->kBlockMask = (uint32_t) (((uint32_t)1 << (uint32_t)blockShift) - (uint32_t)1);
}
return this_obj;
}
/*=======================================================*/
void ucmp16_close(CompactShortArray* this_obj)
{
if(this_obj != NULL) {
setToBogus(this_obj);
if(!this_obj->fIAmOwned)
{
uprv_free(this_obj);
}
}
}
static CompactShortArray* setToBogus(CompactShortArray* this_obj)
{
if(this_obj != NULL) {
if(!this_obj->fAlias) {
if (this_obj->fArray != NULL) {
uprv_free(this_obj->fArray);
this_obj->fArray = NULL;
}
if (this_obj->fIndex != NULL) {
uprv_free(this_obj->fIndex);
this_obj->fIndex = NULL;
}
}
if (this_obj->fHashes != NULL) {
uprv_free(this_obj->fHashes);
this_obj->fHashes = NULL;
}
this_obj->fCount = 0;
this_obj->fCompact = FALSE;
this_obj->fBogus = TRUE;
}
return this_obj;
}
UBool ucmp16_isBogus(const CompactShortArray* this_obj)
{
return (UBool)(this_obj == NULL || this_obj->fBogus);
}
void ucmp16_expand(CompactShortArray* this_obj)
{
if (this_obj->fCompact)
{
int32_t i;
int16_t *tempArray = (int16_t*)uprv_malloc(UCMP16_kUnicodeCount * sizeof(int16_t));
if (tempArray == NULL)
{
setToBogus(this_obj);
return;
}
this_obj->fHashes =(int32_t*)uprv_malloc(UCMP16_kIndexCount * sizeof(int32_t));
if (this_obj->fHashes == NULL)
{
setToBogus(this_obj);
return;
}
for (i = 0; i < UCMP16_kUnicodeCount; i += 1)
{
tempArray[i] = ucmp16_get(this_obj, (UChar)i); /* HSYS : How expand?*/
}
for (i = 0; i < (1 << (16 - this_obj->kBlockShift)); i += 1)
{
this_obj->fIndex[i] = (uint16_t)(i<<this_obj->kBlockShift);
}
uprv_free(this_obj->fArray);
this_obj->fArray = tempArray;
this_obj->fCompact = FALSE;
/* Since we don't know if the fIndex is also an alias, we allow tempArray to leak. */
/* this_obj->fAlias = FALSE; */
}
}
void ucmp16_set(CompactShortArray* this_obj,
UChar c,
int16_t value)
{
if (this_obj->fCompact)
{
ucmp16_expand(this_obj);
if (this_obj->fBogus)
return;
}
this_obj->fArray[(int32_t)c] = value;
if (value != this_obj->fDefaultValue)
{
touchBlock(this_obj, c >> this_obj->kBlockShift, value);
}
}
void ucmp16_setRange(CompactShortArray* this_obj,
UChar start,
UChar end,
int16_t value)
{
int32_t i;
if (this_obj->fCompact)
{
ucmp16_expand(this_obj);
if (this_obj->fBogus)
return;
}
if (value != this_obj->fDefaultValue)
{
for (i = start; i <= end; i += 1)
{
this_obj->fArray[i] = value;
touchBlock(this_obj, i >> this_obj->kBlockShift, value);
}
}
else
{
for (i = start; i <= end; i += 1)
this_obj->fArray[i] = value;
}
}
/*=======================================================*/
void ucmp16_compact(CompactShortArray* this_obj)
{
if (!this_obj->fCompact)
{
int32_t limitCompacted = 0;
int32_t i, iBlockStart;
int16_t iUntouched = -1;
for (i = 0, iBlockStart = 0; i < (1 << (16 - this_obj->kBlockShift)); i += 1, iBlockStart += (1 << this_obj->kBlockShift))
{
UBool touched = blockTouched(this_obj, i);
this_obj->fIndex[i] = 0xFFFF;
if (!touched && iUntouched != -1)
{
/* If no values in this_obj block were set, we can just set its
* index to be the same as some other block with no values
* set, assuming we've seen one yet.
*/
this_obj->fIndex[i] = iUntouched;
}
else
{
int32_t j, jBlockStart;
for (j = 0, jBlockStart = 0;
j < limitCompacted;
j += 1, jBlockStart += (1 << this_obj->kBlockShift))
{
if (this_obj->fHashes[i] == this_obj->fHashes[j] &&
arrayRegionMatches(this_obj->fArray,
iBlockStart,
this_obj->fArray,
jBlockStart,
(1 << this_obj->kBlockShift)))
{
this_obj->fIndex[i] = (int16_t)jBlockStart;
}
}
/* TODO: verify this_obj is correct*/
if (this_obj->fIndex[i] == 0xFFFF)
{
/* we didn't match, so copy & update*/
uprv_memcpy(&(this_obj->fArray[jBlockStart]),
&(this_obj->fArray[iBlockStart]),
(1 << this_obj->kBlockShift)*sizeof(int16_t));
this_obj->fIndex[i] = (int16_t)jBlockStart;
this_obj->fHashes[j] = this_obj->fHashes[i];
limitCompacted += 1;
if (!touched)
{
/* If this_obj is the first untouched block we've seen,*/
/* remember its index.*/
iUntouched = (int16_t)jBlockStart;
}
}
}
}
/* we are done compacting, so now make the array shorter*/
/* TODO: uprv_realloc should be used instead.
What if uprv_malloc returns NULL [grhoten] */
{
int32_t newSize = limitCompacted * (1 << this_obj->kBlockShift);
int16_t *result = (int16_t*) uprv_malloc(sizeof(int16_t) * newSize);
uprv_memcpy(result, this_obj->fArray, newSize * sizeof(int16_t));
uprv_free(this_obj->fArray);
this_obj->fArray = result;
this_obj->fCount = newSize;
uprv_free(this_obj->fHashes);
this_obj->fHashes = NULL;
this_obj->fCompact = TRUE;
}
}
}
/**
* Query whether a specified block was "touched", i.e. had a value set.
* Untouched blocks can be skipped when compacting the array
*/
int16_t ucmp16_getDefaultValue(const CompactShortArray* this_obj)
{
return this_obj->fDefaultValue;
}
static void touchBlock(CompactShortArray* this_obj,
int32_t i,
int16_t value)
{
this_obj->fHashes[i] = (this_obj->fHashes[i] + (value << 1)) | 1;
}
static UBool blockTouched(const CompactShortArray* this_obj, int32_t i)
{
return (UBool)(this_obj->fHashes[i] != 0);
}
uint32_t ucmp16_getCount(const CompactShortArray* this_obj)
{
return this_obj->fCount;
}
const int16_t* ucmp16_getArray(const CompactShortArray* this_obj)
{
return this_obj->fArray;
}
const uint16_t* ucmp16_getIndex(const CompactShortArray* this_obj)
{
return this_obj->fIndex;
}
U_CAPI uint32_t U_EXPORT2 ucmp16_flattenMem (const CompactShortArray* array, UMemoryStream *MS)
{
int32_t size = 0;
uprv_mstrm_write32(MS, ICU_UCMP16_VERSION);
size += 4;
uprv_mstrm_write32(MS, array->fCount);
size += 4;
uprv_mstrm_write32(MS, array->kBlockShift);
size += 4;
uprv_mstrm_write32(MS, array->kBlockMask);
size += 4;
uprv_mstrm_writeBlock(MS, array->fIndex, sizeof(array->fIndex[0])*UCMP16_kIndexCount);
size += sizeof(array->fIndex[0])*UCMP16_kIndexCount;
uprv_mstrm_writeBlock(MS, array->fArray, sizeof(array->fArray[0])*array->fCount);
size += sizeof(array->fArray[0])*array->fCount;
while(size%4) /* end padding */
{
uprv_mstrm_writePadding(MS, 1); /* Pad total so far to even size */
size += 1;
}
return size;
}
/* We use sizeof(*array), etc so that this code can be as portable as
possible between the ucmpX_ family. Check lines marked 'SIZE'.
*/
U_CAPI void U_EXPORT2 ucmp16_initFromData(CompactShortArray *this_obj, const uint8_t **source, UErrorCode *status)
{
uint32_t i;
const uint8_t *oldSource = *source;
if(U_FAILURE(*status))
return;
this_obj->fBogus = FALSE;
this_obj->fStructSize = sizeof(CompactShortArray);
this_obj->fCompact = TRUE;
this_obj->fAlias = TRUE;
this_obj->fIAmOwned = TRUE;
this_obj->fHashes = NULL;
this_obj->fDefaultValue = 0x0000; /* not used */
i = * ((const uint32_t*) *source);
(*source) += 4;
if(i != ICU_UCMP16_VERSION)
{
this_obj->fArray = NULL;
this_obj->fIndex = NULL;
this_obj->fBogus = TRUE;
this_obj->fCount = 0;
*status = U_INVALID_FORMAT_ERROR;
return;
}
this_obj->fCount = * ((const uint32_t*)*source);
(*source) += 4;
this_obj->kBlockShift = * ((const uint32_t*)*source);
(*source) += 4;
this_obj->kBlockMask = * ((const uint32_t*)*source);
(*source) += 4;
this_obj->fIndex = (uint16_t*) *source;
(*source) += sizeof(this_obj->fIndex[0])*UCMP16_kIndexCount;
this_obj->fArray = (int16_t*) *source;
(*source) += sizeof(this_obj->fArray[0])*this_obj->fCount;
/* eat up padding */
while((*source-(oldSource))%4)
(*source)++;
}

View File

@ -1,424 +0,0 @@
/*
**********************************************************************
* Copyright (C) 1995-2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* @version 1.0 23/10/96
* @author Helena Shih
* Based on Taligent international support for java
* Modification History :
*
* 05/07/97 helena Added isBogus()
* 07/15/98 erm Synched with Java 1.2 CompactShortArray.java.
* 07/30/98 erm Added 07/29/98 code review changes.
* 04/21/99 Damiba Port to C/New API faster ucmp16_get
*/
#ifndef UCMP16_H
#define UCMP16_H
#include "umemstrm.h"
#include "unicode/utypes.h"
/* 32-bits.
Bump this whenever the internal structure changes.
*/
#define ICU_UCMP16_VERSION 0x01270000
/* internal constants*/
#define UCMP16_kMaxUnicode_int 65535
#define UCMP16_kUnicodeCount_int (UCMP16_kMaxUnicode_int + 1)
#define UCMP16_kBlockShift_int 7
#define UCMP16_kBlockCount_int (1 << UCMP16_kBlockShift_int)
#define UCMP16_kBlockBytes_int (UCMP16_kBlockCount_int * sizeof(int16_t))
#define UCMP16_kIndexShift_int (16 - UCMP16_kBlockShift_int)
#define UCMP16_kIndexCount_int (1 << UCMP16_kIndexShift_int)
#define UCMP16_kBlockMask_int (UCMP16_kBlockCount_int - 1)
/**
* class CompactATypeArray : use only on primitive data types
* Provides a compact way to store information that is indexed by Unicode
* values, such as character properties, types, keyboard values, etc.This
* is very useful when you have a block of Unicode data that contains
* significant values while the rest of the Unicode data is unused in the
* application or when you have a lot of redundance, such as where all 21,000
* Han ideographs have the same value. However, lookup is much faster than a
* hash table.
* <P>
* A compact array of any primitive data type serves two purposes:
* <UL type = round>
* <LI>Fast access of the indexed values.
* <LI>Smaller memory footprint.
* </UL>
* <P>
* The index array always points into particular parts of the data array
* it is initially set up to point at regular block boundaries
* The following example uses blocks of 4 for simplicity
* <PRE>
* Example: Expanded
* BLOCK 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcdezyabcdea...
* | | | | | |...
* </PRE>
* <P>
* After compression, the index will point to various places in the data array
* wherever there is a runs of the same elements as in the original
* <PRE>
* Example: Compressed
* BLOCK 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* </PRE>
* <P>
* If you look at the example, index number 2 in the expanded version points
* to data position number 8, which has elements "bcde". In the compressed
* version, index number 2 points to data position 1, which also has "bcde"
* @see CompactByteArray
* @see CompactIntArray
* @see CompactCharArray
* @see CompactStringArray
* @version $Revision: 1.18 $ 8/25/98
* @author Helena Shih
*/
typedef struct CompactShortArray {
int32_t fStructSize;
int16_t* fArray;
uint16_t* fIndex;
int32_t* fHashes;
int32_t fCount;
int16_t fDefaultValue;
UBool fCompact;
UBool fBogus;
UBool fAlias;
int32_t kBlockShift;
int32_t kBlockMask;
UBool fIAmOwned; /* don't free CSA on close */
} CompactShortArray;
U_CAPI int32_t U_EXPORT2 ucmp16_getkUnicodeCount(void);
U_CAPI int32_t U_EXPORT2 ucmp16_getkBlockCount(void);
/**
* Construct an empty CompactShortArray with uprv_malloc(). Do not call any of the
* ucmp16_init*() functions after using this function. They will cause a memory
* leak.
*
* @param defaultValue the default value for all characters not explicitly in the array
* @see ucmp16_init
* @see ucmp16_initBogus
* @return The initialized array.
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_open(int16_t defaultValue);
/**
* Construct a CompactShortArray from a pre-computed index and values array. The values
* will be adopted by the CompactShortArray. Memory is allocated with uprv_malloc.
* Note: for speed, the compact method will only re-use blocks in the values array
* that are on a block boundary. The pre-computed arrays passed in to this constructor
* may re-use blocks at any position in the values array. Do not call any of the
* ucmp16_init*() functions after using this function. They will cause a memory
* leak. The indexArray and newValues will be uprv_free'd when ucmp16_close() is called.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initBogus
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_openAdopt(uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue);
/**
* Construct a CompactShortArray from a pre-computed index and values array. The values
* will be adopted by the CompactShortArray. Memory is allocated with uprv_malloc.
* Note: for speed, the compact method will only re-use blocks in the values array
* that are on a block boundary. The pre-computed arrays passed in to this constructor
* may re-use blocks at any position in the values array. Do not call any of the
* ucmp16_init*() functions after using this function. They will cause a memory
* leak. The indexArray and newValues will be uprv_free'd when ucmp16_close() is called.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initBogus
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_openAdoptWithBlockShift(uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue,
int32_t blockShift);
/**
* Construct a CompactShortArray from a pre-computed index and values array. The values
* will be aliased by the CompactShortArray. Memory is allocated with uprv_malloc.
* Note: for speed, the compact method will only re-use blocks in the values array
* that are on a block boundary. The pre-computed arrays passed in to this constructor
* may re-use blocks at any position in the values array. Do not call any of the
* ucmp16_init*() functions after using this function. They will cause a memory
* leak.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initBogus
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_openAlias(uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue );
/**
* Initialize an empty CompactShortArray. Do not call this function if
* you created the array with any of the ucmp16_open*() funcitons because it
* will cause a memory leak.
*
* @param defaultValue the default value for all characters not explicitly in the array
* @param array An uninitialized CompactShortArray
* @see ucmp16_open
* @see ucmp16_openAdopt
* @see ucmp16_openAlias
* @see ucmp16_initAdopt
* @see ucmp16_initAlias
*/
U_CAPI void U_EXPORT2 ucmp16_init(CompactShortArray* array, int16_t defaultValue);
/**
* Initialize an empty CompactShortArray to the bogus value. Do not call
* this function if you created the array with ucmp16_open() because it
* will cause a memory leak.
*
* @param array An uninitialized CompactShortArray
* @see ucmp16_open
* @see ucmp16_openAdopt
* @see ucmp16_openAlias
* @see ucmp16_isBogus
* @see ucmp16_init
* @see ucmp16_initAdopt
* @see ucmp16_initAlias
*/
U_CAPI void U_EXPORT2 ucmp16_initBogus(CompactShortArray* array);
/**
* Initialize a CompactShortArray from a pre-computed index and values array. The values
* will be adopted by the CompactShortArray. No memory is allocated. Note: for speed,
* the compact method will only re-use blocks in the values array that are on a block
* boundary. The pre-computed arrays passed in to this constructor may re-use blocks
* at any position in the values array. The indexArray and newValues will be
* uprv_free'd when ucmp16_close() is called.
*
* @param this_obj the CompactShortArray to be initialized
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAdopt
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initAlias
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_initAdopt(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue );
/**
* Initialize a CompactShortArray from a pre-computed index and values array. The values
* will be adopted by the CompactShortArray. No memory is allocated. Note: for speed,
* the compact method will only re-use blocks in the values array that are on a block
* boundary. The pre-computed arrays passed in to this constructor may re-use blocks
* at any position in the values array. The indexArray and newValues will be
* uprv_free'd when ucmp16_close() is called.
*
* @param this_obj the CompactShortArray to be initialized
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @return The initialized array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAdopt
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initAlias
* @see ucmp16_initAdopt
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_initAdoptWithBlockShift(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue,
int32_t blockShift);
/**
* Initialize a CompactShortArray from a pre-computed index and values array. The values
* will be aliased by the CompactShortArray. No memory is allocated. Note: for speed,
* the compact method will only re-use blocks in the values array that are on a block
* boundary. The pre-computed arrays passed in to this constructor may re-use blocks
* at any position in the values array.
*
* @param this_obj the CompactShortArray to be initialized
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @return The initialized array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAdopt
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initAdopt
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_initAlias(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue );
/**
* Initialize a CompactShortArray from a pre-computed index and values array. The values
* will be aliased by the CompactShortArray. No memory is allocated. Note: for speed,
* the compact method will only re-use blocks in the values array that are on a block
* boundary. The pre-computed arrays passed in to this constructor may re-use blocks
* at any position in the values array.
*
* @param this_obj the CompactShortArray to be initialized
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @param defaultValue the default value for all characters not explicitly in the array
* @return The initialized array
* @see compact
* @see ucmp16_open
* @see ucmp16_openAdopt
* @see ucmp16_openAlias
* @see ucmp16_init
* @see ucmp16_initAdopt
*/
U_CAPI CompactShortArray* U_EXPORT2 ucmp16_initAliasWithBlockShift(CompactShortArray *this_obj,
uint16_t *indexArray,
int16_t *newValues,
int32_t count,
int16_t defaultValue,
int32_t blockShift);
/**
* Free up any allocated memory associated with this compact array.
* The memory that is uprv_free'd depends on how the array was initialized
* or opened.
*
* @param array The array to close
*/
U_CAPI void U_EXPORT2 ucmp16_close(CompactShortArray* array);
/**
* Returns TRUE if the creation of the compact array fails.
*/
U_CAPI UBool U_EXPORT2 ucmp16_isBogus(const CompactShortArray* array);
/**
* Get the mapped value of a Unicode character.
*
* @param index the character to get the mapped value with
* @return the mapped value of the given character
*/
#define ucmp16_get(array, index) (array->fArray[(array->fIndex[(index >> array->kBlockShift)] )+ \
(index & array->kBlockMask)])
#define ucmp16_getu(array, index) (uint16_t)ucmp16_get(array, index)
/**
* Set a new value for a Unicode character.
* Set automatically expands the array if it is compacted.
*
* @param character the character to set the mapped value with
* @param value the new mapped value
*/
U_CAPI void U_EXPORT2 ucmp16_set(CompactShortArray *array,
UChar character,
int16_t value);
/**
* Set new values for a range of Unicode character.
*
* @param start the starting offset of the range
* @param end the ending offset of the range
* @param value the new mapped value
*/
U_CAPI void U_EXPORT2 ucmp16_setRange(CompactShortArray* array,
UChar start,
UChar end,
int16_t value);
/**
* Compact the array. For efficency, this method will only re-use
* blocks in the values array that are on a block bounday. If you
* want better compaction, you can do your own compaction and use
* the constructor that lets you pass in the pre-computed arrays.
*/
U_CAPI void U_EXPORT2 ucmp16_compact(CompactShortArray* array);
/**
* Get the default value.
*/
U_CAPI int16_t U_EXPORT2 ucmp16_getDefaultValue(const CompactShortArray* array);
/**
* Get the number of elements in the value array.
* @return the number of elements in the value array.
*/
U_CAPI uint32_t U_EXPORT2 ucmp16_getCount(const CompactShortArray* array);
/**
* Get the address of the value array.
* @return the address of the value array
*/
U_CAPI const int16_t* U_EXPORT2 ucmp16_getArray(const CompactShortArray* array);
/**
* Get the address of the index array.
* @return the address of the index array
*/
U_CAPI const uint16_t* U_EXPORT2 ucmp16_getIndex(const CompactShortArray* array);
/**
* Expands the compacted array.
* Takes the array back to a 65536 element array
*/
U_CAPI void U_EXPORT2 ucmp16_expand(CompactShortArray* this_obj);
/** INTERNAL USE ONLY **/
U_CAPI uint32_t U_EXPORT2 ucmp16_flattenMem(const CompactShortArray* array, UMemoryStream *MS);
/** INTERNAL USE ONLY **/
U_CAPI void U_EXPORT2 ucmp16_initFromData(CompactShortArray* array, const uint8_t **source, UErrorCode *status);
#endif

View File

@ -1,620 +0,0 @@
/*============================================================================
* Copyright (C) 1997-2001, International Business Machines Corporation
* and others. All Rights Reserved.
*
* File cmpshrta.cpp
*
* Modification History:
*
* Date Name Description
* 2/5/97 aliu Added CompactIntArray streamIn and streamOut methods.
* 3/4/97 aliu Tuned performance of CompactIntArray constructor,
* based on performance data indicating that this_obj was slow.
* 05/07/97 helena Added isBogus()
* 04/26/99 Madhu Ported to C for C Implementation
* 11/12/99 srl macroized ucmp32_get()
* 11/07/00 weiv aligned implementation with ucmp8
*============================================================================
*/
#include "ucmp32.h"
#include "cmemory.h"
#include "filestrm.h"
static int32_t ucmp32_findOverlappingPosition(CompactIntArray* this_obj, uint32_t start,
const UChar *tempIndex,
int32_t tempIndexCount,
uint32_t cycle);
static UBool debugSmall = FALSE;
static uint32_t debugSmallLimit = 30000;
/** debug flags
*=======================================================
*/
int32_t ucmp32_getkUnicodeCount() { return UCMP32_kUnicodeCount;}
int32_t ucmp32_getkBlockCount() { return UCMP32_kBlockCount;}
U_CAPI void ucmp32_streamIn(CompactIntArray* this_obj, FileStream* is)
{
int32_t newCount, len;
char c;
if (!T_FileStream_error(is))
{
T_FileStream_read(is, &newCount, sizeof(newCount));
if (this_obj->fCount != newCount)
{
this_obj->fCount = newCount;
uprv_free(this_obj->fArray);
this_obj->fArray = 0;
this_obj->fArray = (int32_t*)uprv_malloc(this_obj->fCount * sizeof(int32_t));
if (!this_obj->fArray) {
this_obj->fBogus = TRUE;
return;
}
}
T_FileStream_read(is, this_obj->fArray, sizeof(*(this_obj->fArray)) * this_obj->fCount);
T_FileStream_read(is, &len, sizeof(len));
if (len == 0)
{
uprv_free(this_obj->fIndex);
this_obj->fIndex = 0;
}
else if (len == UCMP32_kIndexCount)
{
if (this_obj->fIndex == 0)
this_obj->fIndex =(uint16_t*)uprv_malloc(UCMP32_kIndexCount * sizeof(uint16_t));
if (!this_obj->fIndex) {
this_obj->fBogus = TRUE;
uprv_free(this_obj->fArray);
this_obj->fArray = 0;
return;
}
T_FileStream_read(is, this_obj->fIndex, sizeof(*(this_obj->fIndex)) * UCMP32_kIndexCount);
}
else
{
this_obj->fBogus = TRUE;
return;
}
/* char instead of int8_t for Mac compilation*/
T_FileStream_read(is, (char*)&c, sizeof(c));
this_obj->fCompact = (UBool)(c != 0);
}
}
U_CAPI void ucmp32_streamOut(CompactIntArray* this_obj, FileStream* os)
{
char c;
if (!T_FileStream_error(os))
{
if (this_obj->fCount != 0 && this_obj->fArray != 0)
{
T_FileStream_write(os, &(this_obj->fCount), sizeof(this_obj->fCount));
T_FileStream_write(os, this_obj->fArray, sizeof(*(this_obj->fArray)) * this_obj->fCount);
}
else
{
int32_t zero = 0;
T_FileStream_write(os, &zero, sizeof(zero));
}
if (this_obj->fIndex == 0)
{
int32_t len = 0;
T_FileStream_write(os, &len, sizeof(len));
}
else
{
int32_t len = UCMP32_kIndexCount;
T_FileStream_write(os, &len, sizeof(len));
T_FileStream_write(os, this_obj->fIndex, sizeof(*(this_obj->fIndex)) * UCMP32_kIndexCount);
}
c = (char)(this_obj->fCompact ? 1 : 0); /* char instead of int8_t for Mac compilation*/
T_FileStream_write(os, (const char*)&c, sizeof(c));
}
}
U_CAPI void ucmp32_streamMemIn(CompactIntArray* this_obj, UMemoryStream* is)
{
int32_t newCount, len;
char c;
if (!uprv_mstrm_error(is))
{
uprv_mstrm_read(is, &newCount, sizeof(newCount));
if (this_obj->fCount != newCount)
{
this_obj->fCount = newCount;
uprv_free(this_obj->fArray);
this_obj->fArray = 0;
this_obj->fArray = (int32_t*)uprv_malloc(this_obj->fCount * sizeof(int32_t));
if (!this_obj->fArray) {
this_obj->fBogus = TRUE;
return;
}
}
uprv_mstrm_read(is, this_obj->fArray, sizeof(*(this_obj->fArray)) * this_obj->fCount);
uprv_mstrm_read(is, &len, sizeof(len));
if (len == 0)
{
uprv_free(this_obj->fIndex);
this_obj->fIndex = 0;
}
else if (len == UCMP32_kIndexCount)
{
if (this_obj->fIndex == 0)
this_obj->fIndex =(uint16_t*)uprv_malloc(UCMP32_kIndexCount * sizeof(uint16_t));
if (!this_obj->fIndex) {
this_obj->fBogus = TRUE;
uprv_free(this_obj->fArray);
this_obj->fArray = 0;
return;
}
uprv_mstrm_read(is, this_obj->fIndex, sizeof(*(this_obj->fIndex)) * UCMP32_kIndexCount);
}
else
{
this_obj->fBogus = TRUE;
return;
}
/* char instead of int8_t for Mac compilation*/
uprv_mstrm_read(is, (char*)&c, sizeof(c));
this_obj->fCompact = (UBool)(c != 0);
}
}
U_CAPI void ucmp32_streamMemOut(CompactIntArray* this_obj, UMemoryStream* os)
{
char c;
if (!uprv_mstrm_error(os))
{
if (this_obj->fCount != 0 && this_obj->fArray != 0)
{
uprv_mstrm_write(os, (uint8_t *)&(this_obj->fCount), sizeof(this_obj->fCount));
uprv_mstrm_write(os, (uint8_t *)this_obj->fArray, sizeof(*(this_obj->fArray)) * this_obj->fCount);
}
else
{
int32_t zero = 0;
uprv_mstrm_write(os, (uint8_t *)&zero, sizeof(zero));
}
if (this_obj->fIndex == 0)
{
int32_t len = 0;
uprv_mstrm_write(os, (uint8_t *)&len, sizeof(len));
}
else
{
int32_t len = UCMP32_kIndexCount;
uprv_mstrm_write(os, (uint8_t *)&len, sizeof(len));
uprv_mstrm_write(os, (uint8_t *)this_obj->fIndex, sizeof(*(this_obj->fIndex)) * UCMP32_kIndexCount);
}
c = (char)(this_obj->fCompact ? 1 : 0); /* char instead of int8_t for Mac compilation*/
uprv_mstrm_write(os, (uint8_t *)&c, sizeof(c));
}
}
CompactIntArray* ucmp32_open(int32_t defaultValue)
{
uint16_t i;
int32_t *p, *p_end;
uint16_t *q, *q_end;
CompactIntArray* this_obj = (CompactIntArray*) uprv_malloc(sizeof(CompactIntArray));
if (this_obj == NULL) return NULL;
this_obj->fStructSize = sizeof(CompactIntArray);
this_obj->fArray = NULL;
this_obj->fIndex = NULL;
this_obj->fCount = UCMP32_kUnicodeCount;
this_obj->fCompact = FALSE;
this_obj->fBogus = FALSE;
this_obj->fAlias = FALSE;
this_obj->fIAmOwned = FALSE;
/*set up the index array and the data array.
* the index array always points into particular parts of the data array
* it is initially set up to point at regular block boundaries
* The following example uses blocks of 4 for simplicity
* Example: Expanded
* INDEX# 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcedzyabcdea...
* | | | | | |...
* whenever you set an element in the array, it unpacks to this_obj state
* After compression, the index will point to various places in the data array
* wherever there is a runs of the same elements as in the original
* Example: Compressed
* INDEX# 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* If you look at the example, index# 2 in the expanded version points
* to data position number 8, which has elements "bced". In the compressed
* version, index# 2 points to data position 1, which also has "bced"
*/
this_obj->fArray = (int32_t*)uprv_malloc(UCMP32_kUnicodeCount * sizeof(int32_t));
if (this_obj->fArray == NULL) {
this_obj->fBogus = TRUE;
return NULL;
}
this_obj->fIndex = (uint16_t*)uprv_malloc(UCMP32_kIndexCount * sizeof(uint16_t));
if (!this_obj->fIndex) {
uprv_free(this_obj->fArray);
this_obj->fArray = NULL;
this_obj->fBogus = TRUE;
return NULL;
}
p = this_obj->fArray;
p_end = p + UCMP32_kUnicodeCount;
while (p < p_end) *p++ = defaultValue;
q = this_obj->fIndex;
q_end = q + UCMP32_kIndexCount;
i = 0;
while (q < q_end)
{
*q++ = i;
i += (1 << UCMP32_kBlockShift);
}
return this_obj;
}
CompactIntArray* ucmp32_openAdopt(uint16_t *indexArray,
int32_t *newValues,
int32_t count)
{
CompactIntArray* this_obj = (CompactIntArray*) uprv_malloc(sizeof(CompactIntArray));
ucmp32_initAdopt(this_obj, indexArray, newValues, count);
this_obj->fIAmOwned = FALSE;
return this_obj;
}
CompactIntArray* ucmp32_openAlias(uint16_t *indexArray,
int32_t *newValues,
int32_t count)
{
CompactIntArray* this_obj = (CompactIntArray*) uprv_malloc(sizeof(CompactIntArray));
ucmp32_initAlias(this_obj, indexArray, newValues, count);
this_obj->fIAmOwned = FALSE;
return this_obj;
}
CompactIntArray* ucmp32_openFromData( const uint8_t **source,
UErrorCode *status)
{
CompactIntArray* this_obj = (CompactIntArray*) uprv_malloc(sizeof(CompactIntArray));
ucmp32_initFromData(this_obj, source, status);
this_obj->fIAmOwned = FALSE;
return this_obj;
}
/*=======================================================*/
CompactIntArray* ucmp32_initAdopt(CompactIntArray* this_obj,
uint16_t *indexArray,
int32_t *newValues,
int32_t count)
{
if (this_obj) {
this_obj->fCount = count;
this_obj->fBogus = FALSE;
this_obj->fStructSize = sizeof(CompactIntArray);
this_obj->fArray = newValues;
this_obj->fIndex = indexArray;
this_obj->fCompact = (UBool)((count < UCMP32_kUnicodeCount) ? TRUE : FALSE);
this_obj->fAlias = FALSE;
this_obj->fIAmOwned = TRUE;
}
return this_obj;
}
CompactIntArray* ucmp32_initAlias(CompactIntArray* this_obj,
uint16_t *indexArray,
int32_t *newValues,
int32_t count)
{
if (this_obj) {
this_obj->fCount = count;
this_obj->fBogus = FALSE;
this_obj->fStructSize = sizeof(CompactIntArray);
this_obj->fArray = newValues;
this_obj->fIndex = indexArray;
this_obj->fCompact = (UBool)((count < UCMP32_kUnicodeCount) ? TRUE : FALSE);
this_obj->fAlias = TRUE;
this_obj->fIAmOwned = TRUE;
}
return this_obj;
}
/*=======================================================*/
void ucmp32_close(CompactIntArray* this_obj)
{
if(this_obj != NULL) {
if(!this_obj->fAlias) {
if(this_obj->fArray != NULL) {
uprv_free(this_obj->fArray);
}
if(this_obj->fIndex != NULL) {
uprv_free(this_obj->fIndex);
}
}
if(!this_obj->fIAmOwned) { /* Called if 'init' was called instead of 'open'. */
uprv_free(this_obj);
}
}
}
UBool ucmp32_isBogus(const CompactIntArray* this_obj)
{
return (UBool)(this_obj == NULL || this_obj->fBogus);
}
void ucmp32_expand(CompactIntArray* this_obj) {
/* can optimize later.
* if we have to expand, then walk through the blocks instead of using Get
* this_obj code unpacks the array by copying the blocks to the normalized position.
* Example: Compressed
* INDEX# 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* turns into
* Example: Expanded
* INDEX# 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcedzyabcdea...
*/
int32_t i;
int32_t* tempArray;
if (this_obj->fCompact) {
tempArray = (int32_t*)uprv_malloc(UCMP32_kUnicodeCount * sizeof(int32_t));
if (tempArray == NULL) {
this_obj->fBogus = TRUE;
return;
}
for (i = 0; i < UCMP32_kUnicodeCount; ++i) {
tempArray[i] = ucmp32_get(this_obj, (UChar)i); /* HSYS : How expand?*/
}
for (i = 0; i < UCMP32_kIndexCount; ++i) {
this_obj->fIndex[i] = (uint16_t)(i<<UCMP32_kBlockShift);
}
uprv_free(this_obj->fArray);
this_obj->fArray = tempArray;
this_obj->fCompact = FALSE;
}
}
uint32_t ucmp32_getCount(const CompactIntArray* this_obj)
{
return this_obj->fCount;
}
const int32_t* ucmp32_getArray(const CompactIntArray* this_obj)
{
return this_obj->fArray;
}
const uint16_t* ucmp32_getIndex(const CompactIntArray* this_obj)
{
return this_obj->fIndex;
}
void ucmp32_set(CompactIntArray* this_obj, UChar c, int32_t value)
{
if (this_obj->fCompact == TRUE) {
ucmp32_expand(this_obj);
if (this_obj->fBogus) return;
}
this_obj->fArray[(int32_t)c] = value;
}
void ucmp32_setRange(CompactIntArray* this_obj, UChar start, UChar end, int32_t value)
{
int32_t i;
if (this_obj->fCompact == TRUE) {
ucmp32_expand(this_obj);
if (this_obj->fBogus) return;
}
for (i = start; i <= end; ++i) {
this_obj->fArray[i] = value;
}
}
/*=======================================================
* this_obj->fArray: an array to be overlapped
* start and count: specify the block to be overlapped
* tempIndex: the overlapped array (actually indices back into inputContents)
* inputHash: an index of hashes for tempIndex, where
* inputHash[i] = XOR of values from i-count+1 to i
*/
static int32_t ucmp32_findOverlappingPosition(CompactIntArray* this_obj,
uint32_t start,
const UChar* tempIndex,
int32_t tempIndexCount,
uint32_t cycle) {
/* this_obj is a utility routine for finding blocks that overlap.
* IMPORTANT: the cycle number is very important. Small cycles take a lot
* longer to work. In some cases, they may be able to get better compaction.
*/
int32_t i;
int32_t j;
int32_t currentCount;
for (i = 0; i < tempIndexCount; i += cycle) {
currentCount = UCMP32_kBlockCount;
if (i + UCMP32_kBlockCount > tempIndexCount) {
currentCount = tempIndexCount - i;
}
for (j = 0; j < currentCount; ++j) {
if (this_obj->fArray[start + j] != this_obj->fArray[tempIndex[i + j]]) break;
}
if (j == currentCount) break;
}
return i;
}
/*=======================================================*/
void ucmp32_compact(CompactIntArray* this_obj, int32_t cycle) {
/* this_obj actually does the compaction.
* it walks throught the contents of the expanded array, finding the
* first block in the data that matches the contents of the current index.
* As it works, it keeps an updated pointer to the last position,
* so that it knows how big to make the final array
* If the matching succeeds, then the index will point into the data
* at some earlier position.
* If the matching fails, then last position pointer will be bumped,
* and the index will point to that last block of data.
*/
UChar* tempIndex;
int32_t tempIndexCount;
int32_t* tempArray;
int32_t iBlock, iIndex;
int32_t newCount, firstPosition;
uint32_t block;
if (!this_obj->fCompact) {
/* fix cycle, must be 0 < cycle <= blockcount*/
if (cycle < 0) cycle = 1;
else if (cycle > UCMP32_kBlockCount)
cycle = UCMP32_kBlockCount;
/* make temp storage, larger than we need*/
tempIndex =(UChar*)uprv_malloc(UCMP32_kUnicodeCount * sizeof(uint32_t));
if (tempIndex == NULL) {
this_obj->fBogus = TRUE;
return;
}
/* set up first block.*/
tempIndexCount = UCMP32_kBlockCount;
for (iIndex = 0; iIndex < UCMP32_kBlockCount; ++iIndex) {
tempIndex[iIndex] = (uint16_t)iIndex;
}; /* endfor (iIndex = 0; .....)*/
this_obj->fIndex[0] = 0;
/* for each successive block, find out its first position in the compacted array*/
for (iBlock = 1; iBlock < UCMP32_kIndexCount; ++iBlock) {
block = iBlock<<UCMP32_kBlockShift;
if (debugSmall) if (block > debugSmallLimit) break;
firstPosition = ucmp32_findOverlappingPosition(this_obj, block, tempIndex, tempIndexCount, cycle);
/* if not contained in the current list, copy the remainder
* invariant; cumulativeHash[iBlock] = XOR of values from iBlock-kBlockCount+1 to iBlock
* we do this_obj by XORing out cumulativeHash[iBlock-kBlockCount]
*/
newCount = firstPosition + UCMP32_kBlockCount;
if (newCount > tempIndexCount) {
for (iIndex = tempIndexCount; iIndex < newCount; ++iIndex) {
tempIndex[iIndex] = (uint16_t)(iIndex - firstPosition + block);
} /* endfor (iIndex = tempIndexCount....)*/
tempIndexCount = newCount;
} /*endif (newCount > tempIndexCount)*/
this_obj->fIndex[iBlock] = (uint16_t)firstPosition;
} /* endfor (iBlock = 1.....)*/
/* now allocate and copy the items into the array*/
tempArray = (int32_t*)uprv_malloc(tempIndexCount * sizeof(uint32_t));
if (tempArray == NULL) {
this_obj->fBogus = TRUE;
uprv_free(tempIndex);
return;
}
for (iIndex = 0; iIndex < tempIndexCount; ++iIndex) {
tempArray[iIndex] = this_obj->fArray[tempIndex[iIndex]];
}
uprv_free(this_obj->fArray);
this_obj->fArray = tempArray;
this_obj->fCount = tempIndexCount;
/* free up temp storage*/
uprv_free(tempIndex);
this_obj->fCompact = TRUE;
#ifdef _DEBUG
/*the following line is useful for specific debugging purposes*/
/*fprintf(stderr, "Compacted to %ld with cycle %d\n", fCount, cycle);*/
#endif
} /* endif (!this_obj->fCompact)*/
}
U_CAPI uint32_t U_EXPORT2 ucmp32_flattenMem (const CompactIntArray* array, UMemoryStream *MS)
{
int32_t size = 0;
uprv_mstrm_write32(MS, ICU_UCMP32_VERSION);
size += 4;
uprv_mstrm_write32(MS, array->fCount);
size += 4;
uprv_mstrm_writeBlock(MS, array->fIndex, sizeof(array->fIndex[0])*UCMP32_kIndexCount);
size += sizeof(array->fIndex[0])*UCMP32_kIndexCount;
uprv_mstrm_writeBlock(MS, array->fArray, sizeof(array->fArray[0])*array->fCount);
size += sizeof(array->fArray[0])*array->fCount;
while(size%4) /* end padding */
{
uprv_mstrm_writePadding(MS, 1); /* Pad total so far to even size */
size += 1;
}
return size;
}
U_CAPI void U_EXPORT2 ucmp32_initFromData(CompactIntArray *this_obj, const uint8_t **source, UErrorCode *status)
{
uint32_t i;
const uint8_t *oldSource = *source;
if(U_FAILURE(*status))
return;
this_obj->fArray = NULL;
this_obj->fIndex = NULL;
this_obj->fBogus = FALSE;
this_obj->fStructSize = sizeof(CompactIntArray);
this_obj->fCompact = TRUE;
this_obj->fAlias = TRUE;
this_obj->fIAmOwned = TRUE;
i = * ((const uint32_t*) *source);
(*source) += 4;
if(i != ICU_UCMP32_VERSION)
{
*status = U_INVALID_FORMAT_ERROR;
return;
}
this_obj->fCount = * ((const uint32_t*)*source);
(*source) += 4;
this_obj->fIndex = (uint16_t*) *source;
(*source) += sizeof(this_obj->fIndex[0])*UCMP32_kIndexCount;
this_obj->fArray = (int32_t*) *source;
(*source) += sizeof(this_obj->fArray[0])*this_obj->fCount;
/* eat up padding */
while((*source-(oldSource))%4)
(*source)++;
}

View File

@ -1,275 +0,0 @@
/*
**********************************************************************
* Copyright (C) 1995-2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* and others. All Rights Reserved.
* @version 1.0 23/10/96
* @author Helena Shih
* Based on Taligent international support for java
* Modification History :
*
* Date Name Description
* 2/5/97 aliu Added CompactIntArray streamIn and streamOut methods.
* 05/07/97 helena Added isBogus()
* 04/26/99 Madhu Ported to C for C Implementation
* 11/21/99 srl macroized ucmp32_get()
*/
#ifndef UCMP32_H
#define UCMP32_H
#define ICU_UCMP32_VERSION 0x01260000
#include "unicode/utypes.h"
#include "filestrm.h"
#include "umemstrm.h"
/* INTERNAL CONSTANTS */
#define UCMP32_kBlockShift 7
#define UCMP32_kBlockCount (1<<UCMP32_kBlockShift)
#define UCMP32_kIndexShift (16-UCMP32_kBlockShift)
#define UCMP32_kIndexCount (1<<UCMP32_kIndexShift)
#define UCMP32_kBlockMask (UCMP32_kBlockCount-1)
#define UCMP32_kUnicodeCount 65536
/**
* class CompactATypeArray : use only on primitive data types
* Provides a compact way to store information that is indexed by Unicode
* values, such as character properties, types, keyboard values, etc.This
* is very useful when you have a block of Unicode data that contains
* significant values while the rest of the Unicode data is unused in the
* application or when you have a lot of redundance, such as where all 21,000
* Han ideographs have the same value. However, lookup is much faster than a
* hash table.
* <P>
* A compact array of any primitive data type serves two purposes:
* <UL type = round>
* <LI>Fast access of the indexed values.
* <LI>Smaller memory footprint.
* </UL>
* <P>
* The index array always points into particular parts of the data array
* it is initially set up to point at regular block boundaries
* The following example uses blocks of 4 for simplicity
* <PRE>
* Example: Expanded
* BLOCK 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcdezyabcdea...
* | | | | | |...
* </PRE>
* <P>
* After compression, the index will point to various places in the data array
* wherever there is a runs of the same elements as in the original
* <PRE>
* Example: Compressed
* BLOCK 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* </PRE>
* <P>
* If you look at the example, index number 2 in the expanded version points
* to data position number 8, which has elements "bcde". In the compressed
* version, index number 2 points to data position 1, which also has "bcde"
* @see CompactByteArray
* @see CompactIntArray
* @see CompactCharArray
* @see CompactStringArray
* @version $Revision: 1.17 $ 8/25/98
* @author Helena Shih
*/
/*====================================
*CompactIntArray
* Provides a compact way to store information that is indexed by Unicode values,
* such as character properties, types, keyboard values, etc.
* The ATypes are used by value, so should be small, integers or pointers.
*====================================
*/
typedef struct CompactIntArray{
uint32_t fStructSize;
int32_t* fArray;
uint16_t* fIndex;
int32_t fCount;
UBool fCompact;
UBool fBogus;
UBool fAlias;
UBool fIAmOwned; /* don't free CBA on close */
} CompactIntArray;
U_CAPI int32_t U_EXPORT2 ucmp32_getkUnicodeCount(void);
U_CAPI int32_t U_EXPORT2 ucmp32_getkBlockCount(void);
/**
* Construct an empty CompactIntArray.
*
* @param defaultValue the default value for all characters not explicitly in the array
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_open(int32_t defaultValue);
/**
* Construct a CompactIntArray from a pre-computed index and values array. The values
* will be adopted by the CompactIntArray. Memory is allocated with uprv_malloc.
* Note: for speed, the compact method will only re-use blocks in the values array
* that are on a block boundary. The pre-computed arrays passed in to this constructor
* may re-use blocks at any position in the values array. The indexArray and
* newValues will be uprv_free'd when ucmp16_close() is called.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @see compact
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_openAdopt(uint16_t *indexArray,
int32_t *newValues,
int32_t count);
/**
* Construct a CompactIntArray from a pre-computed index and values array. The values
* will be aliased by the CompactIntArray. Memory is allocated with uprv_malloc.
* Note: for speed, the compact method will only re-use blocks in the values array
* that are on a block boundary. The pre-computed arrays passed in to this constructor
* may re-use blocks at any position in the values array.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @see compact
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_openAlias(uint16_t *indexArray,
int32_t *newValues,
int32_t count);
/**
* Initialize a CompactIntArray from a pre-computed index and values array. The values
* will be adopted by the CompactIntArray. No memory is allocated. Note: for speed,
* the compact method will only re-use blocks in the values array that are on a block
* boundary. The pre-computed arrays passed in to this constructor may re-use blocks
* at any position in the values array. The indexArray and
* newValues will be uprv_free'd when ucmp16_close() is called.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @see compact
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_initAdopt(CompactIntArray *this_obj,
uint16_t *indexArray,
int32_t *newValues,
int32_t count);
/**
* Initialize a CompactIntArray from a pre-computed index and values array. The values
* will be aliased by the CompactIntArray. No memory is allocated. Note: for speed,
* the compact method will only re-use blocks in the values array that are on a block
* boundary. The pre-computed arrays passed in to this constructor may re-use blocks
* at any position in the values array.
*
* @param indexArray the index array to be adopted
* @param newValues the value array to be adopted
* @param count the number of entries in the value array
* @see compact
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_initAlias(CompactIntArray *this_obj,
uint16_t *indexArray,
int32_t *newValues,
int32_t count);
/**
* Free up any allocated memory associated with this compact array.
* The memory that is uprv_free'd depends on how the array was initialized
* or opened.
*
* @param array The compact array to close
*/
U_CAPI void U_EXPORT2 ucmp32_close(CompactIntArray* array);
/**
* Returns TRUE if the creation of the compact array fails.
*/
U_CAPI UBool U_EXPORT2 ucmp32_isBogus(const CompactIntArray* array);
/**
* Get the mapped value of a Unicode character.
*
* @param index the character to get the mapped value with
* @return the mapped value of the given character
*/
#define ucmp32_get(array, index) (array->fArray[(array->fIndex[(index >> UCMP32_kBlockShift)] )+ \
(index & UCMP32_kBlockMask)])
#define ucmp32_getu(array, index) (uint16_t)ucmp32_get(array, index)
/**
* Set a new value for a Unicode character.
* Set automatically expands the array if it is compacted.
* @param character the character to set the mapped value with
* @param value the new mapped value
*/
U_CAPI void U_EXPORT2 ucmp32_set(CompactIntArray *array,
UChar character,
int32_t value);
/**
*
* Set new values for a range of Unicode character.
* @param start the starting offset of the range
* @param end the ending offset of the range
* @param value the new mapped value
*/
U_CAPI void U_EXPORT2 ucmp32_setRange(CompactIntArray* array,
UChar start,
UChar end,
int32_t value);
/**
* Compact the array. The value of cycle determines how large the overlap can be.
* A cycle of 1 is the most compacted, but takes the most time to do.
* If values stored in the array tend to repeat in cycles of, say, 16,
* then using that will be faster than cycle = 1, and get almost the
* same compression.
*/
U_CAPI void U_EXPORT2 ucmp32_compact(CompactIntArray* array, int32_t cycle);
/**
* Expands the compacted array.
* Takes the array back to a 65536 element array
*/
U_CAPI void U_EXPORT2 ucmp32_expand(CompactIntArray* array);
/**
* Get the number of elements in the value array.
*
* @return the number of elements in the value array.
*/
U_CAPI uint32_t U_EXPORT2 ucmp32_getCount(const CompactIntArray* array);
/**
* Get the address of the value array.
*
* @return the address of the value array
*/
U_CAPI const int32_t* U_EXPORT2 ucmp32_getArray(const CompactIntArray* array);
/**
* Get the address of the index array.
*
* @return the address of the index array
*/
U_CAPI const uint16_t* U_EXPORT2 ucmp32_getIndex(const CompactIntArray* array);
U_CAPI void U_EXPORT2 ucmp32_streamIn( CompactIntArray* array, FileStream* is);
U_CAPI void U_EXPORT2 ucmp32_streamOut(CompactIntArray* array, FileStream* os);
U_CAPI void U_EXPORT2 ucmp32_streamMemIn( CompactIntArray* array, UMemoryStream* is);
U_CAPI void U_EXPORT2 ucmp32_streamMemOut(CompactIntArray* array, UMemoryStream* os);
U_CAPI uint32_t U_EXPORT2 ucmp32_flattenMem(const CompactIntArray* array, UMemoryStream *MS);
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_openFromData( const uint8_t **source, UErrorCode *status);
U_CAPI void U_EXPORT2 ucmp32_initFromData(CompactIntArray *this_obj, const uint8_t **source, UErrorCode *status);
#endif