ICU-1967 split ucnv_utf.c into more manageable ucnv_uxx.c where x=7, 8, 16, 32

X-SVN-Rev: 8986
This commit is contained in:
Markus Scherer 2002-07-01 19:32:52 +00:00
parent 1a92db995b
commit 97c20c88af
7 changed files with 3802 additions and 3659 deletions

View File

@ -56,7 +56,8 @@ OBJECTS = putil.o uobject.o locmap.o mutex.o umutex.o \
udata.o ucmndata.o udatamem.o umapfile.o filestrm.o \
uresbund.o uresdata.o resbund.o cwchar.o uloc.o locid.o uhash.o uhash_us.o \
ucnv.o ucnv_bld.o ucnv_cb.o ucnv_cnv.o ucnv_err.o ucnv_io.o ucnvlat1.o \
ucnv_utf.o ucnvmbcs.o ucnv2022.o ucnvhz.o ucnv_lmb.o ucnvscsu.o \
ucnv_u7.o ucnv_u8.o ucnv_u16.o ucnv_u32.o \
ucnvmbcs.o ucnv2022.o ucnvhz.o ucnv_lmb.o ucnvscsu.o \
ucnvbocu.o ucnvisci.o \
unistr.o utf_impl.o ustring.o ustrcase.o cstring.o ustrfmt.o ustrtrns.o \
normlzr.o unorm.o chariter.o schriter.o uchriter.o uiter.o \

View File

@ -341,7 +341,19 @@ SOURCE=.\ucnv_lmb.c
# End Source File
# Begin Source File
SOURCE=.\ucnv_utf.c
SOURCE=.\ucnv_u16.c
# End Source File
# Begin Source File
SOURCE=.\ucnv_u32.c
# End Source File
# Begin Source File
SOURCE=.\ucnv_u7.c
# End Source File
# Begin Source File
SOURCE=.\ucnv_u8.c
# End Source File
# Begin Source File

View File

@ -0,0 +1,787 @@
/*
**********************************************************************
* Copyright (C) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnv_u16.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002jul01
* created by: Markus W. Scherer
*
* UTF-16 converter implementation. Used to be in ucnv_utf.c.
*/
#include "unicode/utypes.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
#include "ucnv_bld.h"
#include "ucnv_cnv.h"
#include "cmemory.h"
/* UTF-16 Platform Endian --------------------------------------------------- */
static void
_UTF16PEToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv = pArgs->converter;
const uint8_t *source = (const uint8_t *)pArgs->source;
UChar *target = pArgs->target;
int32_t *offsets = pArgs->offsets;
int32_t targetCapacity = pArgs->targetLimit - pArgs->target;
int32_t length = (const uint8_t *)pArgs->sourceLimit - source;
int32_t count;
int32_t sourceIndex = 0;
if(length <= 0 && cnv->toUnicodeStatus == 0) {
/* no input, nothing to do */
return;
}
if(targetCapacity <= 0) {
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
return;
}
/* complete a partial UChar from the last call */
if(length != 0 && cnv->toUnicodeStatus != 0) {
/*
* copy the byte from the last call and the first one here into the target,
* byte-wise to keep the platform endianness
*/
uint8_t *p = (uint8_t *)target++;
*p++ = (uint8_t)cnv->toUnicodeStatus;
cnv->toUnicodeStatus = 0;
*p = *source++;
--length;
--targetCapacity;
if(offsets != NULL) {
*offsets++ = -1;
}
}
/* copy an even number of bytes for complete UChars */
count = 2 * targetCapacity;
if(count > length) {
count = length & ~1;
}
if(count > 0) {
uprv_memcpy(target, source, count);
source += count;
length -= count;
count >>= 1;
target += count;
targetCapacity -= count;
if(offsets != NULL) {
while(count > 0) {
*offsets++ = sourceIndex;
sourceIndex += 2;
--count;
}
}
}
/* check for a remaining source byte and store the status */
if(length >= 2) {
/* it must be targetCapacity==0 because otherwise the above would have copied more */
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
} else if(length == 1) {
if(pArgs->flush) {
/* a UChar remains incomplete */
*pErrorCode = U_TRUNCATED_CHAR_FOUND;
} else {
/* consume the last byte and store it, making sure that it will never set the status to 0 */
cnv->toUnicodeStatus = *source++ | 0x100;
}
} else /* length==0 */ if(cnv->toUnicodeStatus!=0 && pArgs->flush) {
/* a UChar remains incomplete */
*pErrorCode = U_TRUNCATED_CHAR_FOUND;
}
/* write back the updated pointers */
pArgs->source = (const char *)source;
pArgs->target = target;
pArgs->offsets = offsets;
}
static void
_UTF16PEFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv = pArgs->converter;
const UChar *source = pArgs->source;
uint8_t *target = (uint8_t *)pArgs->target;
int32_t *offsets = pArgs->offsets;
int32_t targetCapacity = pArgs->targetLimit - pArgs->target;
int32_t length = pArgs->sourceLimit - source;
int32_t count;
int32_t sourceIndex = 0;
if(length <= 0 && cnv->fromUnicodeStatus == 0) {
/* no input, nothing to do */
return;
}
if(targetCapacity <= 0) {
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
return;
}
/* complete a partial UChar from the last call */
if(cnv->fromUnicodeStatus != 0) {
*target++ = (uint8_t)cnv->fromUnicodeStatus;
cnv->fromUnicodeStatus = 0;
--targetCapacity;
if(offsets != NULL) {
*offsets++ = -1;
}
}
/* copy an even number of bytes for complete UChars */
count = 2 * length;
if(count > targetCapacity) {
count = targetCapacity & ~1;
}
if(count>0) {
uprv_memcpy(target, source, count);
target += count;
targetCapacity -= count;
count >>= 1;
source += count;
length -= count;
if(offsets != NULL) {
while(count > 0) {
*offsets++ = sourceIndex;
*offsets++ = sourceIndex++;
--count;
}
}
}
if(length > 0) {
/* it must be targetCapacity<=1 because otherwise the above would have copied more */
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
if(targetCapacity > 0) /* targetCapacity==1 */ {
/* copy one byte and keep the other in the status */
const uint8_t *p = (const uint8_t *)source++;
*target++ = *p++;
cnv->fromUnicodeStatus = *p | 0x100;
if(offsets != NULL) {
*offsets++ = sourceIndex;
}
}
}
/* write back the updated pointers */
pArgs->source = source;
pArgs->target = (char *)target;
pArgs->offsets = offsets;
}
/* UTF-16 Opposite Endian --------------------------------------------------- */
/*
* For opposite-endian UTF-16, we keep a byte pointer to the UChars
* and copy two bytes at a time and reverse them.
*/
static void
_UTF16OEToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv = pArgs->converter;
const uint8_t *source = (const uint8_t *)pArgs->source;
UChar *target = pArgs->target;
uint8_t *target8 = (uint8_t *)target; /* byte pointer to the target */
int32_t *offsets = pArgs->offsets;
int32_t targetCapacity = pArgs->targetLimit - pArgs->target;
int32_t length = (const uint8_t *)pArgs->sourceLimit - source;
int32_t count;
int32_t sourceIndex = 0;
if(length <= 0 && cnv->toUnicodeStatus == 0) {
/* no input, nothing to do */
return;
}
if(targetCapacity <= 0) {
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
return;
}
/* complete a partial UChar from the last call */
if(length != 0 && cnv->toUnicodeStatus != 0) {
/*
* copy the byte from the last call and the first one here into the target,
* byte-wise, reversing the platform endianness
*/
*target8++ = *source++;
*target8++ = (uint8_t)cnv->toUnicodeStatus;
cnv->toUnicodeStatus = 0;
++target;
--length;
--targetCapacity;
if(offsets != NULL) {
*offsets++ = -1;
}
}
/* copy an even number of bytes for complete UChars */
count = 2 * targetCapacity;
if(count > length) {
count = length & ~1;
}
if(count>0) {
length -= count;
count >>= 1;
targetCapacity -= count;
if(offsets == NULL) {
while(count > 0) {
target8[1] = *source++;
target8[0] = *source++;
target8 += 2;
--count;
}
} else {
while(count>0) {
target8[1] = *source++;
target8[0] = *source++;
target8 += 2;
*offsets++ = sourceIndex;
sourceIndex += 2;
--count;
}
}
target=(UChar *)target8;
}
/* check for a remaining source byte and store the status */
if(length >= 2) {
/* it must be targetCapacity==0 because otherwise the above would have copied more */
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
} else if(length == 1) {
if(pArgs->flush) {
/* a UChar remains incomplete */
*pErrorCode = U_TRUNCATED_CHAR_FOUND;
} else {
/* consume the last byte and store it, making sure that it will never set the status to 0 */
cnv->toUnicodeStatus = *source++ | 0x100;
}
} else /* length==0 */ if(cnv->toUnicodeStatus!=0 && pArgs->flush) {
/* a UChar remains incomplete */
*pErrorCode = U_TRUNCATED_CHAR_FOUND;
}
/* write back the updated pointers */
pArgs->source = (const char *)source;
pArgs->target = target;
pArgs->offsets = offsets;
}
static void
_UTF16OEFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv = pArgs->converter;
const UChar *source = pArgs->source;
const uint8_t *source8 = (const uint8_t *)source; /* byte pointer to the source */
uint8_t *target = (uint8_t *)pArgs->target;
int32_t *offsets = pArgs->offsets;
int32_t targetCapacity = pArgs->targetLimit - pArgs->target;
int32_t length = pArgs->sourceLimit - source;
int32_t count;
int32_t sourceIndex = 0;
if(length <= 0 && cnv->fromUnicodeStatus == 0) {
/* no input, nothing to do */
return;
}
if(targetCapacity <= 0) {
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
return;
}
/* complete a partial UChar from the last call */
if(cnv->fromUnicodeStatus != 0) {
*target++ = (uint8_t)cnv->fromUnicodeStatus;
cnv->fromUnicodeStatus = 0;
--targetCapacity;
if(offsets != NULL) {
*offsets++ = -1;
}
}
/* copy an even number of bytes for complete UChars */
count = 2 * length;
if(count > targetCapacity) {
count = targetCapacity & ~1;
}
if(count > 0) {
targetCapacity -= count;
count >>= 1;
length -= count;
if(offsets == NULL) {
while(count > 0) {
target[1] = *source8++;
target[0] = *source8++;
target += 2;
--count;
}
} else {
while(count>0) {
target[1] = *source8++;
target[0] = *source8++;
target += 2;
*offsets++ = sourceIndex;
*offsets++ = sourceIndex++;
--count;
}
}
source=(const UChar *)source8;
}
if(length > 0) {
/* it must be targetCapacity<=1 because otherwise the above would have copied more */
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
if(targetCapacity > 0) /* targetCapacity==1 */ {
/* copy one byte and keep the other in the status */
cnv->fromUnicodeStatus = *source8++ | 0x100;
*target++ = *source8;
++source;
if(offsets != NULL) {
*offsets++ = sourceIndex;
}
}
}
/* write back the updated pointers */
pArgs->source = source;
pArgs->target = (char *)target;
pArgs->offsets = offsets;
}
/* UTF-16BE ----------------------------------------------------------------- */
#if U_IS_BIG_ENDIAN
# define _UTF16BEToUnicodeWithOffsets _UTF16PEToUnicodeWithOffsets
# define _UTF16LEToUnicodeWithOffsets _UTF16OEToUnicodeWithOffsets
# define _UTF16BEFromUnicodeWithOffsets _UTF16PEFromUnicodeWithOffsets
# define _UTF16LEFromUnicodeWithOffsets _UTF16OEFromUnicodeWithOffsets
#else
# define _UTF16BEToUnicodeWithOffsets _UTF16OEToUnicodeWithOffsets
# define _UTF16LEToUnicodeWithOffsets _UTF16PEToUnicodeWithOffsets
# define _UTF16BEFromUnicodeWithOffsets _UTF16OEFromUnicodeWithOffsets
# define _UTF16LEFromUnicodeWithOffsets _UTF16PEFromUnicodeWithOffsets
#endif
static UChar32 T_UConverter_getNextUChar_UTF16_BE(UConverterToUnicodeArgs* args,
UErrorCode* err)
{
UChar32 myUChar;
uint16_t first;
/*Checks boundaries and set appropriate error codes*/
if (args->source+2 > args->sourceLimit)
{
if (args->source >= args->sourceLimit)
{
/*Either caller has reached the end of the byte stream*/
*err = U_INDEX_OUTOFBOUNDS_ERROR;
}
else
{
/* a character was cut in half*/
*err = U_TRUNCATED_CHAR_FOUND;
}
return 0xffff;
}
/*Gets the corresponding codepoint*/
first = (uint16_t)(((uint16_t)(*(args->source)) << 8) |((uint8_t)*((args->source)+1)));
myUChar = first;
args->source += 2;
if(UTF_IS_FIRST_SURROGATE(first)) {
uint16_t second;
if (args->source+2 > args->sourceLimit) {
*err = U_TRUNCATED_CHAR_FOUND;
return 0xffff;
}
/* get the second surrogate and assemble the code point */
second = (uint16_t)(((uint16_t)(*(args->source)) << 8) |((uint8_t)*(args->source+1)));
/* ignore unmatched surrogates and just deliver the first one in such a case */
if(UTF_IS_SECOND_SURROGATE(second)) {
/* matched pair, get pair value */
myUChar = UTF16_GET_PAIR_VALUE(first, second);
args->source += 2;
}
}
return myUChar;
}
static const UConverterImpl _UTF16BEImpl={
UCNV_UTF16_BigEndian,
NULL,
NULL,
NULL,
NULL,
NULL,
_UTF16BEToUnicodeWithOffsets,
_UTF16BEToUnicodeWithOffsets,
_UTF16BEFromUnicodeWithOffsets,
_UTF16BEFromUnicodeWithOffsets,
T_UConverter_getNextUChar_UTF16_BE,
NULL,
NULL
};
/* The 1200 CCSID refers to any version of Unicode with any endianess of UTF-16 */
static const UConverterStaticData _UTF16BEStaticData={
sizeof(UConverterStaticData),
"UTF-16BE",
1200, UCNV_IBM, UCNV_UTF16_BigEndian, 2, 2,
{ 0xff, 0xfd, 0, 0 },2,FALSE,FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF16BEData={
sizeof(UConverterSharedData), ~((uint32_t) 0),
NULL, NULL, &_UTF16BEStaticData, FALSE, &_UTF16BEImpl,
0
};
/* UTF-16LE ----------------------------------------------------------------- */
static UChar32 T_UConverter_getNextUChar_UTF16_LE(UConverterToUnicodeArgs* args,
UErrorCode* err)
{
UChar32 myUChar;
uint16_t first;
/*Checks boundaries and set appropriate error codes*/
if (args->source+2 > args->sourceLimit)
{
if (args->source >= args->sourceLimit)
{
/*Either caller has reached the end of the byte stream*/
*err = U_INDEX_OUTOFBOUNDS_ERROR;
}
else
{
/* a character was cut in half*/
*err = U_TRUNCATED_CHAR_FOUND;
}
return 0xffff;
}
/*Gets the corresponding codepoint*/
first = (uint16_t)(((uint16_t)*((args->source)+1) << 8) | ((uint8_t)(*(args->source))));
myUChar=first;
/*updates the source*/
args->source += 2;
if (UTF_IS_FIRST_SURROGATE(first))
{
uint16_t second;
if (args->source+2 > args->sourceLimit)
{
*err = U_TRUNCATED_CHAR_FOUND;
return 0xffff;
}
/* get the second surrogate and assemble the code point */
second = (uint16_t)(((uint16_t)*(args->source+1) << 8) |((uint8_t)(*(args->source))));
/* ignore unmatched surrogates and just deliver the first one in such a case */
if(UTF_IS_SECOND_SURROGATE(second))
{
/* matched pair, get pair value */
myUChar = UTF16_GET_PAIR_VALUE(first, second);
args->source += 2;
}
}
return myUChar;
}
static const UConverterImpl _UTF16LEImpl={
UCNV_UTF16_LittleEndian,
NULL,
NULL,
NULL,
NULL,
NULL,
_UTF16LEToUnicodeWithOffsets,
_UTF16LEToUnicodeWithOffsets,
_UTF16LEFromUnicodeWithOffsets,
_UTF16LEFromUnicodeWithOffsets,
T_UConverter_getNextUChar_UTF16_LE,
NULL,
NULL
};
/* The 1200 CCSID refers to any version of Unicode with any endianess of UTF-16 */
static const UConverterStaticData _UTF16LEStaticData={
sizeof(UConverterStaticData),
"UTF-16LE",
1200, UCNV_IBM, UCNV_UTF16_LittleEndian, 2, 2,
{ 0xfd, 0xff, 0, 0 },2,FALSE,FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF16LEData={
sizeof(UConverterSharedData), ~((uint32_t) 0),
NULL, NULL, &_UTF16LEStaticData, FALSE, &_UTF16LEImpl,
0
};
/* UTF-16 (Detect BOM) ------------------------------------------------------ */
/*
* Detect a BOM at the beginning of the stream and select UTF-16BE or UTF-16LE
* accordingly.
* This is a simpler version of the UTF-32 converter below, with
* fewer states for shorter BOMs.
*
* State values:
* 0 initial state
* 1 saw FE
* 2..4 -
* 5 saw FF
* 6..7 -
* 8 UTF-16BE mode
* 9 UTF-16LE mode
*
* During detection: state&3==number of matching bytes so far.
*
* On output, emit U+FEFF as the first code point.
*/
static void
_UTF16Reset(UConverter *cnv, UConverterResetChoice choice) {
if(choice<=UCNV_RESET_TO_UNICODE) {
/* reset toUnicode: state=0 */
cnv->mode=0;
}
if(choice!=UCNV_RESET_TO_UNICODE) {
/* reset fromUnicode: prepare to output the UTF-16PE BOM */
cnv->charErrorBufferLength=2;
#if U_IS_BIG_ENDIAN
cnv->charErrorBuffer[0]=0xfe;
cnv->charErrorBuffer[1]=0xff;
#else
cnv->charErrorBuffer[0]=0xff;
cnv->charErrorBuffer[1]=0xfe;
#endif
}
}
static void
_UTF16Open(UConverter *cnv,
const char *name,
const char *locale,
uint32_t options,
UErrorCode *pErrorCode) {
_UTF16Reset(cnv, UCNV_RESET_BOTH);
}
static const char utf16BOM[8]={ (char)0xfe, (char)0xff, 0, 0, (char)0xff, (char)0xfe, 0, 0 };
static void
_UTF16ToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv=pArgs->converter;
const char *source=pArgs->source;
const char *sourceLimit=pArgs->sourceLimit;
int32_t *offsets=pArgs->offsets;
int32_t state, offsetDelta;
char b;
state=cnv->mode;
/*
* If we detect a BOM in this buffer, then we must add the BOM size to the
* offsets because the actual converter function will not see and count the BOM.
* offsetDelta will have the number of the BOM bytes that are in the current buffer.
*/
offsetDelta=0;
while(source<sourceLimit && U_SUCCESS(*pErrorCode)) {
switch(state) {
case 0:
b=*source;
if(b==(char)0xfe) {
state=1; /* could be FE FF */
} else if(b==(char)0xff) {
state=5; /* could be FF FE */
} else {
state=8; /* default to UTF-16BE */
continue;
}
++source;
break;
case 1:
case 5:
if(*source==utf16BOM[state]) {
++source;
if(state==1) {
state=8; /* detect UTF-16BE */
offsetDelta=source-pArgs->source;
} else if(state==5) {
state=9; /* detect UTF-16LE */
offsetDelta=source-pArgs->source;
}
} else {
/* switch to UTF-16BE and pass the previous bytes */
if(source!=pArgs->source) {
/* just reset the source */
source=pArgs->source;
} else {
UBool oldFlush=pArgs->flush;
/* the first byte is from a previous buffer, replay it first */
pArgs->source=utf16BOM+(state&4); /* select the correct BOM */
pArgs->sourceLimit=pArgs->source+1; /* replay previous byte */
pArgs->flush=FALSE; /* this sourceLimit is not the real source stream limit */
_UTF16BEToUnicodeWithOffsets(pArgs, pErrorCode);
/* restore real pointers; pArgs->source will be set in case 8/9 */
pArgs->sourceLimit=sourceLimit;
pArgs->flush=oldFlush;
}
state=8;
continue;
}
break;
case 8:
/* call UTF-16BE */
pArgs->source=source;
_UTF16BEToUnicodeWithOffsets(pArgs, pErrorCode);
source=pArgs->source;
break;
case 9:
/* call UTF-16LE */
pArgs->source=source;
_UTF16LEToUnicodeWithOffsets(pArgs, pErrorCode);
source=pArgs->source;
break;
default:
break; /* does not occur */
}
}
/* add BOM size to offsets - see comment at offsetDelta declaration */
if(offsets!=NULL && offsetDelta!=0) {
int32_t *offsetsLimit=pArgs->offsets;
while(offsets<offsetsLimit) {
*offsets++ += offsetDelta;
}
}
if(source==sourceLimit && pArgs->flush) {
/* handle truncated input */
switch(state) {
case 0:
break; /* no input at all, nothing to do */
case 8:
_UTF16BEToUnicodeWithOffsets(pArgs, pErrorCode);
break;
case 9:
_UTF16LEToUnicodeWithOffsets(pArgs, pErrorCode);
break;
default:
/* handle 0<state<8: call UTF-16BE with too-short input */
pArgs->source=utf16BOM+(state&4); /* select the correct BOM */
pArgs->sourceLimit=pArgs->source+(state&3); /* replay bytes */
/* no offsets: not enough for output */
_UTF16BEToUnicodeWithOffsets(pArgs, pErrorCode);
/* pArgs->source restored below */
pArgs->sourceLimit=sourceLimit;
break;
}
cnv->mode=0; /* reset */
} else {
cnv->mode=state;
}
pArgs->source=source;
}
static UChar32
_UTF16GetNextUChar(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
switch(pArgs->converter->mode) {
case 8:
return T_UConverter_getNextUChar_UTF16_BE(pArgs, pErrorCode);
case 9:
return T_UConverter_getNextUChar_UTF16_LE(pArgs, pErrorCode);
default:
return ucnv_getNextUCharFromToUImpl(pArgs, _UTF16ToUnicodeWithOffsets, TRUE, pErrorCode);
}
}
static const UConverterImpl _UTF16Impl = {
UCNV_UTF16,
NULL,
NULL,
_UTF16Open,
NULL,
_UTF16Reset,
_UTF16ToUnicodeWithOffsets,
_UTF16ToUnicodeWithOffsets,
_UTF16PEFromUnicodeWithOffsets,
_UTF16PEFromUnicodeWithOffsets,
_UTF16GetNextUChar,
NULL, /* ### TODO implement getStarters for all Unicode encodings?! */
NULL,
NULL,
NULL
};
static const UConverterStaticData _UTF16StaticData = {
sizeof(UConverterStaticData),
"UTF-16",
1200, /* ### TODO review correctness of all Unicode CCSIDs */
UCNV_IBM, UCNV_UTF16, 2, 2,
#if U_IS_BIG_ENDIAN
{ 0xff, 0xfd, 0, 0 }, 2,
#else
{ 0xfd, 0xff, 0, 0 }, 2,
#endif
FALSE, FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF16Data = {
sizeof(UConverterSharedData), ~((uint32_t) 0),
NULL, NULL, &_UTF16StaticData, FALSE, &_UTF16Impl,
0
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,817 @@
/*
**********************************************************************
* Copyright (C) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnv_u7.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002jul01
* created by: Markus W. Scherer
*
* UTF-7 converter implementation. Used to be in ucnv_utf.c.
*/
#include "unicode/utypes.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
#include "ucnv_bld.h"
#include "ucnv_cnv.h"
/* UTF-7 -------------------------------------------------------------------- */
/* ### TODO: in convrtrs.txt and user guide, document version option (=1 for escaping set O characters) */
/* TODO: version=1 is not really for IMAP, fix documentation; consider version=2 for IMAP */
/*
* UTF-7 is a stateful encoding of Unicode, somewhat like UTF7.
* It is defined in RFC 2152 http://www.imc.org/rfc2152 .
* It was intended for use in Internet email systems, using in its bytewise
* encoding only a subset of 7-bit US-ASCII.
* UTF-7 is deprecated in favor of UTF-8/16/32 and UTF7, but still
* occasionally used.
*
* For converting Unicode to UTF-7, the RFC allows to encode some US-ASCII
* characters directly or in base64. Especially, the characters in set O
* as defined in the RFC (see below) may be encoded directly but are not
* allowed in, e.g., email headers.
* By default, the ICU UTF-7 converter encodes set O directly.
* By choosing the option "version=1", set O will be escaped instead.
* For example:
* utf7Converter=ucnv_open("UTF-7,version=1");
*/
/*
* Tests for US-ASCII characters belonging to character classes
* defined in UTF-7.
*
* Set D (directly encoded characters) consists of the following
* characters: the upper and lower case letters A through Z
* and a through z, the 10 digits 0-9, and the following nine special
* characters (note that "+" and "=" are omitted):
* '(),-./:?
*
* Set O (optional direct characters) consists of the following
* characters (note that "\" and "~" are omitted):
* !"#$%&*;<=>@[]^_`{|}
*
* According to the rules in RFC 2152, the byte values for the following
* US-ASCII characters are not used in UTF-7 and are therefore illegal:
* - all C0 control codes except for CR LF TAB
* - BACKSLASH
* - TILDE
* - DEL
* - all codes beyond US-ASCII, i.e. all >127
*/
#define inSetD(c) \
((uint8_t)((c)-97)<26 || (uint8_t)((c)-65)<26 || /* letters */ \
(uint8_t)((c)-48)<10 || /* digits */ \
(uint8_t)((c)-39)<3 || /* '() */ \
(uint8_t)((c)-44)<4 || /* ,-./ */ \
(c)==58 || (c)==63 /* :? */ \
)
#define inSetO(c) \
((uint8_t)((c)-33)<6 || /* !"#$%& */ \
(uint8_t)((c)-59)<4 || /* ;<=> */ \
(uint8_t)((c)-93)<4 || /* ]^_` */ \
(uint8_t)((c)-123)<3 || /* {|} */ \
(c)==42 || (c)==64 || (c)==91 /* *@[ */ \
)
#define isCRLFTAB(c) ((c)==13 || (c)==10 || (c)==9)
#define isCRLFSPTAB(c) ((c)==32 || (c)==13 || (c)==10 || (c)==9)
#define PLUS 43
#define MINUS 45
#define BACKSLASH 92
#define TILDE 126
/* legal byte values: all US-ASCII graphic characters from space to before tilde, and CR LF TAB */
#define isLegalUTF7(c) (((uint8_t)((c)-32)<94 && (c)!=BACKSLASH) || isCRLFTAB(c))
/* encode directly sets D and O and CR LF SP TAB */
static const UBool encodeDirectlyMaximum[128]={
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
};
/* encode directly set D and CR LF SP TAB but not set O */
static const UBool encodeDirectlyRestricted[128]={
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0
};
static const uint8_t
toBase64[64]={
/* A-Z */
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
/* a-z */
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
/* 0-9 */
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
/* +/ */
43, 47
};
static const int8_t
fromBase64[128]={
/* C0 controls, -1 for legal ones (CR LF TAB), -3 for illegal ones */
-3, -3, -3, -3, -3, -3, -3, -3, -3, -1, -1, -3, -3, -1, -3, -3,
-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
/* general punctuation with + and / and a special value (-2) for - */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -2, -1, 63,
/* digits */
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1,
/* A-Z */
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -3, -1, -1, -1,
/* a-z */
-1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -3, -3
};
/*
* converter status values:
*
* toUnicodeStatus:
* 24 inDirectMode (boolean)
* 23..16 base64Counter (-1..7)
* 15..0 bits (up to 14 bits incoming base64)
*
* fromUnicodeStatus:
* 31..28 version (0: set O direct 1: set O escaped)
* 24 inDirectMode (boolean)
* 23..16 base64Counter (0..2)
* 7..0 bits (6 bits outgoing base64)
*
*/
static void
_UTF7Reset(UConverter *cnv, UConverterResetChoice choice) {
if(choice<=UCNV_RESET_TO_UNICODE) {
/* reset toUnicode */
cnv->toUnicodeStatus=0x1000000; /* inDirectMode=TRUE */
cnv->toULength=0;
}
if(choice!=UCNV_RESET_TO_UNICODE) {
/* reset fromUnicode */
cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /* keep version, inDirectMode=TRUE */
}
}
static void
_UTF7Open(UConverter *cnv,
const char *name,
const char *locale,
uint32_t options,
UErrorCode *pErrorCode) {
if((options&0xf)<=1) {
cnv->fromUnicodeStatus=(options&0xf)<<28;
_UTF7Reset(cnv, UCNV_RESET_BOTH);
} else {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
}
}
static void
_UTF7ToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const uint8_t *source, *sourceLimit;
UChar *target;
const UChar *targetLimit;
int32_t *offsets;
uint8_t *bytes;
uint8_t byteIndex;
int32_t length, targetCapacity;
/* UTF-7 state */
uint16_t bits;
int8_t base64Counter;
UBool inDirectMode;
int8_t base64Value;
int32_t sourceIndex, nextSourceIndex;
uint8_t b;
/* set up the local pointers */
cnv=pArgs->converter;
source=(const uint8_t *)pArgs->source;
sourceLimit=(const uint8_t *)pArgs->sourceLimit;
target=pArgs->target;
targetLimit=pArgs->targetLimit;
offsets=pArgs->offsets;
/* get the state machine state */
{
uint32_t status=cnv->toUnicodeStatus;
inDirectMode=(UBool)((status>>24)&1);
base64Counter=(int8_t)(status>>16);
bits=(uint16_t)status;
}
bytes=cnv->toUBytes;
byteIndex=cnv->toULength;
/* sourceIndex=-1 if the current character began in the previous buffer */
sourceIndex=byteIndex==0 ? 0 : -1;
nextSourceIndex=0;
loop:
if(inDirectMode) {
directMode:
/*
* In Direct Mode, most US-ASCII characters are encoded directly, i.e.,
* with their US-ASCII byte values.
* Backslash and Tilde and most control characters are not allowed in UTF-7.
* A plus sign starts Unicode (or "escape") Mode.
*
* In Direct Mode, only the sourceIndex is used.
*/
byteIndex=0;
length=sourceLimit-source;
targetCapacity=targetLimit-target;
if(length>targetCapacity) {
length=targetCapacity;
}
while(length>0) {
b=*source++;
if(!isLegalUTF7(b)) {
/* illegal */
bytes[0]=b;
byteIndex=1;
nextSourceIndex=sourceIndex+1;
goto callback;
} else if(b!=PLUS) {
/* write directly encoded character */
*target++=b;
if(offsets!=NULL) {
*offsets++=sourceIndex++;
}
} else /* PLUS */ {
/* switch to Unicode mode */
nextSourceIndex=++sourceIndex;
inDirectMode=FALSE;
byteIndex=0;
bits=0;
base64Counter=-1;
goto unicodeMode;
}
--length;
}
if(source<sourceLimit && target>=targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
} else {
unicodeMode:
/*
* In Unicode (or "escape") Mode, UTF-16BE is base64-encoded.
* The base64 sequence ends with any character that is not in the base64 alphabet.
* A terminating minus sign is consumed.
*
* In Unicode Mode, the sourceIndex has the index to the start of the current
* base64 bytes, while nextSourceIndex is precisely parallel to source,
* keeping the index to the following byte.
* Note that in 2 out of 3 cases, UChars overlap within a base64 byte.
*/
while(source<sourceLimit) {
if(target<targetLimit) {
bytes[byteIndex++]=b=*source++;
++nextSourceIndex;
if(b>=126) {
/* illegal - test other illegal US-ASCII values by base64Value==-3 */
inDirectMode=TRUE;
goto callback;
} else if((base64Value=fromBase64[b])>=0) {
/* collect base64 bytes into UChars */
switch(base64Counter) {
case -1: /* -1 is immediately after the + */
case 0:
bits=base64Value;
base64Counter=1;
break;
case 1:
case 3:
case 4:
case 6:
bits=(uint16_t)((bits<<6)|base64Value);
++base64Counter;
break;
case 2:
*target++=(UChar)((bits<<4)|(base64Value>>2));
if(offsets!=NULL) {
*offsets++=sourceIndex;
sourceIndex=nextSourceIndex-1;
}
bytes[0]=b; /* keep this byte in case an error occurs */
byteIndex=1;
bits=(uint16_t)(base64Value&3);
base64Counter=3;
break;
case 5:
*target++=(UChar)((bits<<2)|(base64Value>>4));
if(offsets!=NULL) {
*offsets++=sourceIndex;
sourceIndex=nextSourceIndex-1;
}
bytes[0]=b; /* keep this byte in case an error occurs */
byteIndex=1;
bits=(uint16_t)(base64Value&15);
base64Counter=6;
break;
case 7:
*target++=(UChar)((bits<<6)|base64Value);
if(offsets!=NULL) {
*offsets++=sourceIndex;
sourceIndex=nextSourceIndex;
}
byteIndex=0;
bits=0;
base64Counter=0;
break;
default:
/* will never occur */
break;
}
} else if(base64Value==-2) {
/* minus sign terminates the base64 sequence */
inDirectMode=TRUE;
if(base64Counter==-1) {
/* +- i.e. a minus immediately following a plus */
*target++=PLUS;
if(offsets!=NULL) {
*offsets++=sourceIndex-1;
}
} else {
/* absorb the minus and leave the Unicode Mode */
if(bits!=0) {
/* bits are illegally left over, a UChar is incomplete */
goto callback;
}
}
sourceIndex=nextSourceIndex;
goto directMode;
} else if(base64Value==-1) /* for any legal character except base64 and minus sign */ {
/* leave the Unicode Mode */
inDirectMode=TRUE;
if(base64Counter==-1) {
/* illegal: + immediately followed by something other than base64 or minus sign */
/* include the plus sign in the reported sequence */
--sourceIndex;
bytes[0]=PLUS;
bytes[1]=b;
byteIndex=2;
goto callback;
} else if(bits==0) {
/* un-read the character in case it is a plus sign */
--source;
sourceIndex=nextSourceIndex-1;
goto directMode;
} else {
/* bits are illegally left over, a UChar is incomplete */
goto callback;
}
} else /* base64Value==-3 for illegal characters */ {
/* illegal */
inDirectMode=TRUE;
goto callback;
}
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
endloop:
if(pArgs->flush && source>=sourceLimit) {
/* reset the state for the next conversion */
if(!inDirectMode && bits!=0 && U_SUCCESS(*pErrorCode)) {
/* a character byte sequence remains incomplete */
*pErrorCode=U_TRUNCATED_CHAR_FOUND;
}
cnv->toUnicodeStatus=0x1000000; /* inDirectMode=TRUE */
cnv->toULength=0;
} else {
/* set the converter state back into UConverter */
cnv->toUnicodeStatus=((uint32_t)inDirectMode<<24)|((uint32_t)((uint8_t)base64Counter)<<16)|(uint32_t)bits;
cnv->toULength=byteIndex;
}
finish:
/* write back the updated pointers */
pArgs->source=(const char *)source;
pArgs->target=target;
pArgs->offsets=offsets;
return;
callback:
/* call the callback function with all the preparations and post-processing */
/* update the arguments structure */
pArgs->source=(const char *)source;
pArgs->target=target;
pArgs->offsets=offsets;
/* copy the current bytes to invalidCharBuffer */
for(b=0; b<(uint8_t)byteIndex; ++b) {
cnv->invalidCharBuffer[b]=(char)bytes[b];
}
cnv->invalidCharLength=byteIndex;
/* set the converter state in UConverter to deal with the next character */
cnv->toUnicodeStatus=(uint32_t)inDirectMode<<24;
cnv->toULength=0;
/* call the callback function */
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
cnv->fromCharErrorBehaviour(cnv->toUContext, pArgs, cnv->invalidCharBuffer, cnv->invalidCharLength, UCNV_ILLEGAL, pErrorCode);
/* get the converter state from UConverter */
{
uint32_t status=cnv->toUnicodeStatus;
inDirectMode=(UBool)((status>>24)&1);
base64Counter=(int8_t)(status>>16);
bits=(uint16_t)status;
}
byteIndex=cnv->toULength;
/* update target and deal with offsets if necessary */
offsets=ucnv_updateCallbackOffsets(offsets, pArgs->target-target, sourceIndex);
target=pArgs->target;
/* update the source pointer and index */
sourceIndex=nextSourceIndex+((const uint8_t *)pArgs->source-source);
source=(const uint8_t *)pArgs->source;
/*
* If the callback overflowed the target, then we need to
* stop here with an overflow indication.
*/
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
goto endloop;
} else if(cnv->UCharErrorBufferLength>0) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
goto endloop;
} else if(U_FAILURE(*pErrorCode)) {
/* break on error */
cnv->toUnicodeStatus=0x1000000; /* inDirectMode=TRUE */
cnv->toULength=0;
goto finish;
} else {
goto loop;
}
}
static UChar32
_UTF7GetNextUChar(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
return ucnv_getNextUCharFromToUImpl(pArgs, _UTF7ToUnicodeWithOffsets, TRUE, pErrorCode);
}
static void
_UTF7FromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode) {
UConverter *cnv;
const UChar *source, *sourceLimit;
uint8_t *target, *targetLimit;
int32_t *offsets;
int32_t length, targetCapacity, sourceIndex;
UChar c;
/* UTF-7 state */
const UBool *encodeDirectly;
uint8_t bits;
int8_t base64Counter;
UBool inDirectMode;
/* set up the local pointers */
cnv=pArgs->converter;
/* set up the local pointers */
source=pArgs->source;
sourceLimit=pArgs->sourceLimit;
target=(uint8_t *)pArgs->target;
targetLimit=(uint8_t *)pArgs->targetLimit;
offsets=pArgs->offsets;
/* get the state machine state */
{
uint32_t status=cnv->fromUnicodeStatus;
encodeDirectly= status<0x10000000 ? encodeDirectlyMaximum : encodeDirectlyRestricted;
inDirectMode=(UBool)((status>>24)&1);
base64Counter=(int8_t)(status>>16);
bits=(uint8_t)status;
}
/* UTF-7 always encodes UTF-16 code units, therefore we need only a simple sourceIndex */
sourceIndex=0;
if(inDirectMode) {
directMode:
length=sourceLimit-source;
targetCapacity=targetLimit-target;
if(length>targetCapacity) {
length=targetCapacity;
}
while(length>0) {
c=*source++;
/* currently always encode CR LF SP TAB directly */
if(c<=127 && encodeDirectly[c]) {
/* encode directly */
*target++=(uint8_t)c;
if(offsets!=NULL) {
*offsets++=sourceIndex++;
}
} else if(c==PLUS) {
/* output +- for + */
*target++=PLUS;
if(target<targetLimit) {
*target++=MINUS;
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex++;
}
/* realign length and targetCapacity */
goto directMode;
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex++;
}
cnv->charErrorBuffer[0]=MINUS;
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
} else {
/* un-read this character and switch to Unicode Mode */
--source;
*target++=PLUS;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
inDirectMode=FALSE;
base64Counter=0;
goto unicodeMode;
}
--length;
}
if(source<sourceLimit && target>=targetLimit) {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
} else {
unicodeMode:
while(source<sourceLimit) {
if(target<targetLimit) {
c=*source++;
if(c<=127 && encodeDirectly[c]) {
/* encode directly */
inDirectMode=TRUE;
/* trick: back out this character to make this easier */
--source;
/* terminate the base64 sequence */
if(base64Counter!=0) {
/* write remaining bits for the previous character */
*target++=toBase64[bits];
if(offsets!=NULL) {
*offsets++=sourceIndex-1;
}
}
if(fromBase64[c]!=-1) {
/* need to terminate with a minus */
if(target<targetLimit) {
*target++=MINUS;
if(offsets!=NULL) {
*offsets++=sourceIndex;
}
} else {
cnv->charErrorBuffer[0]=MINUS;
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
goto directMode;
} else {
/*
* base64 this character:
* Output 2 or 3 base64 bytes for the remaining bits of the previous character
* and the bits of this character, each implicitly in UTF-16BE.
*
* Here, bits is an 8-bit variable because only 6 bits need to be kept from one
* character to the next. The actual 2 or 4 bits are shifted to the left edge
* of the 6-bits field 5..0 to make the termination of the base64 sequence easier.
*/
switch(base64Counter) {
case 0:
*target++=toBase64[c>>10];
if(target<targetLimit) {
*target++=toBase64[(c>>4)&0x3f];
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex++;
}
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex++;
}
cnv->charErrorBuffer[0]=toBase64[(c>>4)&0x3f];
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
bits=(uint8_t)((c&15)<<2);
base64Counter=1;
break;
case 1:
*target++=toBase64[bits|(c>>14)];
if(target<targetLimit) {
*target++=toBase64[(c>>8)&0x3f];
if(target<targetLimit) {
*target++=toBase64[(c>>2)&0x3f];
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex;
*offsets++=sourceIndex++;
}
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex++;
}
cnv->charErrorBuffer[0]=toBase64[(c>>2)&0x3f];
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex++;
}
cnv->charErrorBuffer[0]=toBase64[(c>>8)&0x3f];
cnv->charErrorBuffer[1]=toBase64[(c>>2)&0x3f];
cnv->charErrorBufferLength=2;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
bits=(uint8_t)((c&3)<<4);
base64Counter=2;
break;
case 2:
*target++=toBase64[bits|(c>>12)];
if(target<targetLimit) {
*target++=toBase64[(c>>6)&0x3f];
if(target<targetLimit) {
*target++=toBase64[c&0x3f];
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex;
*offsets++=sourceIndex++;
}
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex;
*offsets++=sourceIndex++;
}
cnv->charErrorBuffer[0]=toBase64[c&0x3f];
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
} else {
if(offsets!=NULL) {
*offsets++=sourceIndex++;
}
cnv->charErrorBuffer[0]=toBase64[(c>>6)&0x3f];
cnv->charErrorBuffer[1]=toBase64[c&0x3f];
cnv->charErrorBufferLength=2;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
bits=0;
base64Counter=0;
break;
default:
/* will never occur */
break;
}
}
} else {
/* target is full */
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
if(pArgs->flush && source>=sourceLimit) {
/* flush remaining bits to the target */
if(!inDirectMode && base64Counter!=0) {
if(target<targetLimit) {
*target++=toBase64[bits];
if(offsets!=NULL) {
*offsets++=sourceIndex-1;
}
} else {
cnv->charErrorBuffer[0]=toBase64[bits];
cnv->charErrorBufferLength=1;
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
}
/* reset the state for the next conversion */
cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /* keep version, inDirectMode=TRUE */
} else {
/* set the converter state back into UConverter */
cnv->fromUnicodeStatus=
(cnv->fromUnicodeStatus&0xf0000000)| /* keep version*/
((uint32_t)inDirectMode<<24)|((uint32_t)base64Counter<<16)|(uint32_t)bits;
}
/* write back the updated pointers */
pArgs->source=source;
pArgs->target=(char *)target;
pArgs->offsets=offsets;
return;
}
static const char *
_UTF7GetName(const UConverter *cnv) {
switch(cnv->fromUnicodeStatus>>28) {
case 1:
return "UTF-7,version=1";
default:
return "UTF-7";
}
}
static const UConverterImpl _UTF7Impl={
UCNV_UTF7,
NULL,
NULL,
_UTF7Open,
NULL,
_UTF7Reset,
_UTF7ToUnicodeWithOffsets,
_UTF7ToUnicodeWithOffsets,
_UTF7FromUnicodeWithOffsets,
_UTF7FromUnicodeWithOffsets,
_UTF7GetNextUChar,
NULL,
_UTF7GetName,
NULL /* we don't need writeSub() because we never call a callback at fromUnicode() */
};
static const UConverterStaticData _UTF7StaticData={
sizeof(UConverterStaticData),
"UTF-7",
0, /* TODO CCSID for UTF-7 */
UCNV_IBM, UCNV_UTF7,
1, 4,
{ 0x3f, 0, 0, 0 }, 1, /* the subchar is not used */
FALSE, FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF7Data={
sizeof(UConverterSharedData), ~((uint32_t)0),
NULL, NULL, &_UTF7StaticData, FALSE, &_UTF7Impl,
0
};

View File

@ -0,0 +1,865 @@
/*
**********************************************************************
* Copyright (C) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnv_u8.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002jul01
* created by: Markus W. Scherer
*
* UTF-8 converter implementation. Used to be in ucnv_utf.c.
*/
#include "unicode/utypes.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
#include "ucnv_bld.h"
#include "ucnv_cnv.h"
#include "cmemory.h"
/* Prototypes --------------------------------------------------------------- */
/* Keep these here to make finicky compilers happy */
U_CFUNC void T_UConverter_toUnicode_UTF8(UConverterToUnicodeArgs *args,
UErrorCode *err);
U_CFUNC void T_UConverter_toUnicode_UTF8_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
UErrorCode *err);
U_CFUNC void T_UConverter_fromUnicode_UTF8(UConverterFromUnicodeArgs *args,
UErrorCode *err);
U_CFUNC void T_UConverter_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs *args,
UErrorCode *err);
U_CFUNC UChar32 T_UConverter_getNextUChar_UTF8(UConverterToUnicodeArgs *args,
UErrorCode *err);
/* UTF-8 -------------------------------------------------------------------- */
/* UTF-8 Conversion DATA
* for more information see Unicode Strandard 2.0 , Transformation Formats Appendix A-9
*/
/*static const uint32_t REPLACEMENT_CHARACTER = 0x0000FFFD;*/
#define MAXIMUM_UCS2 0x0000FFFF
#define MAXIMUM_UTF 0x0010FFFF
#define MAXIMUM_UCS4 0x7FFFFFFF
#define HALF_SHIFT 10
#define HALF_BASE 0x0010000
#define HALF_MASK 0x3FF
#define SURROGATE_HIGH_START 0xD800
#define SURROGATE_HIGH_END 0xDBFF
#define SURROGATE_LOW_START 0xDC00
#define SURROGATE_LOW_END 0xDFFF
/* -SURROGATE_LOW_START + HALF_BASE */
#define SURROGATE_LOW_BASE 9216
static const uint32_t offsetsFromUTF8[7] = {0,
(uint32_t) 0x00000000, (uint32_t) 0x00003080, (uint32_t) 0x000E2080,
(uint32_t) 0x03C82080, (uint32_t) 0xFA082080, (uint32_t) 0x82082080
};
/* END OF UTF-8 Conversion DATA */
static const int8_t bytesFromUTF8[256] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0
};
/*
* Starting with Unicode 3.0.1:
* UTF-8 byte sequences of length N _must_ encode code points of or above utf8_minChar32[N];
* byte sequences with more than 4 bytes are illegal in UTF-8,
* which is tested with impossible values for them
*/
static const uint32_t
utf8_minChar32[7]={ 0, 0, 0x80, 0x800, 0x10000, 0xffffffff, 0xffffffff };
/**
* Calls invalid char callback when an invalid character sequence is encountered.
* It presumes that the converter has a callback to call.
*
* @returns true when callback fails
*/
static UBool
T_UConverter_toUnicode_InvalidChar_Callback(UConverterToUnicodeArgs * args,
UConverterCallbackReason reason,
UErrorCode *err)
{
UConverter *converter = args->converter;
if (U_SUCCESS(*err))
{
if (reason == UCNV_ILLEGAL) {
*err = U_ILLEGAL_CHAR_FOUND;
} else {
*err = U_INVALID_CHAR_FOUND;
}
}
/* copy the toUBytes to the invalidCharBuffer */
uprv_memcpy(converter->invalidCharBuffer,
converter->toUBytes,
converter->invalidCharLength);
/* Call the ErrorFunction */
args->converter->fromCharErrorBehaviour(converter->toUContext,
args,
converter->invalidCharBuffer,
converter->invalidCharLength,
reason,
err);
return (UBool)U_FAILURE(*err);
}
static UBool
T_UConverter_toUnicode_InvalidChar_OffsetCallback(UConverterToUnicodeArgs * args,
int32_t currentOffset,
UConverterCallbackReason reason,
UErrorCode *err)
{
int32_t *saveOffsets = args->offsets;
UBool result;
result = T_UConverter_toUnicode_InvalidChar_Callback(args, reason, err);
while (saveOffsets < args->offsets)
{
*(saveOffsets++) = currentOffset;
}
return result;
}
U_CFUNC void T_UConverter_toUnicode_UTF8 (UConverterToUnicodeArgs * args,
UErrorCode * err)
{
const unsigned char *mySource = (unsigned char *) args->source;
UChar *myTarget = args->target;
const unsigned char *sourceLimit = (unsigned char *) args->sourceLimit;
const UChar *targetLimit = args->targetLimit;
unsigned char *toUBytes = args->converter->toUBytes;
UBool invalidTailChar = FALSE;
uint32_t ch, ch2 = 0, i;
uint32_t inBytes; /* Total number of bytes in the current UTF8 sequence */
/* Restore size of current sequence */
if (args->converter->toUnicodeStatus && myTarget < targetLimit)
{
inBytes = args->converter->toULength; /* restore # of bytes to consume */
i = args->converter->invalidCharLength; /* restore # of bytes consumed */
ch = args->converter->toUnicodeStatus;/*Stores the previously calculated ch from a previous call*/
args->converter->toUnicodeStatus = 0;
goto morebytes;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Simple case */
{
*(myTarget++) = (UChar) ch;
}
else
{
/* store the first char */
toUBytes[0] = (char)ch;
inBytes = bytesFromUTF8[ch]; /* lookup current sequence length */
i = 1;
morebytes:
while (i < inBytes)
{
if (mySource < sourceLimit)
{
toUBytes[i] = (char) (ch2 = *(mySource++));
if (!UTF8_IS_TRAIL(ch2))
{
*err = U_TRUNCATED_CHAR_FOUND;
invalidTailChar = TRUE;
break;
}
ch = (ch << 6) + ch2;
i++;
}
else
{
if (args->flush)
{
if (U_SUCCESS(*err))
{
*err = U_TRUNCATED_CHAR_FOUND;
}
}
else
{ /* stores a partially calculated target*/
args->converter->toUnicodeStatus = ch;
args->converter->toULength = (int8_t) inBytes;
args->converter->invalidCharLength = (int8_t) i;
}
goto donefornow;
}
}
/* Remove the accumulated high bits */
ch -= offsetsFromUTF8[inBytes];
/*
* Legal UTF-8 byte sequences in Unicode 3.0.1 and up:
* - use only trail bytes after a lead byte (checked above)
* - use the right number of trail bytes for a given lead byte
* - encode a code point <= U+10ffff
* - use the fewest possible number of bytes for their code points
* - use at most 4 bytes (for i>=4 it is 0x10ffff<utf8_minChar32[])
* - single surrogate code points are legal but irregular (also cause a callback)
*/
if (i == inBytes && ch <= MAXIMUM_UTF && ch >= utf8_minChar32[i] && !UTF_IS_SURROGATE(ch))
{
/* Normal valid byte when the loop has not prematurely terminated (i < inBytes) */
if (ch <= MAXIMUM_UCS2)
{
/* fits in 16 bits */
*(myTarget++) = (UChar) ch;
}
else
{
/* write out the surrogates */
ch -= HALF_BASE;
*(myTarget++) = (UChar) ((ch >> HALF_SHIFT) + SURROGATE_HIGH_START);
ch = (ch & HALF_MASK) + SURROGATE_LOW_START;
if (myTarget < targetLimit)
{
*(myTarget++) = (UChar)ch;
}
else
{
/* Put in overflow buffer (not handled here) */
args->converter->UCharErrorBuffer[0] = (UChar) ch;
args->converter->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
else
{
UConverterCallbackReason reason =
i == inBytes && i == 3 && UTF_IS_SURROGATE(ch) ? UCNV_IRREGULAR : UCNV_ILLEGAL;
args->source = (const char *) mySource;
args->target = myTarget;
args->converter->invalidCharLength = (int8_t)i;
if (T_UConverter_toUnicode_InvalidChar_Callback(args, reason, err))
{
/* Stop if the error wasn't handled */
break;
}
args->converter->invalidCharLength = 0;
mySource = (unsigned char *) args->source;
myTarget = args->target;
if (invalidTailChar)
{
/* Treat the tail as ASCII*/
if (myTarget < targetLimit)
{
*(myTarget++) = (UChar) ch2;
invalidTailChar = FALSE;
}
else
{
/* Put in overflow buffer (not handled here) */
args->converter->UCharErrorBuffer[0] = (UChar) ch2;
args->converter->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
}
}
donefornow:
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
/* End of target buffer */
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = myTarget;
args->source = (const char *) mySource;
}
U_CFUNC void T_UConverter_toUnicode_UTF8_OFFSETS_LOGIC (UConverterToUnicodeArgs * args,
UErrorCode * err)
{
const unsigned char *mySource = (unsigned char *) args->source;
UChar *myTarget = args->target;
int32_t *myOffsets = args->offsets;
int32_t offsetNum = 0;
const unsigned char *sourceLimit = (unsigned char *) args->sourceLimit;
const UChar *targetLimit = args->targetLimit;
unsigned char *toUBytes = args->converter->toUBytes;
UBool invalidTailChar = FALSE;
uint32_t ch, ch2 = 0, i;
uint32_t inBytes;
/* Restore size of current sequence */
if (args->converter->toUnicodeStatus && myTarget < targetLimit)
{
inBytes = args->converter->toULength; /* restore # of bytes to consume */
i = args->converter->invalidCharLength; /* restore # of bytes consumed */
ch = args->converter->toUnicodeStatus;/*Stores the previously calculated ch from a previous call*/
args->converter->toUnicodeStatus = 0;
goto morebytes;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Simple case */
{
*(myTarget++) = (UChar) ch;
*(myOffsets++) = offsetNum++;
}
else
{
toUBytes[0] = (char)ch;
inBytes = bytesFromUTF8[ch];
i = 1;
morebytes:
while (i < inBytes)
{
if (mySource < sourceLimit)
{
toUBytes[i] = (char) (ch2 = *(mySource++));
if (!UTF8_IS_TRAIL(ch2))
{
*err = U_TRUNCATED_CHAR_FOUND;
invalidTailChar = TRUE;
break;
}
ch = (ch << 6) + ch2;
i++;
}
else
{
if (args->flush)
{
if (U_SUCCESS(*err))
{
*err = U_TRUNCATED_CHAR_FOUND;
args->converter->toUnicodeStatus = 0;
}
}
else
{
args->converter->toUnicodeStatus = ch;
args->converter->toULength = (int8_t)inBytes;
args->converter->invalidCharLength = (int8_t)i;
}
goto donefornow;
}
}
/* Remove the accumulated high bits */
ch -= offsetsFromUTF8[inBytes];
/*
* Legal UTF-8 byte sequences in Unicode 3.0.1 and up:
* - use only trail bytes after a lead byte (checked above)
* - use the right number of trail bytes for a given lead byte
* - encode a code point <= U+10ffff
* - use the fewest possible number of bytes for their code points
* - use at most 4 bytes (for i>=4 it is 0x10ffff<utf8_minChar32[])
* - single surrogate code points are legal but irregular (also cause a callback)
*/
if (i == inBytes && ch <= MAXIMUM_UTF && ch >= utf8_minChar32[i] && !UTF_IS_SURROGATE(ch))
{
/* Normal valid byte when the loop has not prematurely terminated (i < inBytes) */
if (ch <= MAXIMUM_UCS2)
{
/* fits in 16 bits */
*(myTarget++) = (UChar) ch;
*(myOffsets++) = offsetNum;
}
else
{
/* write out the surrogates */
ch -= HALF_BASE;
*(myTarget++) = (UChar) ((ch >> HALF_SHIFT) + SURROGATE_HIGH_START);
*(myOffsets++) = offsetNum;
ch = (ch & HALF_MASK) + SURROGATE_LOW_START;
if (myTarget < targetLimit)
{
*(myTarget++) = (UChar)ch;
*(myOffsets++) = offsetNum;
}
else
{
args->converter->UCharErrorBuffer[0] = (UChar) ch;
args->converter->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
offsetNum += i;
}
else
{
UConverterCallbackReason reason =
i == inBytes && i == 3 && UTF_IS_SURROGATE(ch) ? UCNV_IRREGULAR : UCNV_ILLEGAL;
UBool useOffset;
args->source = (const char *) mySource;
args->target = myTarget;
args->offsets = myOffsets;
args->converter->invalidCharLength = (int8_t)i;
if (T_UConverter_toUnicode_InvalidChar_OffsetCallback(args,
offsetNum, reason, err))
{
/* Stop if the error wasn't handled */
break;
}
args->converter->invalidCharLength = 0;
mySource = (unsigned char *) args->source;
myTarget = args->target;
useOffset = (UBool)(myOffsets != args->offsets);
myOffsets = args->offsets;
offsetNum += i;
if (invalidTailChar)
{
/* Treat the tail as ASCII*/
if (myTarget < targetLimit)
{
*(myTarget++) = (UChar) ch2;
*myOffsets = offsetNum++;
if (useOffset)
{
/* Increment when the target was consumed */
myOffsets++;
}
invalidTailChar = FALSE;
}
else
{
/* Put in overflow buffer (not handled here) */
args->converter->UCharErrorBuffer[0] = (UChar) ch2;
args->converter->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
}
}
donefornow:
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{ /* End of target buffer */
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = myTarget;
args->source = (const char *) mySource;
args->offsets = myOffsets;
}
U_CFUNC void T_UConverter_fromUnicode_UTF8 (UConverterFromUnicodeArgs * args,
UErrorCode * err)
{
const UChar *mySource = args->source;
unsigned char *myTarget = (unsigned char *) args->target;
const UChar *sourceLimit = args->sourceLimit;
const unsigned char *targetLimit = (unsigned char *) args->targetLimit;
uint32_t ch, ch2;
int16_t indexToWrite;
char temp[4];
if (args->converter->fromUnicodeStatus && myTarget < targetLimit)
{
ch = args->converter->fromUnicodeStatus;
args->converter->fromUnicodeStatus = 0;
goto lowsurogate;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Single byte */
{
*(myTarget++) = (char) ch;
}
else if (ch < 0x800) /* Double byte */
{
*(myTarget++) = (char) ((ch >> 6) | 0xc0);
if (myTarget < targetLimit)
{
*(myTarget++) = (char) ((ch & 0x3f) | 0x80);
}
else
{
args->converter->charErrorBuffer[0] = (char) ((ch & 0x3f) | 0x80);
args->converter->charErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
else
/* Check for surogates */
{
if ((ch >= SURROGATE_HIGH_START) && (ch <= SURROGATE_HIGH_END))
{
lowsurogate:
if (mySource < sourceLimit)
{
ch2 = *mySource;
if ((ch2 >= SURROGATE_LOW_START) && (ch2 <= SURROGATE_LOW_END))
{
/* If there were two surrogates, combine them otherwise treat them normally */
ch = ((ch - SURROGATE_HIGH_START) << HALF_SHIFT) + ch2 + SURROGATE_LOW_BASE;
mySource++;
}
}
else if (!args->flush)
{
args->converter->fromUnicodeStatus = ch;
break;
}
}
if (ch < 0x10000)
{
indexToWrite = 2;
temp[2] = (char) ((ch >> 12) | 0xe0);
}
else
{
indexToWrite = 3;
temp[3] = (char) ((ch >> 18) | 0xf0);
temp[2] = (char) (((ch >> 12) & 0x3f) | 0x80);
}
temp[1] = (char) (((ch >> 6) & 0x3f) | 0x80);
temp[0] = (char) ((ch & 0x3f) | 0x80);
for (; indexToWrite >= 0; indexToWrite--)
{
if (myTarget < targetLimit)
{
*(myTarget++) = temp[indexToWrite];
}
else
{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = temp[indexToWrite];
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
}
}
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = (char *) myTarget;
args->source = mySource;
}
U_CFUNC void T_UConverter_fromUnicode_UTF8_OFFSETS_LOGIC (UConverterFromUnicodeArgs * args,
UErrorCode * err)
{
const UChar *mySource = args->source;
unsigned char *myTarget = (unsigned char *) args->target;
int32_t *myOffsets = args->offsets;
const UChar *sourceLimit = args->sourceLimit;
const unsigned char *targetLimit = (unsigned char *) args->targetLimit;
uint32_t ch, ch2;
int32_t offsetNum = 0;
int16_t indexToWrite;
char temp[4];
if (args->converter->fromUnicodeStatus && myTarget < targetLimit)
{
ch = args->converter->fromUnicodeStatus;
args->converter->fromUnicodeStatus = 0;
goto lowsurogate;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Single byte */
{
*(myOffsets++) = offsetNum++;
*(myTarget++) = (char) ch;
}
else if (ch < 0x800) /* Double byte */
{
*(myOffsets++) = offsetNum;
*(myTarget++) = (char) ((ch >> 6) | 0xc0);
if (myTarget < targetLimit)
{
*(myOffsets++) = offsetNum++;
*(myTarget++) = (char) ((ch & 0x3f) | 0x80);
}
else
{
args->converter->charErrorBuffer[0] = (char) ((ch & 0x3f) | 0x80);
args->converter->charErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
else
/* Check for surogates */
{
if ((ch >= SURROGATE_HIGH_START) && (ch <= SURROGATE_HIGH_END))
{
lowsurogate:
if (mySource < sourceLimit)
{
ch2 = *mySource;
if ((ch2 >= SURROGATE_LOW_START) && (ch2 <= SURROGATE_LOW_END))
{
/* If there were two surrogates, combine them otherwise treat them normally */
ch = ((ch - SURROGATE_HIGH_START) << HALF_SHIFT) + ch2 + SURROGATE_LOW_BASE;
mySource++;
}
}
else if (!args->flush)
{
args->converter->fromUnicodeStatus = ch;
break;
}
}
if (ch < 0x10000)
{
indexToWrite = 2;
temp[2] = (char) ((ch >> 12) | 0xe0);
}
else
{
indexToWrite = 3;
temp[3] = (char) ((ch >> 18) | 0xf0);
temp[2] = (char) (((ch >> 12) & 0x3f) | 0x80);
}
temp[1] = (char) (((ch >> 6) & 0x3f) | 0x80);
temp[0] = (char) ((ch & 0x3f) | 0x80);
for (; indexToWrite >= 0; indexToWrite--)
{
if (myTarget < targetLimit)
{
*(myOffsets++) = offsetNum;
*(myTarget++) = temp[indexToWrite];
}
else
{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = temp[indexToWrite];
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
offsetNum += (ch >= 0x10000) + 1;
}
}
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = (char *) myTarget;
args->source = mySource;
args->offsets = myOffsets;
}
U_CFUNC UChar32 T_UConverter_getNextUChar_UTF8(UConverterToUnicodeArgs *args,
UErrorCode *err) {
UChar buffer[2];
char const *sourceInitial;
UChar* myUCharPtr;
UConverterCallbackReason reason;
uint16_t extraBytesToWrite;
uint8_t myByte;
UChar32 ch;
int8_t isLegalSequence;
while (args->source < args->sourceLimit)
{
sourceInitial = args->source;
myByte = (uint8_t)*(args->source++);
if (myByte < 0x80)
{
return (UChar32)myByte;
}
extraBytesToWrite = (uint16_t)bytesFromUTF8[myByte];
if (extraBytesToWrite == 0) {
isLegalSequence = FALSE;
ch = 0;
goto CALL_ERROR_FUNCTION;
}
/*The byte sequence is longer than the buffer area passed*/
if ((args->source + extraBytesToWrite - 1) > args->sourceLimit)
{
*err = U_TRUNCATED_CHAR_FOUND;
return 0xffff;
}
else
{
isLegalSequence = 1;
ch = myByte << 6;
switch(extraBytesToWrite)
{
/* note: code falls through cases! (sic)*/
case 6:
ch += (myByte = (uint8_t)*(args->source++));
ch <<= 6;
if (!UTF8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
case 5:
ch += (myByte = *(args->source++));
ch <<= 6;
if (!UTF8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
case 4:
ch += (myByte = *(args->source++));
ch <<= 6;
if (!UTF8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
case 3:
ch += (myByte = *(args->source++));
ch <<= 6;
if (!UTF8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
break;
}
case 2:
ch += (myByte = *(args->source++));
if (!UTF8_IS_TRAIL(myByte))
{
isLegalSequence = 0;
}
};
}
ch -= offsetsFromUTF8[extraBytesToWrite];
/*
* Legal UTF-8 byte sequences in Unicode 3.0.1 and up:
* - use only trail bytes after a lead byte (checked above)
* - use the right number of trail bytes for a given lead byte
* - encode a code point <= U+10ffff
* - use the fewest possible number of bytes for their code points
* - use at most 4 bytes (for i>=4 it is 0x10ffff<utf8_minChar32[])
* - single surrogate code points are legal but irregular (also cause a callback)
*/
if (isLegalSequence && (uint32_t)ch <= MAXIMUM_UTF && (uint32_t)ch >= utf8_minChar32[extraBytesToWrite] && !UTF_IS_SURROGATE(ch)) {
return ch; /* return the code point */
}
CALL_ERROR_FUNCTION:
extraBytesToWrite = (uint16_t)(args->source - sourceInitial);
args->converter->invalidCharLength = (uint8_t)extraBytesToWrite;
uprv_memcpy(args->converter->invalidCharBuffer, sourceInitial, extraBytesToWrite);
myUCharPtr = buffer;
if (isLegalSequence && extraBytesToWrite == 3 && UTF_IS_SURROGATE(ch)) {
reason = UCNV_IRREGULAR;
*err = U_INVALID_CHAR_FOUND;
} else {
reason = UCNV_ILLEGAL;
*err = U_ILLEGAL_CHAR_FOUND;
}
args->target = myUCharPtr;
args->targetLimit = buffer + 2;
args->converter->fromCharErrorBehaviour(args->converter->toUContext,
args,
sourceInitial,
extraBytesToWrite,
reason,
err);
if(U_SUCCESS(*err)) {
extraBytesToWrite = (uint16_t)(args->target - buffer);
if(extraBytesToWrite > 0) {
return ucnv_getUChar32KeepOverflow(args->converter, buffer, extraBytesToWrite);
}
/* else (callback did not write anything) continue */
} else if(*err == U_BUFFER_OVERFLOW_ERROR) {
*err = U_ZERO_ERROR;
return ucnv_getUChar32KeepOverflow(args->converter, buffer, 2);
} else {
/* break on error */
/* ### what if a callback set an error but _also_ generated output?! */
return 0xffff;
}
}
/* no input or only skipping callback calls */
*err = U_INDEX_OUTOFBOUNDS_ERROR;
return 0xffff;
}
static const UConverterImpl _UTF8Impl={
UCNV_UTF8,
NULL,
NULL,
NULL,
NULL,
NULL,
T_UConverter_toUnicode_UTF8,
T_UConverter_toUnicode_UTF8_OFFSETS_LOGIC,
T_UConverter_fromUnicode_UTF8,
T_UConverter_fromUnicode_UTF8_OFFSETS_LOGIC,
T_UConverter_getNextUChar_UTF8,
NULL,
NULL
};
/* The 1208 CCSID refers to any version of Unicode of UTF-8 */
static const UConverterStaticData _UTF8StaticData={
sizeof(UConverterStaticData),
"UTF-8",
1208, UCNV_IBM, UCNV_UTF8, 1, 4,
{ 0xef, 0xbf, 0xbd, 0 },3,FALSE,FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF8Data={
sizeof(UConverterSharedData), ~((uint32_t) 0),
NULL, NULL, &_UTF8StaticData, FALSE, &_UTF8Impl,
0
};

File diff suppressed because it is too large Load Diff