ICU-5738 ported performance tests for icu4jni charset apis into icu4j

X-SVN-Rev: 21671
This commit is contained in:
Andrew J Macheret 2007-06-08 20:35:05 +00:00
parent 6e82eae95b
commit f69a374304
2 changed files with 829 additions and 0 deletions

View File

@ -0,0 +1,322 @@
package com.ibm.icu.dev.test.perf;
import java.io.*;
import sun.io.*;
//import com.ibm.icu.converters.*;
import com.ibm.icu.charset.*;
import java.nio.charset.*;
import java.nio.*;
/**
* Copyright (c) 2002-2005, International Business Machines Corporation
* and others. All rights reserved.
*
* @author ram
*/
public class ConverterPerformanceTest extends PerfTest {
public static void main(String[] args) throws Exception {
new ConverterPerformanceTest().run(args);
}
String fileName=null;
String srcEncoding=null;
String testEncoderName=null;
char unicodeBuffer[] = null;
byte encBuffer[] = null;
protected void setup(String[] args) {
try{
// We only take 3 arguments file name and encoding,
if (args.length < 6 ) {
System.err.println("args.length = " + args.length);
for (int i=0; i<args.length; i++)
System.err.println(" : " + args[i]);
throw new RuntimeException("Please supply file_name <name> src_encoding <enc> test <converter name>");
}
for(int i=0; i<args.length; i++){
if(args[i].equals("file_name")){
fileName = args[++i];
}
if(args[i].equals("src_encoding")){
srcEncoding = args[++i];
}
if(args[i].equals("test")){
testEncoderName = args[++i];
}
}
FileInputStream in = new FileInputStream(fileName);
InputStreamReader reader = new InputStreamReader(in,srcEncoding);
unicodeBuffer = readToEOS(reader);
//encBuffer = new String(unicodeBuffer).getBytes(testEncoderName);
// TODO: should use built in nio converters (this is just for setup, not for the actual performance test)
CharToByteConverter cbConv = CharToByteConverter.getConverter(testEncoderName);
cbConv.setSubstitutionMode(false);
encBuffer = cbConv.convertAll(unicodeBuffer);
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestFromUnicodeStream() {
return new PerfTest.Function() {
public void call() {
try{
ByteArrayOutputStream out = new ByteArrayOutputStream(unicodeBuffer.length * 10);
OutputStreamWriter writer = new OutputStreamWriter(out, testEncoderName);
writer.write(unicodeBuffer, 0, unicodeBuffer.length);
writer.flush();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return unicodeBuffer.length;
}
};
}
PerfTest.Function TestToUnicodeStream() {
return new PerfTest.Function() {
char[] dst = new char[encBuffer.length];
int numOut =0;
public void call() {
try{
ByteArrayInputStream is = new ByteArrayInputStream(encBuffer, 0, encBuffer.length);
InputStreamReader reader = new InputStreamReader(is, testEncoderName);
numOut = reader.read(dst, 0, dst.length);
reader.close();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return encBuffer.length;
}
};
}
/*
PerfTest.Function TestByteToCharConverter() { // decoder charset.forname().newencoder().decode
try{
return new PerfTest.Function() {
char[] dst = new char[encBuffer.length];
int numOut =0;
ByteToCharConverter conv = ByteToCharConverter.getConverter(testEncoderName);
int num =0;
public void call() {
try{
numOut= conv.convert(encBuffer, 0, encBuffer.length, dst, 0,dst.length);
conv.reset();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return encBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestCharToByteConverter() { // encoder charset.forname().newencoder().encode
try{
return new PerfTest.Function() {
byte[] dst = new byte[encBuffer.length];
int numOut =0;
CharToByteConverter conv = CharToByteConverter.getConverter(testEncoderName);
int num =0;
public void call() {
try{
numOut= conv.convert(unicodeBuffer, 0,unicodeBuffer.length,dst,0, dst.length);
conv.reset();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return unicodeBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestByteToCharConverterICU() { // decoder charsetprovidericu.getdecoder
try{
return new PerfTest.Function() {
char[] dst = new char[encBuffer.length];
int numOut =0;
ByteToCharConverter conv = ByteToCharConverterICU.createConverter(testEncoderName);
int num =0;
public void call() {
try{
numOut= conv.convert(encBuffer, 0, encBuffer.length, dst, 0,dst.length);
conv.reset();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return encBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestCharToByteConverterICU() {
try{
return new PerfTest.Function() {
byte[] dst = new byte[encBuffer.length*2];
int numOut =0;
CharToByteConverter conv = CharToByteConverterICU.createConverter(testEncoderName);
int num =0;
public void call() {
try{
numOut= conv.convert(unicodeBuffer, 0,unicodeBuffer.length,dst,0, dst.length);
conv.reset();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return unicodeBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
*/
PerfTest.Function TestCharsetDecoder() {
try{
return new PerfTest.Function() {
CharBuffer outBuf = CharBuffer.allocate(unicodeBuffer.length);
Charset myCharset = Charset.forName(testEncoderName);
ByteBuffer srcBuf = ByteBuffer.wrap(encBuffer,0,encBuffer.length);
CharsetDecoder decoder = myCharset.newDecoder();
public void call() {
try{
decoder.decode(srcBuf,outBuf,false);
decoder.reset();
srcBuf.rewind();
outBuf.rewind();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return encBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestCharsetEncoder() {
try{
return new PerfTest.Function() {
ByteBuffer outBuf = ByteBuffer.allocate(encBuffer.length);
Charset myCharset = Charset.forName(testEncoderName);
CharBuffer srcBuf = CharBuffer.wrap(unicodeBuffer,0,unicodeBuffer.length);
CharsetEncoder encoder = myCharset.newEncoder();
public void call() {
try{
encoder.encode(srcBuf,outBuf,false);
encoder.reset();
srcBuf.rewind();
outBuf.rewind();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return unicodeBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestCharsetDecoderICU() {
try{
return new PerfTest.Function() {
CharBuffer outBuf = CharBuffer.allocate(unicodeBuffer.length);
Charset myCharset = new CharsetProviderICU().charsetForName(testEncoderName);
ByteBuffer srcBuf = ByteBuffer.wrap(encBuffer,0,encBuffer.length);
CharsetDecoder decoder = myCharset.newDecoder();
public void call() {
try{
decoder.decode(srcBuf,outBuf,false);
decoder.reset();
srcBuf.rewind();
outBuf.rewind();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return encBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
PerfTest.Function TestCharsetEncoderICU() {
try{
return new PerfTest.Function() {
ByteBuffer outBuf = ByteBuffer.allocate(encBuffer.length);
Charset myCharset = new CharsetProviderICU().charsetForName(testEncoderName);
CharBuffer srcBuf = CharBuffer.wrap(unicodeBuffer,0,unicodeBuffer.length);
CharsetEncoder encoder = myCharset.newEncoder();
public void call() {
try{
encoder.encode(srcBuf,outBuf,false);
encoder.reset();
srcBuf.rewind();
outBuf.rewind();
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
public long getOperationsPerIteration() {
return unicodeBuffer.length;
}
};
}catch(Exception e){
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
}

View File

@ -0,0 +1,507 @@
#!/usr/local/bin/perl
use strict;
# Assume we are running within the icu4jni root directory
use lib 'c:/svn/icu4j/src/com/ibm/icu/dev/test/perf';
use Dataset;
# Copyright (c) 2002-2004, International Business Machines Corporation
# and others. All rights reserved.
#---------------------------------------------------------------------
# Test class
my $TESTCLASS = 'com.ibm.icu.dev.test.perf.ConverterPerformanceTest';
# Methods to be tested. Each pair represents a test method and
# a baseline method which is used for comparison.
my @METHODS = (
## ['TestByteToCharConverter', 'TestByteToCharConverterICU'],
## ['TestCharToByteConverter', 'TestCharToByteConverterICU'],
['TestCharsetDecoder', 'TestCharsetDecoderICU'],
['TestCharsetEncoder', 'TestCharsetEncoderICU']
);
# Patterns which define the set of characters used for testing.
my $SOURCEDIR ="C:\\src\\perf\\data\\";
my @OPTIONS = (
# src text src encoding test encoding
# [ "arabic.txt", "UTF-8", "csisolatinarabic"],
[ "french.txt", "UTF-8", "csisolatin1"],
# [ "greek.txt", "UTF-8", "csisolatingreek"],
# [ "hebrew.txt", "UTF-8", "csisolatinhebrew"],
# [ "hindi.txt" , "UTF-8", "iscii"],
# [ "japanese.txt", "UTF-8", "EUC-JP"],
# [ "japanese.txt", "UTF-8", "csiso2022jp"],
# [ "japanese.txt", "UTF-8", "shift_jis"],
# [ "korean.txt", "UTF-8", "csiso2022kr"],
# [ "korean.txt", "UTF-8", "EUC-KR"],
# [ "s-chinese.txt", "UTF-8", "EUC_CN"],
# [ "arabic.txt", "UTF-8", "UTF-8"],
# [ "french.txt", "UTF-8", "UTF-8"],
# [ "greek.txt", "UTF-8", "UTF-8"],
# [ "hebrew.txt", "UTF-8", "UTF-8"],
# [ "hindi.txt" , "UTF-8", "UTF-8"],
# [ "japanese.txt", "UTF-8", "UTF-8"],
# [ "korean.txt", "UTF-8", "UTF-8"],
# [ "s-chinese.txt", "UTF-8", "UTF-8"],
# [ "french.txt", "UTF-8", "UTF-16BE"],
# [ "french.txt", "UTF-8", "UTF-16LE"],
[ "english.txt", "UTF-8", "US-ASCII"],
);
my $CALIBRATE = 2; # duration in seconds for initial calibration
my $DURATION = 10; # duration in seconds for each pass
my $NUMPASSES = 4; # number of passes. If > 1 then the first pass
# is discarded as a JIT warm-up pass.
my $TABLEATTR = 'BORDER="1" CELLPADDING="4" CELLSPACING="0"';
my $PLUS_MINUS = "&plusmn;";
if ($NUMPASSES < 3) {
die "Need at least 3 passes. One is discarded (JIT warmup) and need two to have 1 degree of freedom (t distribution).";
}
my $OUT; # see out()
main();
#---------------------------------------------------------------------
# ...
sub main {
my $date = localtime;
my $title = "ICU4J Performance Test $date";
my $html = $date;
$html =~ s/://g; # ':' illegal
$html =~ s/\s*\d+$//; # delete year
$html =~ s/^\w+\s*//; # delete dow
$html = "perf $html.html";
open(HTML,">$html") or die "Can't write to $html: $!";
print HTML <<EOF;
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD>
<TITLE>$title</TITLE>
</HEAD>
<BODY>
EOF
print HTML "<H1>$title</H1>\n";
print HTML "<H2>$TESTCLASS</H2>\n";
my $raw = "";
for my $methodPair (@METHODS) {
my $testMethod = $methodPair->[0];
my $baselineMethod = $methodPair->[1];
print HTML "<P><TABLE $TABLEATTR><TR><TD>\n";
print HTML "<P><B>$testMethod vs. $baselineMethod</B></P>\n";
print HTML "<P><TABLE $TABLEATTR BGCOLOR=\"#CCFFFF\">\n";
print HTML "<TR><TD>Options</TD><TD>$testMethod</TD>";
print HTML "<TD>$baselineMethod</TD><TD>Ratio</TD></TR>\n";
$OUT = '';
for my $pat (@OPTIONS) {
print HTML "<TR><TD>@$pat[0], @$pat[2]</TD>\n";
out("<P><TABLE $TABLEATTR WIDTH=\"100%\">");
# measure the test method
out("<TR><TD>");
print "\n$testMethod [@$pat]\n";
my $t = measure2($testMethod, $pat, -$DURATION);
out("</TD></TR>");
print HTML "<TD>", formatSeconds(4, $t->getMean(), $t->getError);
print HTML "/event</TD>\n";
# measure baseline method
out("<TR><TD>");
print "\n$baselineMethod [@$pat]\n";
my $b = measure2($baselineMethod, $pat, -$DURATION);
out("</TD></TR>");
print HTML "<TD>", formatSeconds(4, $b->getMean(), $t->getError);
print HTML "/event</TD>\n";
out("</TABLE></P>");
# output ratio
my $r = $t->divide($b);
my $mean = $r->getMean() - 1;
my $color = $mean < 0 ? "RED" : "BLACK";
print HTML "<TD><B><FONT COLOR=\"$color\">", formatPercent(3, $mean, $r->getError);
print HTML "</FONT></B></TD></TR>\n";
}
print HTML "</TABLE></P>\n";
print HTML "<P>Raw data:</P>\n";
print HTML $OUT;
print HTML "</TABLE></P>\n";
}
print HTML <<EOF;
</BODY>
</HTML>
EOF
close(HTML) or die "Can't close $html: $!";
}
#---------------------------------------------------------------------
# Append text to the global variable $OUT
sub out {
$OUT .= join('', @_);
}
#---------------------------------------------------------------------
# Append text to the global variable $OUT
sub outln {
$OUT .= join('', @_) . "\n";
}
#---------------------------------------------------------------------
# Measure a given test method with a give test pattern using the
# global run parameters.
#
# @param the method to run
# @param the pattern defining characters to test
# @param if >0 then the number of iterations per pass. If <0 then
# (negative of) the number of seconds per pass.
#
# @return a Dataset object, scaled by iterations per pass and
# events per iteration, to give time per event
#
sub measure2 {
my @data = measure1(@_);
my $iterPerPass = shift(@data);
my $eventPerIter = shift(@data);
shift(@data) if (@data > 1); # discard first run
my $ds = Dataset->new(@data);
$ds->setScale(1.0e-3 / ($iterPerPass * $eventPerIter));
$ds;
}
#---------------------------------------------------------------------
# Measure a given test method with a give test pattern using the
# global run parameters.
#
# @param the method to run
# @param the pattern defining characters to test
# @param if >0 then the number of iterations per pass. If <0 then
# (negative of) the number of seconds per pass.
#
# @return array of:
# [0] iterations per pass
# [1] events per iteration
# [2..] ms reported for each pass, in order
#
sub measure1 {
my $method = shift;
my $pat = shift;
my $iterCount = shift; # actually might be -seconds/pass
out("<P>Measuring $method for input file @$pat[0] for encoding @$pat[2] , ");
if ($iterCount > 0) {
out("$iterCount iterations/pass, $NUMPASSES passes</P>\n");
} else {
out(-$iterCount, " seconds/pass, $NUMPASSES passes</P>\n");
}
# is $iterCount actually -seconds/pass?
if ($iterCount < 0) {
# calibrate: estimate ms/iteration
print "Calibrating...";
my @t = callJava($method, $pat, -$CALIBRATE, 1);
print "done.\n";
my @data = split(/\s+/, $t[0]->[2]);
$data[0] *= 1.0e+3;
my $timePerIter = 1.0e-3 * $data[0] / $data[1];
# determine iterations/pass
$iterCount = int(-$iterCount / $timePerIter + 0.5);
out("<P>Calibration pass ($CALIBRATE sec): ");
out("$data[0] ms, ");
out("$data[1] iterations = ");
out(formatSeconds(4, $timePerIter), "/iteration<BR>\n");
}
# run passes
print "Measuring $iterCount iterations x $NUMPASSES passes...";
my @t = callJava($method, $pat, $iterCount, $NUMPASSES);
print "done.\n";
my @ms = ();
my @b; # scratch
for my $a (@t) {
# $a->[0]: method name, corresponds to $method
# $a->[1]: 'begin' data, == $iterCount
# $a->[2]: 'end' data, of the form <ms> <loops> <eventsPerIter>
# $a->[3...]: gc messages from JVM during pass
@b = split(/\s+/, $a->[2]);
push(@ms, $b[0] * 1.0e+3);
}
my $eventsPerIter = $b[2];
out("Iterations per pass: $iterCount<BR>\n");
out("Events per iteration: $eventsPerIter<BR>\n");
my @ms_str = @ms;
$ms_str[0] .= " (discarded)" if (@ms_str > 1);
out("Raw times (ms/pass): ", join(", ", @ms_str), "<BR>\n");
($iterCount, $eventsPerIter, @ms);
}
#---------------------------------------------------------------------
# Invoke java to run $TESTCLASS, passing it the given parameters.
#
# @param the method to run
# @param the number of iterations, or if negative, the duration
# in seconds. If more than on pass is desired, pass in
# a string, e.g., "100 100 100".
# @param the pattern defining characters to test
#
# @return an array of results. Each result is an array REF
# describing one pass. The array REF contains:
# ->[0]: The method name as reported
# ->[1]: The params on the '= <meth> begin ...' line
# ->[2]: The params on the '= <meth> end ...' line
# ->[3..]: GC messages from the JVM, if any
#
sub callJava {
my $method = shift;
my $pat = shift;
my $n = shift;
my $passes = shift;
my $fileName = $SOURCEDIR.@$pat[0] ;
my $n = ($n < 0) ? "-t ".(-$n) : "-i ".$n;
my $cmd = "c:\\j2sdk1.4.2_14\\bin\\java -classpath ;c:\\svn\\icu4j\\classes; $TESTCLASS $method $n -p $passes file_name $fileName src_encoding @$pat[1] test @$pat[2]";
print "[$cmd]\n"; # for debugging
open(PIPE, "$cmd|") or die "Can't run \"$cmd\"";
my @out;
while (<PIPE>) {
push(@out, $_);
}
close(PIPE) or die "Java failed: \"$cmd\"";
@out = grep(!/^\#/, @out); # filter out comments
#print "[", join("\n", @out), "]\n";
my @results;
my $method = '';
my $data = [];
foreach (@out) {
next unless (/\S/);
if (/^=\s*(\w+)\s*(\w+)\s*(.*)/) {
my ($m, $state, $d) = ($1, $2, $3);
#print "$_ => [[$m $state $data]]\n";
if ($state eq 'begin') {
die "$method was begun but not finished" if ($method);
$method = $m;
push(@$data, $d);
push(@$data, ''); # placeholder for end data
} elsif ($state eq 'end') {
if ($m ne $method) {
die "$method end does not match: $_";
}
$data->[1] = $d; # insert end data at [1]
#print "#$method:", join(";",@$data), "\n";
unshift(@$data, $method); # add method to start
push(@results, $data);
$method = '';
$data = [];
} else {
die "Can't parse: $_";
}
}
elsif (/^\[/) {
if ($method) {
push(@$data, $_);
} else {
# ignore extraneous GC notices
}
}
else {
die "Can't parse: $_";
}
}
die "$method was begun but not finished" if ($method);
@results;
}
#|#---------------------------------------------------------------------
#|# Format a confidence interval, as given by a Dataset. Output is as
#|# as follows:
#|# 241.23 - 241.98 => 241.5 +/- 0.3
#|# 241.2 - 243.8 => 242 +/- 1
#|# 211.0 - 241.0 => 226 +/- 15 or? 230 +/- 20
#|# 220.3 - 234.3 => 227 +/- 7
#|# 220.3 - 300.3 => 260 +/- 40
#|# 220.3 - 1000 => 610 +/- 390 or? 600 +/- 400
#|# 0.022 - 0.024 => 0.023 +/- 0.001
#|# 0.022 - 0.032 => 0.027 +/- 0.005
#|# 0.022 - 1.000 => 0.5 +/- 0.5
#|# In other words, take one significant digit of the error value and
#|# display the mean to the same precision.
#|sub formatDataset {
#| my $ds = shift;
#| my $lower = $ds->getMean() - $ds->getError();
#| my $upper = $ds->getMean() + $ds->getError();
#| my $scale = 0;
#| # Find how many initial digits are the same
#| while ($lower < 1 ||
#| int($lower) == int($upper)) {
#| $lower *= 10;
#| $upper *= 10;
#| $scale++;
#| }
#| while ($lower >= 10 &&
#| int($lower) == int($upper)) {
#| $lower /= 10;
#| $upper /= 10;
#| $scale--;
#| }
#|}
#---------------------------------------------------------------------
# Format a number, optionally with a +/- delta, to n significant
# digits.
#
# @param significant digit, a value >= 1
# @param multiplier
# @param time in seconds to be formatted
# @optional delta in seconds
#
# @return string of the form "23" or "23 +/- 10".
#
sub formatNumber {
my $sigdig = shift;
my $mult = shift;
my $a = shift;
my $delta = shift; # may be undef
my $result = formatSigDig($sigdig, $a*$mult);
if (defined($delta)) {
my $d = formatSigDig($sigdig, $delta*$mult);
# restrict PRECISION of delta to that of main number
if ($result =~ /\.(\d+)/) {
# TODO make this work for values with all significant
# digits to the left of the decimal, e.g., 1234000.
# TODO the other thing wrong with this is that it
# isn't rounding the $delta properly. Have to put
# this logic into formatSigDig().
my $x = length($1);
$d =~ s/\.(\d{$x})\d+/.$1/;
}
$result .= " $PLUS_MINUS " . $d;
}
$result;
}
#---------------------------------------------------------------------
# Format a time, optionally with a +/- delta, to n significant
# digits.
#
# @param significant digit, a value >= 1
# @param time in seconds to be formatted
# @optional delta in seconds
#
# @return string of the form "23 ms" or "23 +/- 10 ms".
#
sub formatSeconds {
my $sigdig = shift;
my $a = shift;
my $delta = shift; # may be undef
my @MULT = (1 , 1e3, 1e6, 1e9);
my @SUFF = ('s' , 'ms', 'us', 'ns');
# Determine our scale
my $i = 0;
++$i while ($a*$MULT[$i] < 1 && $i < @MULT);
formatNumber($sigdig, $MULT[$i], $a, $delta) . ' ' . $SUFF[$i];
}
#---------------------------------------------------------------------
# Format a percentage, optionally with a +/- delta, to n significant
# digits.
#
# @param significant digit, a value >= 1
# @param value to be formatted, as a fraction, e.g. 0.5 for 50%
# @optional delta, as a fraction
#
# @return string of the form "23 %" or "23 +/- 10 %".
#
sub formatPercent {
my $sigdig = shift;
my $a = shift;
my $delta = shift; # may be undef
formatNumber($sigdig, 100, $a, $delta) . ' %';
}
#---------------------------------------------------------------------
# Format a number to n significant digits without using exponential
# notation.
#
# @param significant digit, a value >= 1
# @param number to be formatted
#
# @return string of the form "1234" "12.34" or "0.001234". If
# number was negative, prefixed by '-'.
#
sub formatSigDig {
my $n = shift() - 1;
my $a = shift;
local $_ = sprintf("%.${n}e", $a);
my $sign = (s/^-//) ? '-' : '';
my $a_e;
my $result;
if (/^(\d)\.(\d+)e([-+]\d+)$/) {
my ($d, $dn, $e) = ($1, $2, $3);
$a_e = $e;
$d .= $dn;
$e++;
$d .= '0' while ($e > length($d));
while ($e < 1) {
$e++;
$d = '0' . $d;
}
if ($e == length($d)) {
$result = $sign . $d;
} else {
$result = $sign . substr($d, 0, $e) . '.' . substr($d, $e);
}
} else {
die "Can't parse $_";
}
$result;
}
#eof