/* ****************************************************************************** * * Copyright (C) 1998-2001, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * * File ustring.h * * Modification History: * * Date Name Description * 12/07/98 bertrand Creation. ****************************************************************************** */ #include "unicode/ustring.h" #include "unicode/utypes.h" #include "unicode/putil.h" #include "unicode/ucnv.h" #include "cstring.h" #include "cwchar.h" #include "cmemory.h" #include "umutex.h" #include "ustr_imp.h" /* forward declaractions of definitions for the shared default converter */ static UConverter *fgDefaultConverter = NULL; static UConverter* getDefaultConverter(void); static void releaseDefaultConverter(UConverter *converter); /* ANSI string.h - style functions ------------------------------------------ */ #define MAX_STRLEN 0x0FFFFFFF /* ---- String searching functions ---- */ UChar* u_strchr(const UChar *s, UChar c) { while (*s && *s != c) { ++s; } if (*s == c) return (UChar *)s; return NULL; } /* A Boyer-Moore algorithm would be better, but that would require a hashtable because UChar is so big. This algorithm doesn't use a lot of extra memory. */ U_CAPI UChar * U_EXPORT2 u_strstr(const UChar *s, const UChar *substring) { UChar *strItr, *subItr; if (*substring == 0) { return (UChar *)s; } do { strItr = (UChar *)s; subItr = (UChar *)substring; /* Only one string iterator needs checking for null terminator */ while ((*strItr != 0) && (*strItr == *subItr)) { strItr++; subItr++; } if (*subItr == 0) { /* Was the end of the substring reached? */ return (UChar *)s; } s++; } while (*strItr != 0); /* Was the end of the string reached? */ return NULL; /* No match */ } U_CAPI UChar * U_EXPORT2 u_strchr32(const UChar *s, UChar32 c) { if(!UTF_NEED_MULTIPLE_UCHAR(c)) { return u_strchr(s, (UChar)c); } else { UChar buffer[UTF_MAX_CHAR_LENGTH + 1]; UTextOffset i = 0; UTF_APPEND_CHAR_UNSAFE(buffer, i, c); buffer[i] = 0; return u_strstr(s, buffer); } } /* Search for a codepoint in a string that matches one of the matchSet codepoints. */ UChar * u_strpbrk(const UChar *string, const UChar *matchSet) { int32_t matchLen; UBool single = TRUE; for (matchLen = 0; matchSet[matchLen]; matchLen++) { if (!UTF_IS_SINGLE(matchSet[matchLen])) { single = FALSE; } } if (single) { const UChar *matchItr; const UChar *strItr; for (strItr = string; *strItr; strItr++) { for (matchItr = matchSet; *matchItr; matchItr++) { if (*matchItr == *strItr) { return (UChar *)strItr; } } } } else { int32_t matchItr; int32_t strItr; UChar32 stringCh, matchSetCh; int32_t stringLen = u_strlen(string); for (strItr = 0; strItr < stringLen; strItr++) { UTF_GET_CHAR_SAFE(string, 0, strItr, stringLen, stringCh, TRUE); for (matchItr = 0; matchItr < matchLen; matchItr++) { UTF_GET_CHAR_SAFE(matchSet, 0, matchItr, matchLen, matchSetCh, TRUE); if (stringCh == matchSetCh && (stringCh != UTF_ERROR_VALUE || string[strItr] == UTF_ERROR_VALUE || (matchSetCh == UTF_ERROR_VALUE && !UTF_IS_SINGLE(matchSet[matchItr])))) { return (UChar *)string + strItr; } } } } /* Didn't find it. */ return NULL; } /* Search for a codepoint in a string that matches one of the matchSet codepoints. */ int32_t u_strcspn(const UChar *string, const UChar *matchSet) { const UChar *foundStr = u_strpbrk(string, matchSet); if (foundStr == NULL) { return u_strlen(string); } return foundStr - string; } /* Search for a codepoint in a string that does not match one of the matchSet codepoints. */ int32_t u_strspn(const UChar *string, const UChar *matchSet) { UBool single = TRUE; UBool match = TRUE; int32_t matchLen; int32_t retValue; for (matchLen = 0; matchSet[matchLen]; matchLen++) { if (!UTF_IS_SINGLE(matchSet[matchLen])) { single = FALSE; } } if (single) { const UChar *matchItr; const UChar *strItr; for (strItr = string; *strItr && match; strItr++) { match = FALSE; for (matchItr = matchSet; *matchItr; matchItr++) { if (*matchItr == *strItr) { match = TRUE; break; } } } retValue = strItr - string - (match == FALSE); } else { int32_t matchItr; int32_t strItr; UChar32 stringCh, matchSetCh; int32_t stringLen = u_strlen(string); for (strItr = 0; strItr < stringLen && match; strItr++) { match = FALSE; UTF_GET_CHAR_SAFE(string, 0, strItr, stringLen, stringCh, TRUE); for (matchItr = 0; matchItr < matchLen; matchItr++) { UTF_GET_CHAR_SAFE(matchSet, 0, matchItr, matchLen, matchSetCh, TRUE); if (stringCh == matchSetCh && (stringCh != UTF_ERROR_VALUE || string[strItr] == UTF_ERROR_VALUE || (matchSetCh == UTF_ERROR_VALUE && !UTF_IS_SINGLE(matchSet[matchItr])))) { match = TRUE; break; } } } retValue = strItr - (match == FALSE); } /* Found a mismatch or didn't find it. */ return retValue; } /* ----- Text manipulation functions --- */ UChar* u_strtok_r(UChar *src, const UChar *delim, UChar **saveState) { UChar *tokSource; UChar *nextToken; uint32_t nonDelimIdx; if (src != NULL) { tokSource = src; } else if (saveState && *saveState) { tokSource = *saveState; } else { return NULL; } /* Skip initial delimiters */ nonDelimIdx = u_strspn(tokSource, delim); tokSource = &tokSource[nonDelimIdx]; nextToken = u_strpbrk(tokSource, delim); if (nextToken != NULL) { *(nextToken++) = 0; *saveState = nextToken; return tokSource; } else if (saveState && *saveState) { *saveState = NULL; return tokSource; } return NULL; } UChar* u_strcat(UChar *dst, const UChar *src) { UChar *anchor = dst; /* save a pointer to start of dst */ while(*dst != 0) { /* To end of first string */ ++dst; } while((*(dst++) = *(src++)) != 0) { /* copy string 2 over */ } return anchor; } UChar* u_strncat(UChar *dst, const UChar *src, int32_t n ) { if(n > 0) { UChar *anchor = dst; /* save a pointer to start of dst */ while(*dst != 0) { /* To end of first string */ ++dst; } while((*dst = *src) != 0) { /* copy string 2 over */ ++dst; if(--n == 0) { *dst = 0; break; } ++src; } return anchor; } else { return dst; } } /* ----- Text property functions --- */ int32_t u_strcmp(const UChar *s1, const UChar *s2) { int32_t rc; for(;;) { rc = (int32_t)*s1 - (int32_t)*s2; if(rc != 0 || *s1 == 0) { return rc; } ++s1; ++s2; } } /* String compare in code point order - u_strcmp() compares in code unit order. */ U_CAPI int32_t U_EXPORT2 u_strcmpCodePointOrder(const UChar *s1, const UChar *s2) { static const UChar utf16Fixup[32]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x2000, 0xf800, 0xf800, 0xf800, 0xf800 }; UChar c1, c2; int32_t diff; /* rotate each code unit's value so that surrogates get the highest values */ for(;;) { c1=*s1; c1+=utf16Fixup[c1>>11]; /* additional "fix-up" line */ c2=*s2; c2+=utf16Fixup[c2>>11]; /* additional "fix-up" line */ /* now c1 and c2 are in UTF-32-compatible order */ diff=(int32_t)c1-(int32_t)c2; if(diff!=0 || c1==0 /* redundant: || c2==0 */) { return diff; } ++s1; ++s2; } } int32_t u_strncmp(const UChar *s1, const UChar *s2, int32_t n) { if(n > 0) { int32_t rc; for(;;) { rc = (int32_t)*s1 - (int32_t)*s2; if(rc != 0 || *s1 == 0 || --n == 0) { return rc; } ++s1; ++s2; } } else { return 0; } } UChar* u_strcpy(UChar *dst, const UChar *src) { UChar *anchor = dst; /* save a pointer to start of dst */ while((*(dst++) = *(src++)) != 0) { /* copy string 2 over */ } return anchor; } UChar* u_strncpy(UChar *dst, const UChar *src, int32_t n) { UChar *anchor = dst; /* save a pointer to start of dst */ while((*(dst++) = *(src++)) != 0 && (--n > 0)) { /* copy string 2 over */ } return anchor; } int32_t u_strlen(const UChar *s) { #if U_SIZEOF_WCHAR_T == U_SIZEOF_UCHAR return uprv_wcslen(s); #else const UChar *t = s; while(*t != 0) { ++t; } return t - s; #endif } UChar * u_memcpy(UChar *dest, const UChar *src, int32_t count) { return (UChar *)uprv_memcpy(dest, src, count*U_SIZEOF_UCHAR); } UChar * u_memmove(UChar *dest, const UChar *src, int32_t count) { return (UChar *)uprv_memmove(dest, src, count*U_SIZEOF_UCHAR); } UChar * u_memset(UChar *dest, UChar c, int32_t count) { UChar *ptr = dest; UChar *limit = dest + count; while (ptr < limit) { *(ptr++) = c; } return dest; } int32_t u_memcmp(UChar *buf1, UChar *buf2, int32_t count) { UChar *limit = buf1 + count; int32_t result; while (buf1 < limit) { result = (int32_t)(uint16_t)*buf1 - (int32_t)(uint16_t)*buf2; if (result != 0) { return result; } buf1++; buf2++; } return 0; } UChar * u_memchr(UChar *src, UChar ch, int32_t count) { UChar *ptr = src; UChar *limit = src + count; while (ptr < limit) { if (*ptr == ch) { return ptr; } ptr++; } return NULL; } UChar * u_memchr32(UChar *src, UChar32 ch, int32_t count) { int32_t strItr = 0; int32_t lastIndex; UChar32 stringCh; while (strItr < count) { lastIndex = strItr; UTF_NEXT_CHAR_SAFE(src, strItr, count, stringCh, TRUE); if (stringCh == ch) { return src + (strItr - (strItr - lastIndex)); } } return NULL; } /* string casing ------------------------------------------------------------ */ /* * Implement argument checking and buffer handling * for string case mapping as a common function. */ enum { TO_LOWER, TO_UPPER, FOLD_CASE }; static int32_t u_strCaseMap(UChar *dest, int32_t destCapacity, const UChar *src, int32_t srcLength, const char *locale, uint32_t options, int32_t toWhichCase, UErrorCode *pErrorCode) { UChar buffer[300]; UChar *temp; int32_t destLength; /* check argument values */ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if( destCapacity<0 || (dest==NULL && destCapacity>0) || src==NULL || srcLength<-1 ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* get the string length */ if(srcLength==-1) { srcLength=u_strlen(src); } /* check for overlapping source and destination */ if( (src>=dest && src<(dest+destCapacity)) || (dest>=src && dest<(src+srcLength)) ) { /* overlap: provide a temporary destination buffer and later copy the result */ if(destCapacity<=(sizeof(buffer)/U_SIZEOF_UCHAR)) { /* the stack buffer is large enough */ temp=buffer; } else { /* allocate a buffer */ temp=(UChar *)uprv_malloc(destCapacity*U_SIZEOF_UCHAR); if(temp==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return 0; } } } else { temp=dest; } if(toWhichCase==TO_LOWER) { destLength=u_internalStrToLower(temp, destCapacity, src, srcLength, locale, NULL, NULL, pErrorCode); } else if(toWhichCase==TO_UPPER) { destLength=u_internalStrToUpper(temp, destCapacity, src, srcLength, locale, NULL, NULL, pErrorCode); } else { destLength=u_internalStrFoldCase(temp, destCapacity, src, srcLength, options, NULL, NULL, pErrorCode); } if(temp!=dest) { /* copy the result string to the destination buffer */ uprv_memcpy(dest, temp, destLength*U_SIZEOF_UCHAR); if(temp!=buffer) { uprv_free(temp); } } /* zero-terminate if possible */ if(destLength=len1) { c=*s1++; if(c!=0) { if(UTF_IS_FIRST_SURROGATE(c) && UTF_IS_SECOND_SURROGATE(uc=*s1)) { c=UTF16_GET_PAIR_VALUE(c, uc); ++s1; } len1=u_internalFoldCase(c, t1, options); pos1=0; } else if(pos2>=len2 && *s2==0) { return 0; } else { return -1; } } if(pos2>=len2) { c=*s2++; if(c!=0) { if(UTF_IS_FIRST_SURROGATE(c) && UTF_IS_SECOND_SURROGATE(uc=*s2)) { c=UTF16_GET_PAIR_VALUE(c, uc); ++s2; } len2=u_internalFoldCase(c, t2, options); pos2=0; } else { return 1; } } /* compare the head code units from both folded strings */ result=(int32_t)t1[pos1++]-(int32_t)t2[pos2++]; if(result!=0) { return result; } } } U_CFUNC int32_t u_internalStrcasecmp(const UChar *s1, int32_t length1, const UChar *s2, int32_t length2, uint32_t options) { UChar t1[32], t2[32]; /* temporary buffers holding case-folded parts of s1 and s2 */ UChar32 c; UChar uc; int32_t pos1, pos2, len1, len2, result; if(!uprv_haveProperties()) { /* hardcode ASCII strcasecmp() */ UChar c1, c2; for(;;) { if(length1<=0) { if(length2<=0) { return 0; } else { return -1; } } else if(length2<=0) { return 1; } c1=*s1++; if((uint16_t)(c1-0x41)<26) { c1+=0x20; } c2=*s2++; if((uint16_t)(c2-0x41)<26) { c2+=0x20; } result=(int32_t)c1-(int32_t)c2; if(result!=0) { return result; } --length1; --length2; } } pos1=pos2=len1=len2=0; for(;;) { /* make sure that the temporary buffers are not empty */ if(pos1>=len1) { if(length1>0) { c=*s1++; if(UTF_IS_FIRST_SURROGATE(c) && UTF_IS_SECOND_SURROGATE(uc=*s1)) { c=UTF16_GET_PAIR_VALUE(c, uc); ++s1; length1-=2; } else { --length1; } len1=u_internalFoldCase(c, t1, options); pos1=0; } else if(pos2>=len2 && length2<=0) { return 0; } else { return -1; } } if(pos2>=len2) { if(length2>0) { c=*s2++; if(UTF_IS_FIRST_SURROGATE(c) && UTF_IS_SECOND_SURROGATE(uc=*s2)) { c=UTF16_GET_PAIR_VALUE(c, uc); ++s2; length2-=2; } else { --length2; } len2=u_internalFoldCase(c, t2, options); pos2=0; } else { return 1; } } /* compare the head code units from both folded strings */ result=(int32_t)t1[pos1++]-(int32_t)t2[pos2++]; if(result!=0) { return result; } } } U_CAPI int32_t U_EXPORT2 u_memcasecmp(const UChar *s1, const UChar *s2, int32_t length, uint32_t options) { return u_internalStrcasecmp(s1, length, s2, length, options); } U_CAPI int32_t U_EXPORT2 u_strncasecmp(const UChar *s1, const UChar *s2, int32_t n, uint32_t options) { /* * This is a simple, sub-optimal implementation: * Determine the actual lengths of the strings and call u_internalStrcasecmp(). * This saves us from having an additional variant of the above strcasecmp(). */ const UChar *s; int32_t length1, length2; for(s=s1, length1=0; length1= 0x0030 && c <= 0x0037) { return (int8_t)(c - 0x0030); } return -1; } /* Convert one hex digit to a numeric value 0..F, or -1 on failure */ static int8_t _digit16(UChar c) { if (c >= 0x0030 && c <= 0x0039) { return (int8_t)(c - 0x0030); } if (c >= 0x0041 && c <= 0x0046) { return (int8_t)(c - (0x0041 - 10)); } if (c >= 0x0061 && c <= 0x0066) { return (int8_t)(c - (0x0061 - 10)); } return -1; } /* Parse a single escape sequence. Although this method deals in * UChars, it does not use C++ or UnicodeString. This allows it to * be used from C contexts. */ U_CAPI UChar32 U_EXPORT2 u_unescapeAt(UNESCAPE_CHAR_AT charAt, int32_t *offset, int32_t length, void *context) { int32_t start = *offset; UChar c; UChar32 result = 0; int8_t n = 0; int8_t minDig = 0; int8_t maxDig = 0; int8_t bitsPerDigit = 4; int8_t dig; int32_t i; /* Check that offset is in range */ if (*offset < 0 || *offset >= length) { goto err; } /* Fetch first UChar after '\\' */ c = charAt((*offset)++, context); /* Convert hexadecimal and octal escapes */ switch (c) { case 0x0075 /*'u'*/: minDig = maxDig = 4; break; case 0x0055 /*'U'*/: minDig = maxDig = 8; break; case 0x0078 /*'x'*/: minDig = 1; maxDig = 2; break; default: dig = _digit8(c); if (dig >= 0) { minDig = 1; maxDig = 3; n = 1; /* Already have first octal digit */ bitsPerDigit = 3; result = dig; } break; } if (minDig != 0) { while (*offset < length && n < maxDig) { c = charAt(*offset, context); dig = (int8_t)((bitsPerDigit == 3) ? _digit8(c) : _digit16(c)); if (dig < 0) { break; } result = (result << bitsPerDigit) | dig; ++(*offset); ++n; } if (n < minDig) { goto err; } return result; } /* Convert C-style escapes in table */ for (i=0; i destCapacity) { srcLen = destCapacity; } u_charsToUChars(src, dest, srcLen); } /* Do an invariant conversion of char* -> UChar*, with escape parsing */ U_CAPI int32_t U_EXPORT2 u_unescape(const char *src, UChar *dest, int32_t destCapacity) { const char *segment = src; int32_t i = 0; char c; while ((c=*src) != 0) { /* '\\' intentionally written as compiler-specific * character constant to correspond to compiler-specific * char* constants. */ if (c == '\\') { int32_t lenParsed = 0; UChar32 c32; if (src != segment) { if (dest != NULL) { _appendUChars(dest + i, destCapacity - i, segment, src - segment); } i += src - segment; } ++src; /* advance past '\\' */ c32 = u_unescapeAt(_charPtr_charAt, &lenParsed, uprv_strlen(src), (void*)src); if (lenParsed == 0) { goto err; } src += lenParsed; /* advance past escape seq. */ if (dest != NULL && UTF_CHAR_LENGTH(c32) <= (destCapacity - i)) { UTF_APPEND_CHAR_UNSAFE(dest, i, c32); } else { i += UTF_CHAR_LENGTH(c32); } segment = src; } else { ++src; } } if (src != segment) { if (dest != NULL) { _appendUChars(dest + i, destCapacity - i, segment, src - segment); } i += src - segment; } if (dest != NULL && i < destCapacity) { dest[i] = 0; } return i + 1; /* add 1 for zero term */ err: if (dest != NULL && destCapacity > 0) { *dest = 0; } return 0; }