/** ******************************************************************************* * Copyright (C) 2006, International Business Machines Corporation and others. * * All Rights Reserved. * ******************************************************************************* */ #include "unicode/utypes.h" #if !UCONFIG_NO_BREAK_ITERATION #include "triedict.h" #include "unicode/chariter.h" #include "unicode/uchriter.h" #include "unicode/strenum.h" #include "unicode/uenum.h" #include "unicode/udata.h" #include "cmemory.h" #include "udataswp.h" #include "uvector.h" #include "uvectr32.h" #include "uarrsort.h" //#define DEBUG_TRIE_DICT 1 #ifdef DEBUG_TRIE_DICT #include #include #include #endif U_NAMESPACE_BEGIN /******************************************************************* * TrieWordDictionary */ TrieWordDictionary::TrieWordDictionary() { } TrieWordDictionary::~TrieWordDictionary() { } /******************************************************************* * MutableTrieDictionary */ // Node structure for the ternary, uncompressed trie struct TernaryNode : public UMemory { UChar ch; // UTF-16 code unit uint16_t flags; // Flag word TernaryNode *low; // Less-than link TernaryNode *equal; // Equal link TernaryNode *high; // Greater-than link TernaryNode(UChar uc); ~TernaryNode(); }; enum MutableTrieNodeFlags { kEndsWord = 0x0001 // This node marks the end of a valid word }; inline TernaryNode::TernaryNode(UChar uc) { ch = uc; flags = 0; low = NULL; equal = NULL; high = NULL; } // Not inline since it's recursive TernaryNode::~TernaryNode() { delete low; delete equal; delete high; } MutableTrieDictionary::MutableTrieDictionary( UChar median, UErrorCode &status ) { // Start the trie off with something. Having the root node already present // cuts a special case out of the search/insertion functions. // Making it a median character cuts the worse case for searches from // 4x a balanced trie to 2x a balanced trie. It's best to choose something // that starts a word that is midway in the list. fTrie = new TernaryNode(median); if (fTrie == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } fIter = utext_openUChars(NULL, NULL, 0, &status); if (U_SUCCESS(status) && fIter == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } } MutableTrieDictionary::MutableTrieDictionary( UErrorCode &status ) { fTrie = NULL; fIter = utext_openUChars(NULL, NULL, 0, &status); if (U_SUCCESS(status) && fIter == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } } MutableTrieDictionary::~MutableTrieDictionary() { delete fTrie; utext_close(fIter); } int32_t MutableTrieDictionary::search( UText *text, int32_t maxLength, int32_t *lengths, int &count, int limit, TernaryNode *&parent, UBool &pMatched ) const { // TODO: current implementation works in UTF-16 space const TernaryNode *up = NULL; const TernaryNode *p = fTrie; int mycount = 0; pMatched = TRUE; int i; UChar uc = utext_current32(text); for (i = 0; i < maxLength && p != NULL; ++i) { while (p != NULL) { if (uc < p->ch) { up = p; p = p->low; } else if (uc == p->ch) { break; } else { up = p; p = p->high; } } if (p == NULL) { pMatched = FALSE; break; } // Must be equal to get here if (limit > 0 && (p->flags & kEndsWord)) { lengths[mycount++] = i+1; --limit; } up = p; p = p->equal; uc = utext_next32(text); uc = utext_current32(text); } // Note that there is no way to reach here with up == 0 unless // maxLength is 0 coming in. parent = (TernaryNode *)up; count = mycount; return i; } void MutableTrieDictionary::addWord( const UChar *word, int32_t length, UErrorCode &status ) { #if 0 if (length <= 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } #endif TernaryNode *parent; UBool pMatched; int count; fIter = utext_openUChars(fIter, word, length, &status); int matched; matched = search(fIter, length, NULL, count, 0, parent, pMatched); while (matched++ < length) { UChar32 uc = utext_next32(fIter); // TODO: supplemetary support? U_ASSERT(uc != U_SENTINEL); TernaryNode *newNode = new TernaryNode(uc); if (newNode == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } if (pMatched) { parent->equal = newNode; } else { pMatched = TRUE; if (uc < parent->ch) { parent->low = newNode; } else { parent->high = newNode; } } parent = newNode; } parent->flags |= kEndsWord; } #if 0 void MutableTrieDictionary::addWords( UEnumeration *words, UErrorCode &status ) { int32_t length; const UChar *word; while ((word = uenum_unext(words, &length, &status)) && U_SUCCESS(status)) { addWord(word, length, status); } } #endif int32_t MutableTrieDictionary::matches( UText *text, int32_t maxLength, int32_t *lengths, int &count, int limit ) const { TernaryNode *parent; UBool pMatched; return search(text, maxLength, lengths, count, limit, parent, pMatched); } // Implementation of iteration for MutableTrieDictionary class MutableTrieEnumeration : public StringEnumeration { private: UStack fNodeStack; // Stack of nodes to process UVector32 fBranchStack; // Stack of which branch we are working on TernaryNode *fRoot; // Root node static const char fgClassID; enum StackBranch { kLessThan, kEqual, kGreaterThan, kDone }; public: static UClassID U_EXPORT2 getStaticClassID(void) { return (UClassID)&fgClassID; } virtual UClassID getDynamicClassID(void) const { return getStaticClassID(); } public: MutableTrieEnumeration(TernaryNode *root, UErrorCode &status) : fNodeStack(status), fBranchStack(status) { fRoot = root; fNodeStack.push(root, status); fBranchStack.push(kLessThan, status); unistr.remove(); } virtual ~MutableTrieEnumeration() { } virtual StringEnumeration *clone() const { UErrorCode status = U_ZERO_ERROR; return new MutableTrieEnumeration(fRoot, status); } virtual const UnicodeString *snext(UErrorCode &status) { if (fNodeStack.empty() || U_FAILURE(status)) { return NULL; } TernaryNode *node = (TernaryNode *) fNodeStack.peek(); StackBranch where = (StackBranch) fBranchStack.peeki(); while (!fNodeStack.empty() && U_SUCCESS(status)) { UBool emit; UBool equal; switch (where) { case kLessThan: if (node->low != NULL) { fBranchStack.setElementAt(kEqual, fBranchStack.size()-1); node = (TernaryNode *) fNodeStack.push(node->low, status); where = (StackBranch) fBranchStack.push(kLessThan, status); break; } case kEqual: emit = (node->flags & kEndsWord) != 0; equal = (node->equal != NULL); // If this node should be part of the next emitted string, append // the UChar to the string, and make sure we pop it when we come // back to this node. The character should only be in the string // for as long as we're traversing the equal subtree of this node if (equal || emit) { unistr.append(node->ch); fBranchStack.setElementAt(kGreaterThan, fBranchStack.size()-1); } if (equal) { node = (TernaryNode *) fNodeStack.push(node->equal, status); where = (StackBranch) fBranchStack.push(kLessThan, status); } if (emit) { return &unistr; } if (equal) { break; } case kGreaterThan: // If this node's character is in the string, remove it. if (node->equal != NULL || (node->flags & kEndsWord)) { unistr.truncate(unistr.length()-1); } if (node->high != NULL) { fBranchStack.setElementAt(kDone, fBranchStack.size()-1); node = (TernaryNode *) fNodeStack.push(node->high, status); where = (StackBranch) fBranchStack.push(kLessThan, status); break; } case kDone: fNodeStack.pop(); fBranchStack.popi(); node = (TernaryNode *) fNodeStack.peek(); where = (StackBranch) fBranchStack.peeki(); break; default: return NULL; } } return NULL; } // Very expensive, but this should never be used. virtual int32_t count(UErrorCode &status) const { MutableTrieEnumeration counter(fRoot, status); int32_t result = 0; while (counter.snext(status) != NULL && U_SUCCESS(status)) { ++result; } return result; } virtual void reset(UErrorCode &status) { fNodeStack.removeAllElements(); fBranchStack.removeAllElements(); fNodeStack.push(fRoot, status); fBranchStack.push(kLessThan, status); unistr.remove(); } }; const char MutableTrieEnumeration::fgClassID = '\0'; StringEnumeration * MutableTrieDictionary::openWords( UErrorCode &status ) const { if (U_FAILURE(status)) { return NULL; } return new MutableTrieEnumeration(fTrie, status); } /******************************************************************* * CompactTrieDictionary */ struct CompactTrieHeader { uint32_t size; // Size of the data in bytes uint32_t magic; // Magic number (including version) uint16_t nodeCount; // Number of entries in offsets[] uint16_t root; // Node number of the root node uint32_t offsets[1]; // Offsets to nodes from start of data }; // Note that to avoid platform-specific alignment issues, all members of the node // structures should be the same size, or should contain explicit padding to // natural alignment boundaries. // We can't use a bitfield for the flags+count field, because the layout of those // is not portable. 12 bits of count allows for up to 4096 entries in a node. struct CompactTrieNode { uint16_t flagscount; // Count of sub-entries, plus flags }; enum CompactTrieNodeFlags { kVerticalNode = 0x1000, // This is a vertical node kParentEndsWord = 0x2000, // The node whose equal link points to this ends a word kReservedFlag1 = 0x4000, kReservedFlag2 = 0x8000, kCountMask = 0x0FFF, // The count portion of flagscount kFlagMask = 0xF000 // The flags portion of flagscount }; // The two node types are distinguished by the kVerticalNode flag. struct CompactTrieHorizontalEntry { uint16_t ch; // UChar uint16_t equal; // Equal link node index }; // We don't use inheritance here because C++ does not guarantee that the // base class comes first in memory!! struct CompactTrieHorizontalNode { uint16_t flagscount; // Count of sub-entries, plus flags CompactTrieHorizontalEntry entries[1]; }; struct CompactTrieVerticalNode { uint16_t flagscount; // Count of sub-entries, plus flags uint16_t equal; // Equal link node index uint16_t chars[1]; // Code units }; // {'Dic', 1}, version 1 #define COMPACT_TRIE_MAGIC_1 0x44696301 CompactTrieDictionary::CompactTrieDictionary(UDataMemory *dataObj, UErrorCode &status ) : fUData(dataObj) { fData = (const CompactTrieHeader *) udata_getMemory(dataObj); fOwnData = FALSE; if (fData->magic != COMPACT_TRIE_MAGIC_1) { status = U_ILLEGAL_ARGUMENT_ERROR; fData = NULL; } } CompactTrieDictionary::CompactTrieDictionary( const void *data, UErrorCode &status ) : fUData(NULL) { fData = (const CompactTrieHeader *) data; fOwnData = FALSE; if (fData->magic != COMPACT_TRIE_MAGIC_1) { status = U_ILLEGAL_ARGUMENT_ERROR; fData = NULL; } } CompactTrieDictionary::CompactTrieDictionary( const MutableTrieDictionary &dict, UErrorCode &status ) : fUData(NULL) { fData = compactMutableTrieDictionary(dict, status); fOwnData = !U_FAILURE(status); } CompactTrieDictionary::~CompactTrieDictionary() { if (fOwnData) { uprv_free((void *)fData); } if (fUData) { udata_close(fUData); } } uint32_t CompactTrieDictionary::dataSize() const { return fData->size; } const void * CompactTrieDictionary::data() const { return fData; } // This function finds the address of a node for us, given its node ID static inline const CompactTrieNode * getCompactNode(const CompactTrieHeader *header, uint16_t node) { return (const CompactTrieNode *)((const uint8_t *)header + header->offsets[node]); } int32_t CompactTrieDictionary::matches( UText *text, int32_t maxLength, int32_t *lengths, int &count, int limit ) const { // TODO: current implementation works in UTF-16 space const CompactTrieNode *node = getCompactNode(fData, fData->root); int mycount = 0; UChar uc = utext_current32(text); int i = 0; while (node != NULL) { // Check if the node we just exited ends a word if (limit > 0 && (node->flagscount & kParentEndsWord)) { lengths[mycount++] = i; --limit; } // Check that we haven't exceeded the maximum number of input characters. // We have to do that here rather than in the while condition so that // we can check for ending a word, above. if (i >= maxLength) { break; } int nodeCount = (node->flagscount & kCountMask); if (nodeCount == 0) { // Special terminal node; return now break; } if (node->flagscount & kVerticalNode) { // Vertical node; check all the characters in it const CompactTrieVerticalNode *vnode = (const CompactTrieVerticalNode *)node; for (int j = 0; j < nodeCount && i < maxLength; ++j) { if (uc != vnode->chars[j]) { // We hit a non-equal character; return goto exit; } utext_next32(text); uc = utext_current32(text); ++i; } // To get here we must have come through the whole list successfully; // go on to the next node. Note that a word cannot end in the middle // of a vertical node. node = getCompactNode(fData, vnode->equal); } else { // Horizontal node; do binary search const CompactTrieHorizontalNode *hnode = (const CompactTrieHorizontalNode *)node; int low = 0; int high = nodeCount-1; int middle; node = NULL; // If we don't find a match, we'll fall out of the loop while (high >= low) { middle = (high+low)/2; if (uc == hnode->entries[middle].ch) { // We hit a match; get the next node and next character node = getCompactNode(fData, hnode->entries[middle].equal); utext_next32(text); uc = utext_current32(text); ++i; break; } else if (uc < hnode->entries[middle].ch) { high = middle-1; } else { low = middle+1; } } } } exit: count = mycount; return i; } // Implementation of iteration for CompactTrieDictionary class CompactTrieEnumeration : public StringEnumeration { private: UVector32 fNodeStack; // Stack of nodes to process UVector32 fIndexStack; // Stack of where in node we are const CompactTrieHeader *fHeader; // Trie data static const char fgClassID; public: static UClassID U_EXPORT2 getStaticClassID(void) { return (UClassID)&fgClassID; } virtual UClassID getDynamicClassID(void) const { return getStaticClassID(); } public: CompactTrieEnumeration(const CompactTrieHeader *header, UErrorCode &status) : fNodeStack(status), fIndexStack(status) { fHeader = header; fNodeStack.push(header->root, status); fIndexStack.push(0, status); unistr.remove(); } virtual ~CompactTrieEnumeration() { } virtual StringEnumeration *clone() const { UErrorCode status = U_ZERO_ERROR; return new CompactTrieEnumeration(fHeader, status); } virtual const UnicodeString * snext(UErrorCode &status); // Very expensive, but this should never be used. virtual int32_t count(UErrorCode &status) const { CompactTrieEnumeration counter(fHeader, status); int32_t result = 0; while (counter.snext(status) != NULL && U_SUCCESS(status)) { ++result; } return result; } virtual void reset(UErrorCode &status) { fNodeStack.removeAllElements(); fIndexStack.removeAllElements(); fNodeStack.push(fHeader->root, status); fIndexStack.push(0, status); unistr.remove(); } }; const char CompactTrieEnumeration::fgClassID = '\0'; const UnicodeString * CompactTrieEnumeration::snext(UErrorCode &status) { if (fNodeStack.empty() || U_FAILURE(status)) { return NULL; } const CompactTrieNode *node = getCompactNode(fHeader, fNodeStack.peeki()); int where = fIndexStack.peeki(); while (!fNodeStack.empty() && U_SUCCESS(status)) { int nodeCount = (node->flagscount & kCountMask); UBool goingDown = FALSE; if (nodeCount == 0) { // Terminal node; go up immediately fNodeStack.popi(); fIndexStack.popi(); node = getCompactNode(fHeader, fNodeStack.peeki()); where = fIndexStack.peeki(); } else if (node->flagscount & kVerticalNode) { // Vertical node const CompactTrieVerticalNode *vnode = (const CompactTrieVerticalNode *)node; if (where == 0) { // Going down unistr.append((const UChar *)vnode->chars, (int32_t) nodeCount); fIndexStack.setElementAt(1, fIndexStack.size()-1); node = getCompactNode(fHeader, fNodeStack.push(vnode->equal, status)); where = fIndexStack.push(0, status); goingDown = TRUE; } else { // Going up unistr.truncate(unistr.length()-nodeCount); fNodeStack.popi(); fIndexStack.popi(); node = getCompactNode(fHeader, fNodeStack.peeki()); where = fIndexStack.peeki(); } } else { // Horizontal node const CompactTrieHorizontalNode *hnode = (const CompactTrieHorizontalNode *)node; if (where > 0) { // Pop previous char unistr.truncate(unistr.length()-1); } if (where < nodeCount) { // Push on next node unistr.append((UChar)hnode->entries[where].ch); fIndexStack.setElementAt(where+1, fIndexStack.size()-1); node = getCompactNode(fHeader, fNodeStack.push(hnode->entries[where].equal, status)); where = fIndexStack.push(0, status); goingDown = TRUE; } else { // Going up fNodeStack.popi(); fIndexStack.popi(); node = getCompactNode(fHeader, fNodeStack.peeki()); where = fIndexStack.peeki(); } } // Check if the parent of the node we've just gone down to ends a // word. If so, return it. if (goingDown && (node->flagscount & kParentEndsWord)) { return &unistr; } } return NULL; } StringEnumeration * CompactTrieDictionary::openWords( UErrorCode &status ) const { if (U_FAILURE(status)) { return NULL; } return new CompactTrieEnumeration(fData, status); } // // Below here is all code related to converting a ternary trie to a compact trie // and back again // // Helper classes to construct the compact trie class BuildCompactTrieNode: public UMemory { public: UBool fParentEndsWord; UBool fVertical; UBool fHasDuplicate; int32_t fNodeID; UnicodeString fChars; public: BuildCompactTrieNode(UBool parentEndsWord, UBool vertical, UStack &nodes, UErrorCode &status) { fParentEndsWord = parentEndsWord; fHasDuplicate = FALSE; fVertical = vertical; fNodeID = nodes.size(); nodes.push(this, status); } virtual ~BuildCompactTrieNode() { } virtual uint32_t size() { return sizeof(uint16_t); } virtual void write(uint8_t *bytes, uint32_t &offset, const UVector32 &/*translate*/) { // Write flag/count *((uint16_t *)(bytes+offset)) = (fChars.length() & kCountMask) | (fVertical ? kVerticalNode : 0) | (fParentEndsWord ? kParentEndsWord : 0 ); offset += sizeof(uint16_t); } }; class BuildCompactTrieHorizontalNode: public BuildCompactTrieNode { public: UStack fLinks; public: BuildCompactTrieHorizontalNode(UBool parentEndsWord, UStack &nodes, UErrorCode &status) : BuildCompactTrieNode(parentEndsWord, FALSE, nodes, status), fLinks(status) { } virtual ~BuildCompactTrieHorizontalNode() { } virtual uint32_t size() { return offsetof(CompactTrieHorizontalNode,entries) + (fChars.length()*sizeof(CompactTrieHorizontalEntry)); } virtual void write(uint8_t *bytes, uint32_t &offset, const UVector32 &translate) { BuildCompactTrieNode::write(bytes, offset, translate); int32_t count = fChars.length(); for (int32_t i = 0; i < count; ++i) { CompactTrieHorizontalEntry *entry = (CompactTrieHorizontalEntry *)(bytes+offset); entry->ch = fChars[i]; entry->equal = translate.elementAti(((BuildCompactTrieNode *)fLinks[i])->fNodeID); #ifdef DEBUG_TRIE_DICT if (entry->equal == 0) { fprintf(stderr, "ERROR: horizontal link %d, logical node %d maps to physical node zero\n", i, ((BuildCompactTrieNode *)fLinks[i])->fNodeID); } #endif offset += sizeof(CompactTrieHorizontalEntry); } } void addNode(UChar ch, BuildCompactTrieNode *link, UErrorCode &status) { fChars.append(ch); fLinks.push(link, status); } }; class BuildCompactTrieVerticalNode: public BuildCompactTrieNode { public: BuildCompactTrieNode *fEqual; public: BuildCompactTrieVerticalNode(UBool parentEndsWord, UStack &nodes, UErrorCode &status) : BuildCompactTrieNode(parentEndsWord, TRUE, nodes, status) { fEqual = NULL; } virtual ~BuildCompactTrieVerticalNode() { } virtual uint32_t size() { return offsetof(CompactTrieVerticalNode,chars) + (fChars.length()*sizeof(uint16_t)); } virtual void write(uint8_t *bytes, uint32_t &offset, const UVector32 &translate) { CompactTrieVerticalNode *node = (CompactTrieVerticalNode *)(bytes+offset); BuildCompactTrieNode::write(bytes, offset, translate); node->equal = translate.elementAti(fEqual->fNodeID); offset += sizeof(node->equal); #ifdef DEBUG_TRIE_DICT if (node->equal == 0) { fprintf(stderr, "ERROR: vertical link, logical node %d maps to physical node zero\n", fEqual->fNodeID); } #endif fChars.extract(0, fChars.length(), (UChar *)node->chars); offset += sizeof(uint16_t)*fChars.length(); } void addChar(UChar ch) { fChars.append(ch); } void setLink(BuildCompactTrieNode *node) { fEqual = node; } }; // Forward declaration static void walkHorizontal(const TernaryNode *node, BuildCompactTrieHorizontalNode *building, UStack &nodes, UErrorCode &status); // Convert one node. Uses recursion. static BuildCompactTrieNode * compactOneNode(const TernaryNode *node, UBool parentEndsWord, UStack &nodes, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } BuildCompactTrieNode *result = NULL; UBool horizontal = (node->low != NULL || node->high != NULL); if (horizontal) { BuildCompactTrieHorizontalNode *hResult = new BuildCompactTrieHorizontalNode(parentEndsWord, nodes, status); if (hResult == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_SUCCESS(status)) { walkHorizontal(node, hResult, nodes, status); result = hResult; } } else { BuildCompactTrieVerticalNode *vResult = new BuildCompactTrieVerticalNode(parentEndsWord, nodes, status); if (vResult == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_SUCCESS(status)) { UBool endsWord = FALSE; // Take up nodes until we end a word, or hit a node with < or > links do { vResult->addChar(node->ch); endsWord = (node->flags & kEndsWord) != 0; node = node->equal; } while(node != NULL && !endsWord && node->low == NULL && node->high == NULL); if (node == NULL) { if (!endsWord) { status = U_ILLEGAL_ARGUMENT_ERROR; // Corrupt input trie } else { vResult->setLink((BuildCompactTrieNode *)nodes[1]); } } else { vResult->setLink(compactOneNode(node, endsWord, nodes, status)); } result = vResult; } } return result; } // Walk the set of peers at the same level, to build a horizontal node. // Uses recursion. static void walkHorizontal(const TernaryNode *node, BuildCompactTrieHorizontalNode *building, UStack &nodes, UErrorCode &status) { while (U_SUCCESS(status) && node != NULL) { if (node->low != NULL) { walkHorizontal(node->low, building, nodes, status); } BuildCompactTrieNode *link = NULL; if (node->equal != NULL) { link = compactOneNode(node->equal, (node->flags & kEndsWord) != 0, nodes, status); } else if (node->flags & kEndsWord) { link = (BuildCompactTrieNode *)nodes[1]; } if (U_SUCCESS(status) && link != NULL) { building->addNode(node->ch, link, status); } // Tail recurse manually instead of leaving it to the compiler. //if (node->high != NULL) { // walkHorizontal(node->high, building, nodes, status); //} node = node->high; } } U_NAMESPACE_END U_NAMESPACE_USE U_CDECL_BEGIN static int32_t U_CALLCONV _sortBuildNodes(const void * /*context*/, const void *voidl, const void *voidr) { BuildCompactTrieNode *left = *(BuildCompactTrieNode **)voidl; BuildCompactTrieNode *right = *(BuildCompactTrieNode **)voidr; // Check for comparing a node to itself, to avoid spurious duplicates if (left == right) { return 0; } // Most significant is type of node. Can never coalesce. if (left->fVertical != right->fVertical) { return left->fVertical - right->fVertical; } // Next, the "parent ends word" flag. If that differs, we cannot coalesce. if (left->fParentEndsWord != right->fParentEndsWord) { return left->fParentEndsWord - right->fParentEndsWord; } // Next, the string. If that differs, we can never coalesce. int32_t result = left->fChars.compare(right->fChars); if (result != 0) { return result; } // We know they're both the same node type, so branch for the two cases. if (left->fVertical) { result = ((BuildCompactTrieVerticalNode *)left)->fEqual->fNodeID - ((BuildCompactTrieVerticalNode *)right)->fEqual->fNodeID; } else { // We need to compare the links vectors. They should be the // same size because the strings were equal. // We compare the node IDs instead of the pointers, to handle // coalesced nodes. BuildCompactTrieHorizontalNode *hleft, *hright; hleft = (BuildCompactTrieHorizontalNode *)left; hright = (BuildCompactTrieHorizontalNode *)right; int32_t count = hleft->fLinks.size(); for (int32_t i = 0; i < count && result == 0; ++i) { result = ((BuildCompactTrieNode *)(hleft->fLinks[i]))->fNodeID - ((BuildCompactTrieNode *)(hright->fLinks[i]))->fNodeID; } } // If they are equal to each other, mark them (speeds coalescing) if (result == 0) { left->fHasDuplicate = TRUE; right->fHasDuplicate = TRUE; } return result; } U_CDECL_END U_NAMESPACE_BEGIN static void coalesceDuplicates(UStack &nodes, UErrorCode &status) { // We sort the array of nodes to place duplicates next to each other if (U_FAILURE(status)) { return; } int32_t size = nodes.size(); void **array = (void **)uprv_malloc(sizeof(void *)*size); if (array == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } (void) nodes.toArray(array); // Now repeatedly identify duplicates until there are no more int32_t dupes = 0; long passCount = 0; #ifdef DEBUG_TRIE_DICT long totalDupes = 0; #endif do { BuildCompactTrieNode *node; BuildCompactTrieNode *first = NULL; BuildCompactTrieNode **p; BuildCompactTrieNode **pFirst = NULL; int32_t counter = size - 2; // Sort the array, skipping nodes 0 and 1. Use quicksort for the first // pass for speed. For the second and subsequent passes, we use stable // (insertion) sort for two reasons: // 1. The array is already mostly ordered, so we get better performance. // 2. The way we find one and only one instance of a set of duplicates is to // check that the node ID equals the array index. If we used an unstable // sort for the second or later passes, it's possible that none of the // duplicates would wind up with a node ID equal to its array index. // The sort stability guarantees that, because as we coalesce more and // more groups, the first element of the resultant group will be one of // the first elements of the groups being coalesced. // To use quicksort for the second and subsequent passes, we would have to // find the minimum of the node numbers in a group, and set all the nodes // in the group to that node number. uprv_sortArray(array+2, counter, sizeof(void *), _sortBuildNodes, NULL, (passCount > 0), &status); dupes = 0; for (p = (BuildCompactTrieNode **)array + 2; counter > 0; --counter, ++p) { node = *p; if (node->fHasDuplicate) { if (first == NULL) { first = node; pFirst = p; } else if (_sortBuildNodes(NULL, pFirst, p) != 0) { // Starting a new run of dupes first = node; pFirst = p; } else if (node->fNodeID != first->fNodeID) { // Slave one to the other, note duplicate node->fNodeID = first->fNodeID; dupes += 1; } } else { // This node has no dupes first = NULL; pFirst = NULL; } } passCount += 1; #ifdef DEBUG_TRIE_DICT totalDupes += dupes; fprintf(stderr, "Trie node dupe removal, pass %d: %d nodes tagged\n", passCount, dupes); #endif } while (dupes > 0); #ifdef DEBUG_TRIE_DICT fprintf(stderr, "Trie node dupe removal complete: %d tagged in %d passes\n", totalDupes, passCount); #endif // We no longer need the temporary array, as the nodes have all been marked appropriately. uprv_free(array); } U_NAMESPACE_END U_CDECL_BEGIN static void U_CALLCONV _deleteBuildNode(void *obj) { delete (BuildCompactTrieNode *) obj; } U_CDECL_END U_NAMESPACE_BEGIN CompactTrieHeader * CompactTrieDictionary::compactMutableTrieDictionary( const MutableTrieDictionary &dict, UErrorCode &status ) { if (U_FAILURE(status)) { return NULL; } #ifdef DEBUG_TRIE_DICT struct tms timing; struct tms previous; (void) ::times(&previous); #endif UStack nodes(_deleteBuildNode, NULL, status); // Index of nodes // Add node 0, used as the NULL pointer/sentinel. nodes.addElement((int32_t)0, status); // Start by creating the special empty node we use to indicate that the parent // terminates a word. This must be node 1, because the builder assumes // that. if (U_FAILURE(status)) { return NULL; } BuildCompactTrieNode *terminal = new BuildCompactTrieNode(TRUE, FALSE, nodes, status); if (terminal == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } // This call does all the work of building the new trie structure. The root // will be node 2. BuildCompactTrieNode *root = compactOneNode(dict.fTrie, FALSE, nodes, status); #ifdef DEBUG_TRIE_DICT (void) ::times(&timing); fprintf(stderr, "Compact trie built, %d nodes, time user %f system %f\n", nodes.size(), (double)(timing.tms_utime-previous.tms_utime)/CLK_TCK, (double)(timing.tms_stime-previous.tms_stime)/CLK_TCK); previous = timing; #endif // Now coalesce all duplicate nodes. coalesceDuplicates(nodes, status); #ifdef DEBUG_TRIE_DICT (void) ::times(&timing); fprintf(stderr, "Duplicates coalesced, time user %f system %f\n", (double)(timing.tms_utime-previous.tms_utime)/CLK_TCK, (double)(timing.tms_stime-previous.tms_stime)/CLK_TCK); previous = timing; #endif // Next, build the output trie. // First we compute all the sizes and build the node ID translation table. uint32_t totalSize = offsetof(CompactTrieHeader,offsets); int32_t count = nodes.size(); int32_t nodeCount = 1; // The sentinel node we already have BuildCompactTrieNode *node; int32_t i; UVector32 translate(count, status); // Should be no growth needed after this translate.push(0, status); // The sentinel node if (U_FAILURE(status)) { return NULL; } for (i = 1; i < count; ++i) { node = (BuildCompactTrieNode *)nodes[i]; if (node->fNodeID == i) { // Only one node out of each duplicate set is used if (i >= translate.size()) { // Logically extend the mapping table translate.setSize(i+1); } translate.setElementAt(nodeCount++, i); totalSize += node->size(); } } // Check for overflowing 16 bits worth of nodes. if (nodeCount > 0x10000) { status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } // Add enough room for the offsets. totalSize += nodeCount*sizeof(uint32_t); #ifdef DEBUG_TRIE_DICT (void) ::times(&timing); fprintf(stderr, "Sizes/mapping done, time user %f system %f\n", (double)(timing.tms_utime-previous.tms_utime)/CLK_TCK, (double)(timing.tms_stime-previous.tms_stime)/CLK_TCK); previous = timing; fprintf(stderr, "%d nodes, %d unique, %d bytes\n", nodes.size(), nodeCount, totalSize); #endif uint8_t *bytes = (uint8_t *)uprv_malloc(totalSize); if (bytes == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } CompactTrieHeader *header = (CompactTrieHeader *)bytes; header->size = totalSize; header->nodeCount = nodeCount; header->offsets[0] = 0; // Sentinel header->root = translate.elementAti(root->fNodeID); #ifdef DEBUG_TRIE_DICT if (header->root == 0) { fprintf(stderr, "ERROR: root node %d translate to physical zero\n", root->fNodeID); } #endif uint32_t offset = offsetof(CompactTrieHeader,offsets)+(nodeCount*sizeof(uint32_t)); nodeCount = 1; // Now write the data for (i = 1; i < count; ++i) { node = (BuildCompactTrieNode *)nodes[i]; if (node->fNodeID == i) { header->offsets[nodeCount++] = offset; node->write(bytes, offset, translate); } } #ifdef DEBUG_TRIE_DICT (void) ::times(&timing); fprintf(stderr, "Trie built, time user %f system %f\n", (double)(timing.tms_utime-previous.tms_utime)/CLK_TCK, (double)(timing.tms_stime-previous.tms_stime)/CLK_TCK); previous = timing; fprintf(stderr, "Final offset is %d\n", offset); // Collect statistics on node types and sizes int hCount = 0; int vCount = 0; size_t hSize = 0; size_t vSize = 0; size_t hItemCount = 0; size_t vItemCount = 0; uint32_t previousOff = offset; for (uint16_t nodeIdx = nodeCount-1; nodeIdx >= 2; --nodeIdx) { const CompactTrieNode *node = getCompactNode(header, nodeIdx); if (node->flagscount & kVerticalNode) { vCount += 1; vItemCount += (node->flagscount & kCountMask); vSize += previousOff-header->offsets[nodeIdx]; } else { hCount += 1; hItemCount += (node->flagscount & kCountMask); hSize += previousOff-header->offsets[nodeIdx]; } previousOff = header->offsets[nodeIdx]; } fprintf(stderr, "Horizontal nodes: %d total, average %f bytes with %f items\n", hCount, (double)hSize/hCount, (double)hItemCount/hCount); fprintf(stderr, "Vertical nodes: %d total, average %f bytes with %f items\n", vCount, (double)vSize/vCount, (double)vItemCount/vCount); #endif if (U_FAILURE(status)) { uprv_free(bytes); header = NULL; } else { header->magic = COMPACT_TRIE_MAGIC_1; } return header; } // Forward declaration static TernaryNode * unpackOneNode( const CompactTrieHeader *header, const CompactTrieNode *node, UErrorCode &status ); // Convert a horizontal node (or subarray thereof) into a ternary subtrie static TernaryNode * unpackHorizontalArray( const CompactTrieHeader *header, const CompactTrieHorizontalEntry *array, int low, int high, UErrorCode &status ) { if (U_FAILURE(status) || low > high) { return NULL; } int middle = (low+high)/2; TernaryNode *result = new TernaryNode(array[middle].ch); if (result == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } const CompactTrieNode *equal = getCompactNode(header, array[middle].equal); if (equal->flagscount & kParentEndsWord) { result->flags |= kEndsWord; } result->low = unpackHorizontalArray(header, array, low, middle-1, status); result->high = unpackHorizontalArray(header, array, middle+1, high, status); result->equal = unpackOneNode(header, equal, status); return result; } // Convert one compact trie node into a ternary subtrie static TernaryNode * unpackOneNode( const CompactTrieHeader *header, const CompactTrieNode *node, UErrorCode &status ) { int nodeCount = (node->flagscount & kCountMask); if (nodeCount == 0 || U_FAILURE(status)) { // Failure, or terminal node return NULL; } if (node->flagscount & kVerticalNode) { const CompactTrieVerticalNode *vnode = (const CompactTrieVerticalNode *)node; TernaryNode *head = NULL; TernaryNode *previous = NULL; TernaryNode *latest = NULL; for (int i = 0; i < nodeCount; ++i) { latest = new TernaryNode(vnode->chars[i]); if (latest == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } if (head == NULL) { head = latest; } if (previous != NULL) { previous->equal = latest; } previous = latest; } if (latest != NULL) { const CompactTrieNode *equal = getCompactNode(header, vnode->equal); if (equal->flagscount & kParentEndsWord) { latest->flags |= kEndsWord; } latest->equal = unpackOneNode(header, equal, status); } return head; } else { // Horizontal node const CompactTrieHorizontalNode *hnode = (const CompactTrieHorizontalNode *)node; return unpackHorizontalArray(header, &hnode->entries[0], 0, nodeCount-1, status); } } MutableTrieDictionary * CompactTrieDictionary::cloneMutable( UErrorCode &status ) const { MutableTrieDictionary *result = new MutableTrieDictionary( status ); if (result == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } TernaryNode *root = unpackOneNode(fData, getCompactNode(fData, fData->root), status); if (U_FAILURE(status)) { delete root; // Clean up delete result; return NULL; } result->fTrie = root; return result; } U_NAMESPACE_END U_CAPI int32_t U_EXPORT2 triedict_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *status) { if (status == NULL || U_FAILURE(*status)) { return 0; } if(ds==NULL || inData==NULL || length<-1 || (length>0 && outData==NULL)) { *status=U_ILLEGAL_ARGUMENT_ERROR; return 0; } // // Check that the data header is for for dictionary data. // (Header contents are defined in genxxx.cpp) // const UDataInfo *pInfo = (const UDataInfo *)((const uint8_t *)inData+4); if(!( pInfo->dataFormat[0]==0x54 && /* dataFormat="TrDc" */ pInfo->dataFormat[1]==0x72 && pInfo->dataFormat[2]==0x44 && pInfo->dataFormat[3]==0x63 && pInfo->formatVersion[0]==1 )) { udata_printError(ds, "triedict_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3], pInfo->formatVersion[0]); *status=U_UNSUPPORTED_ERROR; return 0; } // // Swap the data header. (This is the generic ICU Data Header, not the // CompactTrieHeader). This swap also conveniently gets us // the size of the ICU d.h., which lets us locate the start // of the RBBI specific data. // int32_t headerSize=udata_swapDataHeader(ds, inData, length, outData, status); // // Get the CompactTrieHeader, and check that it appears to be OK. // const uint8_t *inBytes =(const uint8_t *)inData+headerSize; const CompactTrieHeader *header = (const CompactTrieHeader *)inBytes; if (ds->readUInt32(header->magic) != COMPACT_TRIE_MAGIC_1 || ds->readUInt32(header->size) < sizeof(CompactTrieHeader)) { udata_printError(ds, "triedict_swap(): CompactTrieHeader is invalid.\n"); *status=U_UNSUPPORTED_ERROR; return 0; } // // Prefight operation? Just return the size // uint32_t totalSize = ds->readUInt32(header->size); int32_t sizeWithUData = (int32_t)totalSize + headerSize; if (length < 0) { return sizeWithUData; } // // Check that length passed in is consistent with length from RBBI data header. // if (length < sizeWithUData) { udata_printError(ds, "triedict_swap(): too few bytes (%d after ICU Data header) for trie data.\n", totalSize); *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } // // Swap the Data. Do the data itself first, then the CompactTrieHeader, because // we need to reference the header to locate the data, and an // inplace swap of the header leaves it unusable. // uint8_t *outBytes = (uint8_t *)outData + headerSize; CompactTrieHeader *outputHeader = (CompactTrieHeader *)outBytes; #if 0 // // If not swapping in place, zero out the output buffer before starting. // if (inBytes != outBytes) { uprv_memset(outBytes, 0, totalSize); } // We need to loop through all the nodes in the offset table, and swap each one. uint16_t nodeCount = ds->readUInt16(header->nodeCount); // Skip node 0, which should always be 0. for (int i = 1; i < nodeCount; ++i) { uint32_t nodeOff = ds->readUInt32(header->offsets[i]); const CompactTrieNode *inNode = (const CompactTrieNode *)(inBytes + nodeOff); CompactTrieNode *outNode = (CompactTrieNode *)(outBytes + nodeOff); uint16_t flagscount = ds->readUInt16(inNode->flagscount); uint16_t itemCount = flagscount & kCountMask; ds->writeUInt16(&outNode->flagscount, flagscount); if (itemCount > 0) { if (flagscount & kVerticalNode) { ds->swapArray16(ds, inBytes+nodeOff+offsetof(CompactTrieVerticalNode,chars), itemCount*sizeof(uint16_t), outBytes+nodeOff+offsetof(CompactTrieVerticalNode,chars), status); uint16_t equal = ds->readUInt16(inBytes+nodeOff+offsetof(CompactTrieVerticalNode,equal); ds->writeUInt16(outBytes+nodeOff+offsetof(CompactTrieVerticalNode,equal)); } else { const CompactTrieHorizontalNode *inHNode = (const CompactTrieHorizontalNode *)inNode; CompactTrieHorizontalNode *outHNode = (CompactTrieHorizontalNode *)outNode; for (int j = 0; j < itemCount; ++j) { uint16_t word = ds->readUInt16(inHNode->entries[j].ch); ds->writeUInt16(&outHNode->entries[j].ch, word); word = ds->readUInt16(inHNode->entries[j].equal); ds->writeUInt16(&outHNode->entries[j].equal, word); } } } } #endif // All the data in all the nodes consist of 16 bit items. Swap them all at once. uint16_t nodeCount = ds->readUInt16(header->nodeCount); uint32_t nodesOff = offsetof(CompactTrieHeader,offsets)+((uint32_t)nodeCount*sizeof(uint32_t)); ds->swapArray16(ds, inBytes+nodesOff, totalSize-nodesOff, outBytes+nodesOff, status); // Swap the header ds->writeUInt32(&outputHeader->size, totalSize); uint32_t magic = ds->readUInt32(header->magic); ds->writeUInt32(&outputHeader->magic, magic); ds->writeUInt16(&outputHeader->nodeCount, nodeCount); uint16_t root = ds->readUInt16(header->root); ds->writeUInt16(&outputHeader->root, root); ds->swapArray32(ds, inBytes+offsetof(CompactTrieHeader,offsets), sizeof(uint32_t)*(int32_t)nodeCount, outBytes+offsetof(CompactTrieHeader,offsets), status); return sizeWithUData; } #endif /* #if !UCONFIG_NO_BREAK_ITERATION */