/* ******************************************************************************* * * Copyright (C) 2002-2003, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: uprops.h * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2002feb24 * created by: Markus W. Scherer * * Implementations for mostly non-core Unicode character properties * stored in uprops.icu. */ #include "unicode/utypes.h" #include "unicode/uchar.h" #include "unicode/uscript.h" #include "cstring.h" #include "unormimp.h" #include "uprops.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) #ifdef DEBUG #include #endif /** * Unicode property names and property value names are compared * "loosely". Property[Value]Aliases.txt say: * "With loose matching of property names, the case distinctions, whitespace, * and '_' are ignored." * * This function does just that, for ASCII (char *) name strings. * It is almost identical to ucnv_compareNames() but also ignores * ASCII White_Space characters (U+0009..U+000d). * * @internal */ U_CAPI int32_t U_EXPORT2 uprv_comparePropertyNames(const char *name1, const char *name2) { int32_t rc; unsigned char c1, c2; for(;;) { /* Ignore delimiters '-', '_', and ASCII White_Space */ while((c1=(unsigned char)*name1)=='-' || c1=='_' || c1==' ' || c1=='\t' || c1=='\n' || c1=='\v' || c1=='\f' || c1=='\r' ) { ++name1; } while((c2=(unsigned char)*name2)=='-' || c2=='_' || c2==' ' || c2=='\t' || c2=='\n' || c2=='\v' || c2=='\f' || c2=='\r' ) { ++name2; } /* If we reach the ends of both strings then they match */ if((c1|c2)==0) { return 0; } /* Case-insensitive comparison */ if(c1!=c2) { rc=(int32_t)(unsigned char)uprv_tolower(c1)-(int32_t)(unsigned char)uprv_tolower(c2); if(rc!=0) { return rc; } } ++name1; ++name2; } } /* API functions ------------------------------------------------------------ */ U_CAPI void U_EXPORT2 u_charAge(UChar32 c, UVersionInfo versionArray) { if(versionArray!=NULL) { uint32_t version=u_getUnicodeProperties(c, 0)>>UPROPS_AGE_SHIFT; versionArray[0]=(uint8_t)(version>>4); versionArray[1]=(uint8_t)(version&0xf); versionArray[2]=versionArray[3]=0; } } U_CAPI UScriptCode U_EXPORT2 uscript_getScript(UChar32 c, UErrorCode *pErrorCode) { if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if((uint32_t)c>0x10ffff) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } return (UScriptCode)(u_getUnicodeProperties(c, 0)&UPROPS_SCRIPT_MASK); } U_CAPI UBlockCode U_EXPORT2 ublock_getCode(UChar32 c) { return (UBlockCode)((u_getUnicodeProperties(c, 0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT); } static const struct { int32_t column; uint32_t mask; } binProps[]={ /* * column and mask values for binary properties from u_getUnicodeProperties(). * Must be in order of corresponding UProperty, * and there must be exacly one entry per binary UProperty. */ { 1, U_MASK(UPROPS_ALPHABETIC) }, { 1, U_MASK(UPROPS_ASCII_HEX_DIGIT) }, { 1, U_MASK(UPROPS_BIDI_CONTROL) }, { -1, U_MASK(UPROPS_MIRROR_SHIFT) }, { 1, U_MASK(UPROPS_DASH) }, { 1, U_MASK(UPROPS_DEFAULT_IGNORABLE_CODE_POINT) }, { 1, U_MASK(UPROPS_DEPRECATED) }, { 1, U_MASK(UPROPS_DIACRITIC) }, { 1, U_MASK(UPROPS_EXTENDER) }, { 0, 0 }, /* UCHAR_FULL_COMPOSITION_EXCLUSION */ { 1, U_MASK(UPROPS_GRAPHEME_BASE) }, { 1, U_MASK(UPROPS_GRAPHEME_EXTEND) }, { 1, U_MASK(UPROPS_GRAPHEME_LINK) }, { 1, U_MASK(UPROPS_HEX_DIGIT) }, { 1, U_MASK(UPROPS_HYPHEN) }, { 1, U_MASK(UPROPS_ID_CONTINUE) }, { 1, U_MASK(UPROPS_ID_START) }, { 1, U_MASK(UPROPS_IDEOGRAPHIC) }, { 1, U_MASK(UPROPS_IDS_BINARY_OPERATOR) }, { 1, U_MASK(UPROPS_IDS_TRINARY_OPERATOR) }, { 1, U_MASK(UPROPS_JOIN_CONTROL) }, { 1, U_MASK(UPROPS_LOGICAL_ORDER_EXCEPTION) }, { 1, U_MASK(UPROPS_LOWERCASE) }, { 1, U_MASK(UPROPS_MATH) }, { 1, U_MASK(UPROPS_NONCHARACTER_CODE_POINT) }, { 1, U_MASK(UPROPS_QUOTATION_MARK) }, { 1, U_MASK(UPROPS_RADICAL) }, { 1, U_MASK(UPROPS_SOFT_DOTTED) }, { 1, U_MASK(UPROPS_TERMINAL_PUNCTUATION) }, { 1, U_MASK(UPROPS_UNIFIED_IDEOGRAPH) }, { 1, U_MASK(UPROPS_UPPERCASE) }, { 1, U_MASK(UPROPS_WHITE_SPACE) }, { 1, U_MASK(UPROPS_XID_CONTINUE) }, { 1, U_MASK(UPROPS_XID_START) }, { -1, U_MASK(UPROPS_CASE_SENSITIVE_SHIFT) } }; U_CAPI UBool U_EXPORT2 u_hasBinaryProperty(UChar32 c, UProperty which) { /* c is range-checked in the functions that are called from here */ if(which>UPROPS_EA_SHIFT; case UCHAR_GENERAL_CATEGORY: return (int32_t)u_charType(c); case UCHAR_JOINING_GROUP: return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT; case UCHAR_JOINING_TYPE: return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT; case UCHAR_LINE_BREAK: return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT; case UCHAR_NUMERIC_TYPE: return (int32_t)GET_NUMERIC_TYPE(u_getUnicodeProperties(c, -1)); case UCHAR_SCRIPT: errorCode=U_ZERO_ERROR; return (int32_t)uscript_getScript(c, &errorCode); case UCHAR_HANGUL_SYLLABLE_TYPE: /* purely algorithmic; hardcode known characters, check for assigned new ones */ if(c>UPROPS_BLOCK_SHIFT; return max!=0 ? max : (int32_t)UBLOCK_COUNT-1; case UCHAR_CANONICAL_COMBINING_CLASS: return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */ case UCHAR_DECOMPOSITION_TYPE: max=uprv_getMaxValues(2)&UPROPS_DT_MASK; return max!=0 ? max : (int32_t)U_DT_COUNT-1; case UCHAR_EAST_ASIAN_WIDTH: max=(uprv_getMaxValues(0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT; return max!=0 ? max : (int32_t)U_EA_COUNT-1; case UCHAR_GENERAL_CATEGORY: return (int32_t)U_CHAR_CATEGORY_COUNT-1; case UCHAR_JOINING_GROUP: max=(uprv_getMaxValues(2)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT; return max!=0 ? max : (int32_t)U_JG_COUNT-1; case UCHAR_JOINING_TYPE: max=(uprv_getMaxValues(2)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT; return max!=0 ? max : (int32_t)U_JT_COUNT-1; case UCHAR_LINE_BREAK: max=(uprv_getMaxValues(0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT; return max!=0 ? max : (int32_t)U_LB_COUNT-1; case UCHAR_NUMERIC_TYPE: return (int32_t)U_NT_COUNT-1; case UCHAR_SCRIPT: max=uprv_getMaxValues(0)&UPROPS_SCRIPT_MASK; return max!=0 ? max : (int32_t)USCRIPT_CODE_LIMIT-1; case UCHAR_HANGUL_SYLLABLE_TYPE: return (int32_t)U_HST_COUNT-1; default: return -1; /* undefined */ } } else { return -1; /* undefined */ } } /*---------------------------------------------------------------- * Inclusions list *----------------------------------------------------------------*/ /* * Return a set of characters for property enumeration. * The set implicitly contains 0x110000 as well, which is one more than the highest * Unicode code point. * * This set is used as an ordered list - its code points are ordered, and * consecutive code points (in Unicode code point order) in the set define a range. * For each two consecutive characters (start, limit) in the set, * all of the UCD/normalization and related properties for * all code points start..limit-1 are all the same, * except for character names and ISO comments. * * All Unicode code points U+0000..U+10ffff are covered by these ranges. * The ranges define a partition of the Unicode code space. * ICU uses the inclusions set to enumerate properties for generating * UnicodeSets containing all code points that have a certain property value. * * The Inclusion List is generated from the UCD. It is generated * by enumerating the data tries, and code points for hardcoded properties * are added as well. * * -------------------------------------------------------------------------- * * The following are ideas for getting properties-unique code point ranges, * with possible optimizations beyond the current implementation. * These optimizations would require more code and be more fragile. * The current implementation generates one single list (set) for all properties. * * To enumerate properties efficiently, one needs to know ranges of * repetitive values, so that the value of only each start code point * can be applied to the whole range. * This information is in principle available in the uprops.icu/unorm.icu data. * * There are two obstacles: * * 1. Some properties are computed from multiple data structures, * making it necessary to get repetitive ranges by intersecting * ranges from multiple tries. * * 2. It is not economical to write code for getting repetitive ranges * that are precise for each of some 50 properties. * * Compromise ideas: * * - Get ranges per trie, not per individual property. * Each range contains the same values for a whole group of properties. * This would generate currently five range sets, two for uprops.icu tries * and three for unorm.icu tries. * * - Combine sets of ranges for multiple tries to get sufficient sets * for properties, e.g., the uprops.icu main and auxiliary tries * for all non-normalization properties. * * Ideas for representing ranges and combining them: * * - A UnicodeSet could hold just the start code points of ranges. * Multiple sets are easily combined by or-ing them together. * * - Alternatively, a UnicodeSet could hold each even-numbered range. * All ranges could be enumerated by using each start code point * (for the even-numbered ranges) as well as each limit (end+1) code point * (for the odd-numbered ranges). * It should be possible to combine two such sets by xor-ing them, * but no more than two. * * The second way to represent ranges may(?!) yield smaller UnicodeSet arrays, * but the first one is certainly simpler and applicable for combining more than * two range sets. * * It is possible to combine all range sets for all uprops/unorm tries into one * set that can be used for all properties. * As an optimization, there could be less-combined range sets for certain * groups of properties. * The relationship of which less-combined range set to use for which property * depends on the implementation of the properties and must be hardcoded * - somewhat error-prone and higher maintenance but can be tested easily * by building property sets "the simple way" in test code. * * --- * * Do not use a UnicodeSet pattern because that causes infinite recursion; * UnicodeSet depends on the inclusions set. */ #ifdef DEBUG static uint32_t strrch(const char* source,uint32_t sourceLen,char find){ const char* tSourceEnd =source + (sourceLen-1); while(tSourceEnd>= source){ if(*tSourceEnd==find){ return (uint32_t)(tSourceEnd-source); } tSourceEnd--; } return (uint32_t)(tSourceEnd-source); } #endif U_CAPI void U_EXPORT2 uprv_getInclusions(USet* set, UErrorCode *pErrorCode) { if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return; } uset_clear(set); #if !UCONFIG_NO_NORMALIZATION unorm_addPropertyStarts(set, pErrorCode); #endif uchar_addPropertyStarts(set, pErrorCode); #ifdef DEBUG { UChar* result=NULL; int32_t resultCapacity=0; int32_t bufLen = uset_toPattern(set,result,resultCapacity,TRUE,pErrorCode); char* resultChars = NULL; if(*pErrorCode == U_BUFFER_OVERFLOW_ERROR){ uint32_t len = 0, add=0; char *buf=NULL, *current = NULL; *pErrorCode = U_ZERO_ERROR; resultCapacity = bufLen; result = (UChar*) uprv_malloc(resultCapacity * U_SIZEOF_UCHAR); bufLen = uset_toPattern(set,result,resultCapacity,TRUE,pErrorCode); resultChars = (char*) uprv_malloc(len+1); u_UCharsToChars(result,resultChars,bufLen); resultChars[bufLen] = 0; buf = resultChars; /*printf(resultChars);*/ while(len < bufLen){ add = 70-5/* for ", +\n */; current = buf +len; if (add < (bufLen-len)) { uint32_t index = strrch(current,add,'\\'); if (index > add) { index = add; } else { int32_t num =index-1; uint32_t seqLen; while(num>0){ if(current[num]=='\\'){ num--; }else{ break; } } if ((index-num)%2==0) { index--; } seqLen = (current[index+1]=='u') ? 6 : 2; if ((add-index) < seqLen) { add = index + seqLen; } } } fwrite("\"",1,1,stdout); if(len+add