/* ****************************************************************************** * * Copyright (C) 1999-2004, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: ubidi.h * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999jul27 * created by: Markus W. Scherer */ #ifndef UBIDI_H #define UBIDI_H #include "unicode/utypes.h" #include "unicode/uchar.h" /* * javadoc-style comments are intended to be transformed into HTML * using DOC++ - see * http://www.zib.de/Visual/software/doc++/index.html . * * The HTML documentation is created with * doc++ -H ubidi.h * * The following #define trick allows us to do it all in one file * and still be able to compile it. */ /*#define DOCXX_TAG*/ /*#define BIDI_SAMPLE_CODE*/ /** *\file * \brief C API: BIDI algorithm * *

BIDI algorithm for ICU

* * This is an implementation of the Unicode Bidirectional algorithm. * The algorithm is defined in the * Unicode Standard Annex #9, * version 13, also described in The Unicode Standard, Version 4.0 .

* * Note: Libraries that perform a bidirectional algorithm and * reorder strings accordingly are sometimes called "Storage Layout Engines". * ICU's BiDi and shaping (u_shapeArabic()) APIs can be used at the core of such * "Storage Layout Engines". * *

General remarks about the API:

* * In functions with an error code parameter, * the pErrorCode pointer must be valid * and the value that it points to must not indicate a failure before * the function call. Otherwise, the function returns immediately. * After the function call, the value indicates success or failure.

* * The "limit" of a sequence of characters is the position just after their * last character, i.e., one more than that position.

* * Some of the API functions provide access to "runs". * Such a "run" is defined as a sequence of characters * that are at the same embedding level * after performing the BIDI algorithm.

* * @author Markus W. Scherer * @version 1.0 * * *

Sample code for the ICU BIDI API

* *
Rendering a paragraph with the ICU BiDi API
* * This is (hypothetical) sample code that illustrates * how the ICU BiDi API could be used to render a paragraph of text. * Rendering code depends highly on the graphics system, * therefore this sample code must make a lot of assumptions, * which may or may not match any existing graphics system's properties. * *

The basic assumptions are:

* * *
 * \code
 *#include "unicode/ubidi.h"
 *
 *typedef enum {
 *     styleNormal=0, styleSelected=1,
 *     styleBold=2, styleItalics=4,
 *     styleSuper=8, styleSub=16
 *} Style;
 *
 *typedef struct { int32_t limit; Style style; } StyleRun;
 *
 *int getTextWidth(const UChar *text, int32_t start, int32_t limit,
 *                  const StyleRun *styleRuns, int styleRunCount);
 *
 * // set *pLimit and *pStyleRunLimit for a line
 * // from text[start] and from styleRuns[styleRunStart]
 * // using ubidi_getLogicalRun(para, ...)
 *void getLineBreak(const UChar *text, int32_t start, int32_t *pLimit,
 *                  UBiDi *para,
 *                  const StyleRun *styleRuns, int styleRunStart, int *pStyleRunLimit,
 *                  int *pLineWidth);
 *
 * // render runs on a line sequentially, always from left to right
 *
 * // prepare rendering a new line
 * void startLine(UBiDiDirection textDirection, int lineWidth);
 *
 * // render a run of text and advance to the right by the run width
 * // the text[start..limit-1] is always in logical order
 * void renderRun(const UChar *text, int32_t start, int32_t limit,
 *               UBiDiDirection textDirection, Style style);
 *
 * // We could compute a cross-product
 * // from the style runs with the directional runs
 * // and then reorder it.
 * // Instead, here we iterate over each run type
 * // and render the intersections -
 * // with shortcuts in simple (and common) cases.
 * // renderParagraph() is the main function.
 *
 * // render a directional run with
 * // (possibly) multiple style runs intersecting with it
 * void renderDirectionalRun(const UChar *text,
 *                           int32_t start, int32_t limit,
 *                           UBiDiDirection direction,
 *                           const StyleRun *styleRuns, int styleRunCount) {
 *     int i;
 *
 *     // iterate over style runs
 *     if(direction==UBIDI_LTR) {
 *         int styleLimit;
 *
 *         for(i=0; ilimit) { styleLimit=limit; }
 *                 renderRun(text, start, styleLimit,
 *                           direction, styleRun[i].style);
 *                 if(styleLimit==limit) { break; }
 *                 start=styleLimit;
 *             }
 *         }
 *     } else {
 *         int styleStart;
 *
 *         for(i=styleRunCount-1; i>=0; --i) {
 *             if(i>0) {
 *                 styleStart=styleRun[i-1].limit;
 *             } else {
 *                 styleStart=0;
 *             }
 *             if(limit>=styleStart) {
 *                 if(styleStart=length
 *
 *         width=getTextWidth(text, 0, length, styleRuns, styleRunCount);
 *         if(width<=lineWidth) {
 *             // everything fits onto one line
 *
 *            // prepare rendering a new line from either left or right
 *             startLine(paraLevel, width);
 *
 *             renderLine(para, text, 0, length,
 *                        styleRuns, styleRunCount);
 *         } else {
 *             UBiDi *line;
 *
 *             // we need to render several lines
 *             line=ubidi_openSized(length, 0, pErrorCode);
 *             if(line!=NULL) {
 *                 int32_t start=0, limit;
 *                 int styleRunStart=0, styleRunLimit;
 *
 *                 for(;;) {
 *                     limit=length;
 *                     styleRunLimit=styleRunCount;
 *                     getLineBreak(text, start, &limit, para,
 *                                  styleRuns, styleRunStart, &styleRunLimit,
 *                                 &width);
 *                     ubidi_setLine(para, start, limit, line, pErrorCode);
 *                     if(U_SUCCESS(*pErrorCode)) {
 *                         // prepare rendering a new line
 *                         // from either left or right
 *                         startLine(paraLevel, width);
 *
 *                         renderLine(line, text, start, limit,
 *                                    styleRuns+styleRunStart,
 *                                    styleRunLimit-styleRunStart);
 *                     }
 *                     if(limit==length) { break; }
 *                     start=limit;
 *                     styleRunStart=styleRunLimit-1;
 *                     if(start>=styleRuns[styleRunStart].limit) {
 *                         ++styleRunStart;
 *                     }
 *                 }
 *
 *                 ubidi_close(line);
 *             }
 *        }
 *    }
 *
 *     ubidi_close(para);
 *}
 *\endcode
 * 
*/ /*DOCXX_TAG*/ /*@{*/ /** * UBiDiLevel is the type of the level values in this * BiDi implementation. * It holds an embedding level and indicates the visual direction * by its bit 0 (even/odd value).

* * It can also hold non-level values for the * paraLevel and embeddingLevels * arguments of ubidi_setPara(); there: *

* * @see ubidi_setPara * *

The related constants are not real, valid level values. * UBIDI_DEFAULT_XXX can be used to specify * a default for the paragraph level for * when the ubidi_setPara() function * shall determine it but there is no * strongly typed character in the input.

* * Note that the value for UBIDI_DEFAULT_LTR is even * and the one for UBIDI_DEFAULT_RTL is odd, * just like with normal LTR and RTL level values - * these special values are designed that way. Also, the implementation * assumes that UBIDI_MAX_EXPLICIT_LEVEL is odd. * * @see UBIDI_DEFAULT_LTR * @see UBIDI_DEFAULT_RTL * @see UBIDI_LEVEL_OVERRIDE * @see UBIDI_MAX_EXPLICIT_LEVEL * @stable ICU 2.0 */ typedef uint8_t UBiDiLevel; /** Paragraph level setting. * If there is no strong character, then set the paragraph level to 0 (left-to-right). * @stable ICU 2.0 */ #define UBIDI_DEFAULT_LTR 0xfe /** Paragraph level setting. * If there is no strong character, then set the paragraph level to 1 (right-to-left). * @stable ICU 2.0 */ #define UBIDI_DEFAULT_RTL 0xff /** * Maximum explicit embedding level. * (The maximum resolved level can be up to UBIDI_MAX_EXPLICIT_LEVEL+1). * @stable ICU 2.0 */ #define UBIDI_MAX_EXPLICIT_LEVEL 61 /** Bit flag for level input. * Overrides directional properties. * @stable ICU 2.0 */ #define UBIDI_LEVEL_OVERRIDE 0x80 /** * @memo UBiDiDirection values indicate the text direction. * @stable ICU 2.0 */ enum UBiDiDirection { /** @memo All left-to-right text. This is a 0 value. @stable ICU 2.0 */ UBIDI_LTR, /** @memo All right-to-left text. This is a 1 value. @stable ICU 2.0 */ UBIDI_RTL, /** @memo Mixed-directional text. @stable ICU 2.0 */ UBIDI_MIXED }; /** @stable ICU 2.0 */ typedef enum UBiDiDirection UBiDiDirection; /** * Forward declaration of the UBiDi structure for the declaration of * the API functions. Its fields are implementation-specific.

* This structure holds information about a paragraph of text * with BiDi-algorithm-related details, or about one line of * such a paragraph.

* Reordering can be done on a line, or on a paragraph which is * then interpreted as one single line. * @stable ICU 2.0 */ struct UBiDi; /** @stable ICU 2.0 */ typedef struct UBiDi UBiDi; /** * Allocate a UBiDi structure. * Such an object is initially empty. It is assigned * the BiDi properties of a paragraph by ubidi_setPara() * or the BiDi properties of a line of a paragraph by * ubidi_setLine().

* This object can be reused for as long as it is not deallocated * by calling ubidi_close().

* ubidi_set() will allocate additional memory for * internal structures as necessary. * * @return An empty UBiDi object. * @stable ICU 2.0 */ U_STABLE UBiDi * U_EXPORT2 ubidi_open(void); /** * Allocate a UBiDi structure with preallocated memory * for internal structures. * This function provides a UBiDi object like ubidi_open() * with no arguments, but it also preallocates memory for internal structures * according to the sizings supplied by the caller.

* Subsequent functions will not allocate any more memory, and are thus * guaranteed not to fail because of lack of memory.

* The preallocation can be limited to some of the internal memory * by setting some values to 0 here. That means that if, e.g., * maxRunCount cannot be reasonably predetermined and should not * be set to maxLength (the only failproof value) to avoid * wasting memory, then maxRunCount could be set to 0 here * and the internal structures that are associated with it will be allocated * on demand, just like with ubidi_open(). * * @param maxLength is the maximum paragraph or line length that internal memory * will be preallocated for. An attempt to associate this object with a * longer text will fail, unless this value is 0, which leaves the allocation * up to the implementation. * * @param maxRunCount is the maximum anticipated number of same-level runs * that internal memory will be preallocated for. An attempt to access * visual runs on an object that was not preallocated for as many runs * as the text was actually resolved to will fail, * unless this value is 0, which leaves the allocation up to the implementation.

* The number of runs depends on the actual text and maybe anywhere between * 1 and maxLength. It is typically small.

* * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return An empty UBiDi object with preallocated memory. * @stable ICU 2.0 */ U_STABLE UBiDi * U_EXPORT2 ubidi_openSized(int32_t maxLength, int32_t maxRunCount, UErrorCode *pErrorCode); /** * ubidi_close() must be called to free the memory * associated with a UBiDi object.

* * Important: * A parent UBiDi object must not be destroyed or reused if * it still has children. * If a UBiDi object is the child * of another one (its parent), after calling * ubidi_setLine(), then the child object must * be destroyed (closed) or reused (by calling * ubidi_setPara() or ubidi_setLine()) * before the parent object. * * @param pBiDi is a UBiDi object. * * @see ubidi_setPara * @see ubidi_setLine * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_close(UBiDi *pBiDi); /** * Modify the operation of the BiDi algorithm such that it * approximates an "inverse BiDi" algorithm. This function * must be called before ubidi_setPara(). * *

The normal operation of the BiDi algorithm as described * in the Unicode Technical Report is to take text stored in logical * (keyboard, typing) order and to determine the reordering of it for visual * rendering. * Some legacy systems store text in visual order, and for operations * with standard, Unicode-based algorithms, the text needs to be transformed * to logical order. This is effectively the inverse algorithm of the * described BiDi algorithm. Note that there is no standard algorithm for * this "inverse BiDi" and that the current implementation provides only an * approximation of "inverse BiDi".

* *

With isInverse set to TRUE, * this function changes the behavior of some of the subsequent functions * in a way that they can be used for the inverse BiDi algorithm. * Specifically, runs of text with numeric characters will be treated in a * special way and may need to be surrounded with LRM characters when they are * written in reordered sequence.

* *

Output runs should be retrieved using ubidi_getVisualRun(). * Since the actual input for "inverse BiDi" is visually ordered text and * ubidi_getVisualRun() gets the reordered runs, these are actually * the runs of the logically ordered output.

* * @param pBiDi is a UBiDi object. * * @param isInverse specifies "forward" or "inverse" BiDi operation * * @see ubidi_setPara * @see ubidi_writeReordered * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_setInverse(UBiDi *pBiDi, UBool isInverse); /** * Is this BiDi object set to perform the inverse BiDi algorithm? * * @param pBiDi is a UBiDi object. * @return TRUE if the BiDi object set to perform the inverse BiDi algorithm * * @see ubidi_setInverse * @stable ICU 2.0 */ U_STABLE UBool U_EXPORT2 ubidi_isInverse(UBiDi *pBiDi); /** * Perform the Unicode BiDi algorithm. It is defined in the * Unicode Standard Anned #9, * version 13, * also described in The Unicode Standard, Version 4.0 .

* * This function takes a single plain text paragraph with or without * externally specified embedding levels from styled text * and computes the left-right-directionality of each character.

* * If the entire paragraph consists of text of only one direction, then * the function may not perform all the steps described by the algorithm, * i.e., some levels may not be the same as if all steps were performed. * This is not relevant for unidirectional text.
* For example, in pure LTR text with numbers the numbers would get * a resolved level of 2 higher than the surrounding text according to * the algorithm. This implementation may set all resolved levels to * the same value in such a case.

* * The text must be externally split into separate paragraphs (rule P1). * Paragraph separators (B) should appear at most at the very end. * * @param pBiDi A UBiDi object allocated with ubidi_open() * which will be set to contain the reordering information, * especially the resolved levels for all the characters in text. * * @param text is a pointer to the single-paragraph text that the * BiDi algorithm will be performed on * (step (P1) of the algorithm is performed externally). * The text must be (at least) length long. * This pointer is stored in the UBiDi object and can be retrieved * with ubidi_getText(). * * @param length is the length of the text; if length==-1 then * the text must be zero-terminated. * * @param paraLevel specifies the default level for the paragraph; * it is typically 0 (LTR) or 1 (RTL). * If the function shall determine the paragraph level from the text, * then paraLevel can be set to * either UBIDI_DEFAULT_LTR * or UBIDI_DEFAULT_RTL; * if there is no strongly typed character, then * the desired default is used (0 for LTR or 1 for RTL). * Any other value between 0 and UBIDI_MAX_EXPLICIT_LEVEL is also valid, * with odd levels indicating RTL. * * @param embeddingLevels (in) may be used to preset the embedding and override levels, * ignoring characters like LRE and PDF in the text. * A level overrides the directional property of its corresponding * (same index) character if the level has the * UBIDI_LEVEL_OVERRIDE bit set.

* Except for that bit, it must be * paraLevel<=embeddingLevels[]<=UBIDI_MAX_EXPLICIT_LEVEL.

* Caution: A copy of this pointer, not of the levels, * will be stored in the UBiDi object; * the embeddingLevels array must not be * deallocated before the UBiDi structure is destroyed or reused, * and the embeddingLevels * should not be modified to avoid unexpected results on subsequent BiDi operations. * However, the ubidi_setPara() and * ubidi_setLine() functions may modify some or all of the levels.

* After the UBiDi object is reused or destroyed, the caller * must take care of the deallocation of the embeddingLevels array.

* The embeddingLevels array must be * at least length long. * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_setPara(UBiDi *pBiDi, const UChar *text, int32_t length, UBiDiLevel paraLevel, UBiDiLevel *embeddingLevels, UErrorCode *pErrorCode); /** * ubidi_setLine() sets a UBiDi to * contain the reordering information, especially the resolved levels, * for all the characters in a line of text. This line of text is * specified by referring to a UBiDi object representing * this information for a paragraph of text, and by specifying * a range of indexes in this paragraph.

* In the new line object, the indexes will range from 0 to limit-start-1.

* * This is used after calling ubidi_setPara() * for a paragraph, and after line-breaking on that paragraph. * It is not necessary if the paragraph is treated as a single line.

* * After line-breaking, rules (L1) and (L2) for the treatment of * trailing WS and for reordering are performed on * a UBiDi object that represents a line.

* * Important: pLineBiDi shares data with * pParaBiDi. * You must destroy or reuse pLineBiDi before pParaBiDi. * In other words, you must destroy or reuse the UBiDi object for a line * before the object for its parent paragraph.

* * The text pointer that was stored in pParaBiDi is also copied, * and start is added to it so that it points to the beginning of the * line for this object. * * @param pParaBiDi is the parent paragraph object. * * @param start is the line's first index into the paragraph text. * * @param limit is just behind the line's last index into the paragraph text * (its last index +1).
* It must be 0<=start<=limit<=paragraph length. * * @param pLineBiDi is the object that will now represent a line of the paragraph. * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @see ubidi_setPara * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_setLine(const UBiDi *pParaBiDi, int32_t start, int32_t limit, UBiDi *pLineBiDi, UErrorCode *pErrorCode); /** * Get the directionality of the text. * * @param pBiDi is the paragraph or line UBiDi object. * * @return A UBIDI_XXX value that indicates if the entire text * represented by this object is unidirectional, * and which direction, or if it is mixed-directional. * * @see UBiDiDirection * @stable ICU 2.0 */ U_STABLE UBiDiDirection U_EXPORT2 ubidi_getDirection(const UBiDi *pBiDi); /** * Get the pointer to the text. * * @param pBiDi is the paragraph or line UBiDi object. * * @return The pointer to the text that the UBiDi object was created for. * * @see ubidi_setPara * @see ubidi_setLine * @stable ICU 2.0 */ U_STABLE const UChar * U_EXPORT2 ubidi_getText(const UBiDi *pBiDi); /** * Get the length of the text. * * @param pBiDi is the paragraph or line UBiDi object. * * @return The length of the text that the UBiDi object was created for. * @stable ICU 2.0 */ U_STABLE int32_t U_EXPORT2 ubidi_getLength(const UBiDi *pBiDi); /** * Get the paragraph level of the text. * * @param pBiDi is the paragraph or line UBiDi object. * * @return The paragraph level. * * @see UBiDiLevel * @stable ICU 2.0 */ U_STABLE UBiDiLevel U_EXPORT2 ubidi_getParaLevel(const UBiDi *pBiDi); /** * Get the level for one character. * * @param pBiDi is the paragraph or line UBiDi object. * * @param charIndex the index of a character. * * @return The level for the character at charIndex. * * @see UBiDiLevel * @stable ICU 2.0 */ U_STABLE UBiDiLevel U_EXPORT2 ubidi_getLevelAt(const UBiDi *pBiDi, int32_t charIndex); /** * Get an array of levels for each character.

* * Note that this function may allocate memory under some * circumstances, unlike ubidi_getLevelAt(). * * @param pBiDi is the paragraph or line UBiDi object. * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return The levels array for the text, * or NULL if an error occurs. * * @see UBiDiLevel * @stable ICU 2.0 */ U_STABLE const UBiDiLevel * U_EXPORT2 ubidi_getLevels(UBiDi *pBiDi, UErrorCode *pErrorCode); /** * Get a logical run. * This function returns information about a run and is used * to retrieve runs in logical order.

* This is especially useful for line-breaking on a paragraph. * * @param pBiDi is the paragraph or line UBiDi object. * * @param logicalStart is the first character of the run. * * @param pLogicalLimit will receive the limit of the run. * The l-value that you point to here may be the * same expression (variable) as the one for * logicalStart. * This pointer can be NULL if this * value is not necessary. * * @param pLevel will receive the level of the run. * This pointer can be NULL if this * value is not necessary. * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_getLogicalRun(const UBiDi *pBiDi, int32_t logicalStart, int32_t *pLogicalLimit, UBiDiLevel *pLevel); /** * Get the number of runs. * This function may invoke the actual reordering on the * UBiDi object, after ubidi_setPara() * may have resolved only the levels of the text. Therefore, * ubidi_countRuns() may have to allocate memory, * and may fail doing so. * * @param pBiDi is the paragraph or line UBiDi object. * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return The number of runs. * @stable ICU 2.0 */ U_STABLE int32_t U_EXPORT2 ubidi_countRuns(UBiDi *pBiDi, UErrorCode *pErrorCode); /** * Get one run's logical start, length, and directionality, * which can be 0 for LTR or 1 for RTL. * In an RTL run, the character at the logical start is * visually on the right of the displayed run. * The length is the number of characters in the run.

* ubidi_countRuns() should be called * before the runs are retrieved. * * @param pBiDi is the paragraph or line UBiDi object. * * @param runIndex is the number of the run in visual order, in the * range [0..ubidi_countRuns(pBiDi)-1]. * * @param pLogicalStart is the first logical character index in the text. * The pointer may be NULL if this index is not needed. * * @param pLength is the number of characters (at least one) in the run. * The pointer may be NULL if this is not needed. * * @return the directionality of the run, * UBIDI_LTR==0 or UBIDI_RTL==1, * never UBIDI_MIXED. * * @see ubidi_countRuns * * Example: *

 * \code
 * int32_t i, count=ubidi_countRuns(pBiDi),
 *         logicalStart, visualIndex=0, length;
 * for(i=0; i0);
 *     } else {
 *         logicalStart+=length;  // logicalLimit
 *         do { // RTL
 *             show_char(text[--logicalStart], visualIndex++);
 *         } while(--length>0);
 *     }
 * }
 *\endcode
 * 
* * Note that in right-to-left runs, code like this places * modifier letters before base characters and second surrogates * before first ones. * @stable ICU 2.0 */ U_STABLE UBiDiDirection U_EXPORT2 ubidi_getVisualRun(UBiDi *pBiDi, int32_t runIndex, int32_t *pLogicalStart, int32_t *pLength); /** * Get the visual position from a logical text position. * If such a mapping is used many times on the same * UBiDi object, then calling * ubidi_getLogicalMap() is more efficient.

* * Note that in right-to-left runs, this mapping places * modifier letters before base characters and second surrogates * before first ones. * * @param pBiDi is the paragraph or line UBiDi object. * * @param logicalIndex is the index of a character in the text. * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return The visual position of this character. * * @see ubidi_getLogicalMap * @see ubidi_getLogicalIndex * @stable ICU 2.0 */ U_STABLE int32_t U_EXPORT2 ubidi_getVisualIndex(UBiDi *pBiDi, int32_t logicalIndex, UErrorCode *pErrorCode); /** * Get the logical text position from a visual position. * If such a mapping is used many times on the same * UBiDi object, then calling * ubidi_getVisualMap() is more efficient.

* * This is the inverse function to ubidi_getVisualIndex(). * * @param pBiDi is the paragraph or line UBiDi object. * * @param visualIndex is the visual position of a character. * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return The index of this character in the text. * * @see ubidi_getVisualMap * @see ubidi_getVisualIndex * @stable ICU 2.0 */ U_STABLE int32_t U_EXPORT2 ubidi_getLogicalIndex(UBiDi *pBiDi, int32_t visualIndex, UErrorCode *pErrorCode); /** * Get a logical-to-visual index map (array) for the characters in the UBiDi * (paragraph or line) object. * * @param pBiDi is the paragraph or line UBiDi object. * * @param indexMap is a pointer to an array of ubidi_getLength() * indexes which will reflect the reordering of the characters. * The array does not need to be initialized.

* The index map will result in indexMap[logicalIndex]==visualIndex.

* * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @see ubidi_getVisualMap * @see ubidi_getVisualIndex * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_getLogicalMap(UBiDi *pBiDi, int32_t *indexMap, UErrorCode *pErrorCode); /** * Get a visual-to-logical index map (array) for the characters in the UBiDi * (paragraph or line) object. * * @param pBiDi is the paragraph or line UBiDi object. * * @param indexMap is a pointer to an array of ubidi_getLength() * indexes which will reflect the reordering of the characters. * The array does not need to be initialized.

* The index map will result in indexMap[visualIndex]==logicalIndex.

* * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @see ubidi_getLogicalMap * @see ubidi_getLogicalIndex * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_getVisualMap(UBiDi *pBiDi, int32_t *indexMap, UErrorCode *pErrorCode); /** * This is a convenience function that does not use a UBiDi object. * It is intended to be used for when an application has determined the levels * of objects (character sequences) and just needs to have them reordered (L2). * This is equivalent to using ubidi_getLogicalMap on a * UBiDi object. * * @param levels is an array with length levels that have been determined by * the application. * * @param length is the number of levels in the array, or, semantically, * the number of objects to be reordered. * It must be length>0. * * @param indexMap is a pointer to an array of length * indexes which will reflect the reordering of the characters. * The array does not need to be initialized.

* The index map will result in indexMap[logicalIndex]==visualIndex. * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_reorderLogical(const UBiDiLevel *levels, int32_t length, int32_t *indexMap); /** * This is a convenience function that does not use a UBiDi object. * It is intended to be used for when an application has determined the levels * of objects (character sequences) and just needs to have them reordered (L2). * This is equivalent to using ubidi_getVisualMap on a * UBiDi object. * * @param levels is an array with length levels that have been determined by * the application. * * @param length is the number of levels in the array, or, semantically, * the number of objects to be reordered. * It must be length>0. * * @param indexMap is a pointer to an array of length * indexes which will reflect the reordering of the characters. * The array does not need to be initialized.

* The index map will result in indexMap[visualIndex]==logicalIndex. * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_reorderVisual(const UBiDiLevel *levels, int32_t length, int32_t *indexMap); /** * Invert an index map. * The one-to-one index mapping of the first map is inverted and written to * the second one. * * @param srcMap is an array with length indexes * which define the original mapping. * * @param destMap is an array with length indexes * which will be filled with the inverse mapping. * * @param length is the length of each array. * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_invertMap(const int32_t *srcMap, int32_t *destMap, int32_t length); /** option flags for ubidi_writeReordered() */ /** * option bit for ubidi_writeReordered(): * keep combining characters after their base characters in RTL runs * * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_KEEP_BASE_COMBINING 1 /** * option bit for ubidi_writeReordered(): * replace characters with the "mirrored" property in RTL runs * by their mirror-image mappings * * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_DO_MIRRORING 2 /** * option bit for ubidi_writeReordered(): * surround the run with LRMs if necessary; * this is part of the approximate "inverse BiDi" algorithm * * @see ubidi_setInverse * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_INSERT_LRM_FOR_NUMERIC 4 /** * option bit for ubidi_writeReordered(): * remove BiDi control characters * (this does not affect UBIDI_INSERT_LRM_FOR_NUMERIC) * * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_REMOVE_BIDI_CONTROLS 8 /** * option bit for ubidi_writeReordered(): * write the output in reverse order * *

This has the same effect as calling ubidi_writeReordered() * first without this option, and then calling * ubidi_writeReverse() without mirroring. * Doing this in the same step is faster and avoids a temporary buffer. * An example for using this option is output to a character terminal that * is designed for RTL scripts and stores text in reverse order.

* * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_OUTPUT_REVERSE 16 /** * Take a UBiDi object containing the reordering * information for one paragraph or line of text as set by * ubidi_setPara() or ubidi_setLine() and * write a reordered string to the destination buffer. * * This function preserves the integrity of characters with multiple * code units and (optionally) modifier letters. * Characters in RTL runs can be replaced by mirror-image characters * in the destination buffer. Note that "real" mirroring has * to be done in a rendering engine by glyph selection * and that for many "mirrored" characters there are no * Unicode characters as mirror-image equivalents. * There are also options to insert or remove BiDi control * characters; see the description of the destSize * and options parameters and of the option bit flags. * * @see UBIDI_DO_MIRRORING * @see UBIDI_INSERT_LRM_FOR_NUMERIC * @see UBIDI_KEEP_BASE_COMBINING * @see UBIDI_OUTPUT_REVERSE * @see UBIDI_REMOVE_BIDI_CONTROLS * * @param pBiDi A pointer to a UBiDi object that * is set by ubidi_setPara() or * ubidi_setLine() and contains the reordering * information for the text that it was defined for, * as well as a pointer to that text. *

The text was aliased (only the pointer was stored * without copying the contents) and must not have been modified * since the ubidi_setPara() call.

* * @param dest A pointer to where the reordered text is to be copied. * The source text and dest[destSize] * must not overlap. * * @param destSize The size of the dest buffer, * in number of UChars. * If the UBIDI_INSERT_LRM_FOR_NUMERIC * option is set, then the destination length could be * as large as * ubidi_getLength(pBiDi)+2*ubidi_countRuns(pBiDi). * If the UBIDI_REMOVE_BIDI_CONTROLS option * is set, then the destination length may be less than * ubidi_getLength(pBiDi). * If none of these options is set, then the destination length * will be exactly ubidi_getLength(pBiDi). * * @param options A bit set of options for the reordering that control * how the reordered text is written. * The options include mirroring the characters on a code * point basis and inserting LRM characters, which is used * especially for transforming visually stored text * to logically stored text (although this is still an * imperfect implementation of an "inverse BiDi" algorithm * because it uses the "forward BiDi" algorithm at its core). * The available options are: * #UBIDI_DO_MIRRORING, * #UBIDI_INSERT_LRM_FOR_NUMERIC, * #UBIDI_KEEP_BASE_COMBINING, * #UBIDI_OUTPUT_REVERSE, * #UBIDI_REMOVE_BIDI_CONTROLS * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return The length of the output string. * @stable ICU 2.0 */ U_STABLE int32_t U_EXPORT2 ubidi_writeReordered(UBiDi *pBiDi, UChar *dest, int32_t destSize, uint16_t options, UErrorCode *pErrorCode); /** * Reverse a Right-To-Left run of Unicode text. * * This function preserves the integrity of characters with multiple * code units and (optionally) modifier letters. * Characters can be replaced by mirror-image characters * in the destination buffer. Note that "real" mirroring has * to be done in a rendering engine by glyph selection * and that for many "mirrored" characters there are no * Unicode characters as mirror-image equivalents. * There are also options to insert or remove BiDi control * characters. * * This function is the implementation for reversing RTL runs as part * of ubidi_writeReordered(). For detailed descriptions * of the parameters, see there. * Since no BiDi controls are inserted here, the output string length * will never exceed srcLength. * * @see ubidi_writeReordered * * @param src A pointer to the RTL run text. * * @param srcLength The length of the RTL run. * * @param dest A pointer to where the reordered text is to be copied. * src[srcLength] and dest[destSize] * must not overlap. * * @param destSize The size of the dest buffer, * in number of UChars. * If the UBIDI_REMOVE_BIDI_CONTROLS option * is set, then the destination length may be less than * srcLength. * If this option is not set, then the destination length * will be exactly srcLength. * * @param options A bit set of options for the reordering that control * how the reordered text is written. * See the options parameter in ubidi_writeReordered(). * * @param pErrorCode must be a valid pointer to an error code value, * which must not indicate a failure before the function call. * * @return The length of the output string. * @stable ICU 2.0 */ U_STABLE int32_t U_EXPORT2 ubidi_writeReverse(const UChar *src, int32_t srcLength, UChar *dest, int32_t destSize, uint16_t options, UErrorCode *pErrorCode); /*#define BIDI_SAMPLE_CODE*/ /*@}*/ #endif