/* ********************************************************************** * Copyright (C) 1999-2001, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "rbt_rule.h" #include "unicode/rep.h" #include "rbt_data.h" #include "unicode/unifilt.h" #include "unicode/uniset.h" #include "unicode/unicode.h" #include "cmemory.h" static const UChar APOSTROPHE = 0x0027; // '\'' static const UChar BACKSLASH = 0x005C; // '\' // To process segments we need to allocate arrays of integers. We use // stack storage as long as the segment count is <= MAX_STATIC_SEGS. // Otherwise, we allocate heap space. #define MAX_STATIC_SEGS 20 // Macros for accessing the array of integers encoding the position of // SEGMENTS_COUNT number of segments, n (half the number of parens) // SEGMENTS_LEN length of the segments array (number of elements) // SEGMENTS_POS position in 'pattern' of parenthesis i, where i=0..2n-1 // SEGMENTS_NUM index into segments to access POS of $1.open, // $1.close, $2.open, $2.close,.., $n.open, $n.close // Relative to FIRST_SEG_POS_INDEX. Ranges from 0..2n-1. #define FIRST_SEG_POS_INDEX 2 #define SEGMENTS_COUNT(x) x[0] #define SEGMENTS_LEN(x) (SEGMENTS_COUNT(x)*4+4) #define SEGMENTS_POS(x,i) x[FIRST_SEG_POS_INDEX+i] #define SEGMENTS_NUM(x,i) (x[x[1]+i]-FIRST_SEG_POS_INDEX) U_NAMESPACE_BEGIN const UChar TransliterationRule::ETHER = 0xFFFF; /** * Construct a new rule with the given input, output text, and other * attributes. A cursor position may be specified for the output text. * @param input input string, including key and optional ante and * post context * @param anteContextPos offset into input to end of ante context, or -1 if * none. Must be <= input.length() if not -1. * @param postContextPos offset into input to start of post context, or -1 * if none. Must be <= input.length() if not -1, and must be >= * anteContextPos. * @param output output string * @param cursorPosition offset into output at which cursor is located, or -1 if * none. If less than zero, then the cursor is placed after the * output; that is, -1 is equivalent to * output.length(). If greater than * output.length() then an exception is thrown. * @param adoptedSegs array of 2n integers. Each of n pairs consists of offset, * limit for a segment of the input string. Characters in the output string * refer to these segments if they are in a special range determined by the * associated RuleBasedTransliterator.Data object. May be null if there are * no segments. * @param anchorStart TRUE if the the rule is anchored on the left to * the context start * @param anchorEnd TRUE if the rule is anchored on the right to the * context limit */ TransliterationRule::TransliterationRule(const UnicodeString& input, int32_t anteContextPos, int32_t postContextPos, const UnicodeString& outputStr, int32_t cursorPosition, int32_t cursorOffset, int32_t* adoptedSegs, UBool anchorStart, UBool anchorEnd, const TransliterationRuleData* theData, UErrorCode& status) : data(theData) { if (U_FAILURE(status)) { return; } // Do range checks only when warranted to save time if (anteContextPos < 0) { anteContextLength = 0; } else { if (anteContextPos > input.length()) { // throw new IllegalArgumentException("Invalid ante context"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } anteContextLength = anteContextPos; } if (postContextPos < 0) { keyLength = input.length() - anteContextLength; } else { if (postContextPos < anteContextLength || postContextPos > input.length()) { // throw new IllegalArgumentException("Invalid post context"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } keyLength = postContextPos - anteContextLength; } if (cursorPosition < 0) { cursorPosition = outputStr.length(); } else { if (cursorPosition > outputStr.length()) { // throw new IllegalArgumentException("Invalid cursor position"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } } this->cursorPos = cursorPosition + cursorOffset; this->output = outputStr; // We don't validate the segments array. The caller must // guarantee that the segments are well-formed. this->segments = adoptedSegs; // Find the position of the first segment index that is after the // anteContext (in the key). Note that this may be a start or a // limit index. If all segments are in the ante context, // firstKeySeg should point past the last segment -- that is, it // should point at the end marker, which is -1. This allows the // code to back up by one to obtain the last ante context segment. firstKeySeg = -1; if (segments != 0) { firstKeySeg = FIRST_SEG_POS_INDEX; while (segments[firstKeySeg] >= 0 && segments[firstKeySeg] < anteContextLength) { ++firstKeySeg; } firstKeySeg -= FIRST_SEG_POS_INDEX; // make relative to FSPI } pattern = input; flags = 0; if (anchorStart) { flags |= ANCHOR_START; } if (anchorEnd) { flags |= ANCHOR_END; } } /** * Copy constructor. */ /* Ram: Reordered member initializers to match declaration order and make GCC happy */ TransliterationRule::TransliterationRule(TransliterationRule& other) : pattern(other.pattern), output(other.output), firstKeySeg(other.firstKeySeg), anteContextLength(other.anteContextLength), keyLength(other.keyLength), cursorPos(other.cursorPos), flags(other.flags), data(other.data) { segments = 0; if (other.segments != 0) { int32_t len = SEGMENTS_LEN(other.segments); segments = new int32_t[len]; uprv_memcpy(segments, other.segments, len*sizeof(segments[0])); } } TransliterationRule::~TransliterationRule() { delete[] segments; } /** * Return the position of the cursor within the output string. * @return a value from 0 to getOutput().length(), inclusive. */ int32_t TransliterationRule::getCursorPos(void) const { return cursorPos; } /** * Return the preceding context length. This method is needed to * support the Transliterator method * getMaximumContextLength(). Internally, this is * implemented as the anteContextLength, optionally plus one if * there is a start anchor. The one character anchor gap is * needed to make repeated incremental transliteration with * anchors work. */ int32_t TransliterationRule::getContextLength(void) const { return anteContextLength + ((flags & ANCHOR_START) ? 1 : 0); } /** * Internal method. Returns 8-bit index value for this rule. * This is the low byte of the first character of the key, * unless the first character of the key is a set. If it's a * set, or otherwise can match multiple keys, the index value is -1. */ int16_t TransliterationRule::getIndexValue() const { if (anteContextLength == pattern.length()) { // A pattern with just ante context {such as foo)>bar} can // match any key. return -1; } UChar32 c = pattern.char32At(anteContextLength); return (int16_t)(data->lookup(c) == NULL ? (c & 0xFF) : -1); } /** * Internal method. Returns true if this rule matches the given * index value. The index value is an 8-bit integer, 0..255, * representing the low byte of the first character of the key. * It matches this rule if it matches the first character of the * key, or if the first character of the key is a set, and the set * contains any character with a low byte equal to the index * value. If the rule contains only ante context, as in foo)>bar, * then it will match any key. */ UBool TransliterationRule::matchesIndexValue(uint8_t v) const { if (anteContextLength == pattern.length()) { // A pattern with just ante context {such as foo)>bar} can // match any key. return TRUE; } UChar32 c = pattern.char32At(anteContextLength); const UnicodeMatcher* matcher = data->lookup(c); return matcher == NULL ? (uint8_t(c) == v) : matcher->matchesIndexValue(v); } /** * Return true if this rule masks another rule. If r1 masks r2 then * r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks * r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y". * "[c]a>x" masks "[dc]a>y". */ UBool TransliterationRule::masks(const TransliterationRule& r2) const { /* Rule r1 masks rule r2 if the string formed of the * antecontext, key, and postcontext overlaps in the following * way: * * r1: aakkkpppp * r2: aaakkkkkpppp * ^ * * The strings must be aligned at the first character of the * key. The length of r1 to the left of the alignment point * must be <= the length of r2 to the left; ditto for the * right. The characters of r1 must equal (or be a superset * of) the corresponding characters of r2. The superset * operation should be performed to check for UnicodeSet * masking. * * Anchors: Two patterns that differ only in anchors only * mask one another if they are exactly equal, and r2 has * all the anchors r1 has (optionally, plus some). Here Y * means the row masks the column, N means it doesn't. * * ab ^ab ab$ ^ab$ * ab Y Y Y Y * ^ab N Y N Y * ab$ N N Y Y * ^ab$ N N N Y * * Post context: {a}b masks ab, but not vice versa, since {a}b * matches everything ab matches, and {a}b matches {|a|}b but ab * does not. Pre context is different (a{b} does not align with * ab). */ /* LIMITATION of the current mask algorithm: Some rule * maskings are currently not detected. For example, * "{Lu}]a>x" masks "A]a>y". This can be added later. TODO */ int32_t len = pattern.length(); int32_t left = anteContextLength; int32_t left2 = r2.anteContextLength; int32_t right = len - left; int32_t right2 = r2.pattern.length() - left2; // TODO Clean this up -- some logic might be combinable with the // next statement. // Test for anchor masking if (left == left2 && right == right2 && keyLength <= r2.keyLength && 0 == r2.pattern.compare(0, len, pattern)) { // The following boolean logic implements the table above return (flags == r2.flags) || (!(flags & ANCHOR_START) && !(flags & ANCHOR_END)) || ((r2.flags & ANCHOR_START) && (r2.flags & ANCHOR_END)); } return left <= left2 && (right < right2 || (right == right2 && keyLength <= r2.keyLength)) && 0 == r2.pattern.compare(left2 - left, len, pattern); } inline int32_t posBefore(const Replaceable& str, int32_t pos) { return (pos > 0) ? pos - UTF_CHAR_LENGTH(str.char32At(pos-1)) : pos - 1; } inline int32_t posAfter(const Replaceable& str, int32_t pos) { return (pos >= 0 && pos < str.length()) ? pos + UTF_CHAR_LENGTH(str.char32At(pos)) : pos + 1; } /** * Attempt a match and replacement at the given position. Return * the degree of match between this rule and the given text. The * degree of match may be mismatch, a partial match, or a full * match. A mismatch means at least one character of the text * does not match the context or key. A partial match means some * context and key characters match, but the text is not long * enough to match all of them. A full match means all context * and key characters match. * * If a full match is obtained, perform a replacement, update pos, * and return U_MATCH. Otherwise both text and pos are unchanged. * * @param text the text * @param pos the position indices * @param incremental if TRUE, test for partial matches that may * be completed by additional text inserted at pos.limit. * @return one of U_MISMATCH, * U_PARTIAL_MATCH, or U_MATCH. If * incremental is FALSE then U_PARTIAL_MATCH will not be returned. */ UMatchDegree TransliterationRule::matchAndReplace(Replaceable& text, UTransPosition& pos, UBool incremental) const { // Matching and replacing are done in one method because the // replacement operation needs information obtained during the // match. Another way to do this is to have the match method // create a match result struct with relevant offsets, and to pass // this into the replace method. // ============================ MATCH =========================== // Record the actual positions, in the text, of the segments. // These are recorded in the order that they occur in the pattern. // segPos[] is an array of 2*SEGMENTS_COUNT elements. It // records the position in 'text' of each segment boundary, in // the order that they occur in 'pattern'. int32_t _segPos[2*MAX_STATIC_SEGS]; int32_t *segPos = _segPos; if (segments != 0 && SEGMENTS_COUNT(segments) > MAX_STATIC_SEGS) { segPos = new int32_t[2*SEGMENTS_COUNT(segments)]; } // iSeg is an index into segments[] that accesses the first // array. As such it ranges from 0 to SEGMENTS_COUNT*2 - 1. // When indexing into segments[] FIRST_SEG_POS_INDEX must be // added to it: segments[FIRST_SEG_POS_INDEX + iSeg]. int32_t iSeg = firstKeySeg - 1; // nextSegPos is an offset in 'pattern'. When the cursor is // equal to nextSegPos, we are at a segment boundary, and we // record the position in the real text in segPos[]. int32_t nextSegPos = (iSeg >= 0) ? segments[FIRST_SEG_POS_INDEX+iSeg] : -1; UMatchDegree m; int32_t lenDelta, keyLimit; // ------------------------ Ante Context ------------------------ // A mismatch in the ante context, or with the start anchor, // is an outright U_MISMATCH regardless of whether we are // incremental or not. int32_t oText; // offset into 'text' int32_t newStart = 0; int32_t minOText; int32_t oPattern; // offset into 'pattern' // Backup oText by one oText = posBefore(text, pos.start); for (oPattern=anteContextLength-1; oPattern>=0; --oPattern) { UChar keyChar = pattern.charAt(oPattern); const UnicodeMatcher* matcher = data->lookup(keyChar); if (matcher == 0) { if (oText >= pos.contextStart && keyChar == text.charAt(oText)) { --oText; } else { m = U_MISMATCH; goto exit; } } else { // Subtract 1 from contextStart to make it a reverse limit if (matcher->matches(text, oText, pos.contextStart-1, FALSE) != U_MATCH) { m = U_MISMATCH; goto exit; } } while (nextSegPos == oPattern) { segPos[iSeg] = oText; if (oText >= 0) { segPos[iSeg] += UTF_CHAR_LENGTH(text.char32At(oText)); } else { ++segPos[iSeg]; } nextSegPos = (--iSeg >= FIRST_SEG_POS_INDEX) ? segments[FIRST_SEG_POS_INDEX+iSeg] : -1; } } minOText = posAfter(text, oText); // ------------------------ Start Anchor ------------------------ if ((flags & ANCHOR_START) && oText != posBefore(text, pos.contextStart)) { m = U_MISMATCH; goto exit; } // -------------------- Key and Post Context -------------------- iSeg = firstKeySeg; nextSegPos = (iSeg >= 0) ? (segments[FIRST_SEG_POS_INDEX+iSeg] - anteContextLength) : -1; oPattern = 0; oText = pos.start; keyLimit = 0; while (oPattern < (pattern.length() - anteContextLength)) { if (incremental && oText == pos.limit) { // We've reached the limit without a mismatch and // without completing our match. m = U_PARTIAL_MATCH; goto exit; } if (oText == pos.limit && oPattern < keyLength) { // We're still in the pattern key but we're entering the // post context. m = U_MISMATCH; goto exit; } while (oPattern == nextSegPos) { segPos[iSeg] = oText; nextSegPos = segments[FIRST_SEG_POS_INDEX+(++iSeg)] - anteContextLength; } if (oPattern == keyLength) { keyLimit = oText; } UChar keyChar = pattern.charAt(anteContextLength + oPattern++); const UnicodeMatcher* matcher = data->lookup(keyChar); if (matcher == 0) { // Don't need the oText < pos.contextLimit check if // incremental is TRUE (because it's done above); do need // it otherwise. if (oText < pos.contextLimit && keyChar == text.charAt(oText)) { ++oText; } else { m = U_MISMATCH; goto exit; } } else { m = matcher->matches(text, oText, pos.contextLimit, incremental); if (m != U_MATCH) { goto exit; } } } while (oPattern == nextSegPos) { segPos[iSeg] = oText; nextSegPos = segments[FIRST_SEG_POS_INDEX+(++iSeg)] - anteContextLength; } if (oPattern == keyLength) { keyLimit = oText; } // ------------------------- Stop Anchor ------------------------ if ((flags & ANCHOR_END) != 0) { if (oText != pos.contextLimit) { return U_MISMATCH; } if (incremental) { return U_PARTIAL_MATCH; } } // =========================== REPLACE ========================== // We have a full match. The key is between pos.start and // keyLimit. Segment indices have been recorded in segPos[]. // Perform a replacement. if (segments == NULL) { text.handleReplaceBetween(pos.start, keyLimit, output); lenDelta = output.length() - (keyLimit - pos.start); if (cursorPos >= 0 && cursorPos <= output.length()) { // Within the output string, the cursor refers to 16-bit code units newStart = pos.start + cursorPos; } else { newStart = pos.start; int32_t n = cursorPos; // Outside the output string, cursorPos counts code points while (n > 0) { newStart += UTF_CHAR_LENGTH(text.char32At(newStart)); --n; } while (n < 0) { newStart -= UTF_CHAR_LENGTH(text.char32At(newStart-1)); ++n; } } } else { /* When there are segments to be copied, use the Replaceable.copy() * API in order to retain out-of-band data. Copy everything to the * point after the key, then delete the key. That is, copy things * into offset + keyLength, then replace offset .. offset + * keyLength with the empty string. * * Minimize the number of calls to Replaceable.replace() and * Replaceable.copy(). */ int32_t dest = keyLimit; // copy new text to here UnicodeString buf; int oOutput; // offset into 'output' for (oOutput=0; oOutputlookupSegmentReference(c); if (b < 0) { // Accumulate straight (non-segment) text. buf.append(c); } else { // Insert any accumulated straight text. if (buf.length() > 0) { text.handleReplaceBetween(dest, dest, buf); dest += buf.length(); buf.remove(); } // Copy segment with out-of-band data b *= 2; int32_t start = segPos[SEGMENTS_NUM(segments,b)]; int32_t limit = segPos[SEGMENTS_NUM(segments,b+1)]; text.copy(start, limit, dest); dest += limit - start; } oOutput += UTF_CHAR_LENGTH(c); } // Insert any accumulated straight text. if (buf.length() > 0) { text.handleReplaceBetween(dest, dest, buf); dest += buf.length(); } if (oOutput == cursorPos) { // Record the position of the cursor newStart = dest - (keyLimit - pos.start); } // Delete the key buf.remove(); text.handleReplaceBetween(pos.start, keyLimit, buf); lenDelta = dest - keyLimit - (keyLimit - pos.start); // Handle cursor in postContext if (cursorPos > output.length()) { newStart = pos.start + (dest - keyLimit); int32_t n = cursorPos - output.length(); // cursorPos counts code points while (n > 0) { newStart += UTF_CHAR_LENGTH(text.char32At(newStart)); n--; } } } oText += lenDelta; pos.limit += lenDelta; pos.contextLimit += lenDelta; // Restrict new value of start to [minOText, min(oText, pos.limit)]. pos.start = uprv_max(minOText, uprv_min(uprv_min(oText, pos.limit), newStart)); m = U_MATCH; exit: if (segPos != _segPos) { delete[] segPos; } return m; } /** * Append a character to a rule that is being built up. To flush * the quoteBuf to rule, make one final call with isLiteral == TRUE. * If there is no final character, pass in (UChar32)-1 as c. * @param rule the string to append the character to * @param c the character to append, or (UChar32)-1 if none. * @param isLiteral if true, then the given character should not be * quoted or escaped. Usually this means it is a syntactic element * such as > or $ * @param escapeUnprintable if true, then unprintable characters * should be escaped using \uxxxx or \Uxxxxxxxx. These escapes will * appear outside of quotes. * @param quoteBuf a buffer which is used to build up quoted * substrings. The caller should initially supply an empty buffer, * and thereafter should not modify the buffer. The buffer should be * cleared out by, at the end, calling this method with a literal * character. */ void TransliterationRule::appendToRule(UnicodeString& rule, UChar32 c, UBool isLiteral, UBool escapeUnprintable, UnicodeString& quoteBuf) { // If we are escaping unprintables, then escape them outside // quotes. \u and \U are not recognized within quotes. The same // logic applies to literals, but literals are never escaped. if (isLiteral || (escapeUnprintable && UnicodeSet::_isUnprintable(c))) { if (quoteBuf.length() > 0) { // We prefer backslash APOSTROPHE to double APOSTROPHE // (more readable, less similar to ") so if there are // double APOSTROPHEs at the ends, we pull them outside // of the quote. // If the first thing in the quoteBuf is APOSTROPHE // (doubled) then pull it out. while (quoteBuf.length() >= 2 && quoteBuf.charAt(0) == APOSTROPHE && quoteBuf.charAt(1) == APOSTROPHE) { rule.append(BACKSLASH).append(APOSTROPHE); quoteBuf.remove(0, 2); } // If the last thing in the quoteBuf is APOSTROPHE // (doubled) then remove and count it and add it after. int32_t trailingCount = 0; while (quoteBuf.length() >= 2 && quoteBuf.charAt(quoteBuf.length()-2) == APOSTROPHE && quoteBuf.charAt(quoteBuf.length()-1) == APOSTROPHE) { quoteBuf.truncate(quoteBuf.length()-2); ++trailingCount; } if (quoteBuf.length() > 0) { rule.append(APOSTROPHE); rule.append(quoteBuf); rule.append(APOSTROPHE); quoteBuf.truncate(0); } while (trailingCount-- > 0) { rule.append(BACKSLASH).append(APOSTROPHE); } } if (c != (UChar32)-1) { if (!escapeUnprintable || !UnicodeSet::_escapeUnprintable(rule, c)) { rule.append(c); } } } // Escape ' and '\' and don't begin a quote just for them else if (quoteBuf.length() == 0 && (c == APOSTROPHE || c == BACKSLASH)) { rule.append(BACKSLASH); rule.append(c); } // Specials (printable ascii that isn't [0-9a-zA-Z]) and // whitespace need quoting. Also append stuff to quotes if we are // building up a quoted substring already. else if (quoteBuf.length() > 0 || (c >= 0x0021 && c <= 0x007E && !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) || Unicode::isWhitespace(c)) { quoteBuf.append(c); // Double ' within a quote if (c == APOSTROPHE) { quoteBuf.append(c); } } // Otherwise just append else { rule.append(c); } } void TransliterationRule::appendToRule(UnicodeString& rule, const UnicodeString& text, UBool isLiteral, UBool escapeUnprintable, UnicodeString& quoteBuf) { for (int32_t i=0; i MAX_STATIC_SEGS) { isOpen = new UBool[2*SEGMENTS_COUNT(segments)]; } for (i=0; i<2*SEGMENTS_COUNT(segments); i+=2) { isOpen[SEGMENTS_NUM(segments,i) ] = TRUE; isOpen[SEGMENTS_NUM(segments,i+1)] = FALSE; } nextSeg = segments[++iseg]; } // Accumulate special characters (and non-specials following them) // into quoteBuf. Append quoteBuf, within single quotes, when // a non-quoted element must be inserted. UnicodeString str, quoteBuf; // Do not emit the braces '{' '}' around the pattern if there // is neither anteContext nor postContext. UBool emitBraces = (anteContextLength != 0) || (keyLength != pattern.length()); // Emit start anchor if ((flags & ANCHOR_START) != 0) { rule.append((UChar)94/*^*/); } // Emit the input pattern for (i=0; ilookup(c); if (matcher == 0) { appendToRule(rule, c, FALSE, escapeUnprintable, quoteBuf); } else { appendToRule(rule, matcher->toPattern(str, escapeUnprintable), TRUE, escapeUnprintable, quoteBuf); } } if (i == nextSeg) { // assert(!isOpen[iSeg-FIRST_SEG_POS_INDEX]); appendToRule(rule, (UChar)0x0029 /*)*/, TRUE, escapeUnprintable, quoteBuf); } if (emitBraces && i == (anteContextLength + keyLength)) { appendToRule(rule, (UChar)0x007D /*}*/, TRUE, escapeUnprintable, quoteBuf); } // Emit end anchor if ((flags & ANCHOR_END) != 0) { rule.append((UChar)36/*$*/); } appendToRule(rule, UnicodeString(" > ", ""), TRUE, escapeUnprintable, quoteBuf); // Emit the output pattern // Handle a cursor preceding the output int32_t cursor = cursorPos; if (cursor < 0) { while (cursor++ < 0) { appendToRule(rule, (UChar) 0x0040 /*@*/, TRUE, escapeUnprintable, quoteBuf); } // Fall through and append '|' below } for (i=0; ilookupSegmentReference(c); if (seg < 0) { appendToRule(rule, c, FALSE, escapeUnprintable, quoteBuf); } else { ++seg; // make 1-based appendToRule(rule, (UChar)0x20, TRUE, escapeUnprintable, quoteBuf); rule.append((UChar)0x24 /*$*/); UBool show = FALSE; // TRUE if we should display digits for (int32_t p=9; p>=0; --p) { int32_t d = seg / POW10[p]; seg -= d * POW10[p]; if (d != 0 || p == 0) { show = TRUE; } if (show) { rule.append((UChar)(48+d)); } } rule.append((UChar)0x20); } } // Handle a cursor after the output. Use > rather than >= because // if cursor == output.length() it is at the end of the output, // which is the default position, so we need not emit it. if (cursor > output.length()) { cursor -= output.length(); while (cursor-- > 0) { appendToRule(rule, (UChar) 0x0040 /*@*/, TRUE, escapeUnprintable, quoteBuf); } appendToRule(rule, (UChar) 0x007C /*|*/, TRUE, escapeUnprintable, quoteBuf); } appendToRule(rule, (UChar) 0x003B /*;*/, TRUE, escapeUnprintable, quoteBuf); if (isOpen != _isOpen) { delete[] isOpen; } return rule; } U_NAMESPACE_END //eof