/*
**********************************************************************
* Copyright (C) 1999-2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/17/99 aliu Creation.
**********************************************************************
*/
#include "rbt_rule.h"
#include "unicode/rep.h"
#include "rbt_data.h"
#include "unicode/unifilt.h"
#include "unicode/uniset.h"
#include "unicode/unicode.h"
#include "cmemory.h"
static const UChar APOSTROPHE = 0x0027; // '\''
static const UChar BACKSLASH = 0x005C; // '\'
// To process segments we need to allocate arrays of integers. We use
// stack storage as long as the segment count is <= MAX_STATIC_SEGS.
// Otherwise, we allocate heap space.
#define MAX_STATIC_SEGS 20
// Macros for accessing the array of integers encoding the position of
// SEGMENTS_COUNT number of segments, n (half the number of parens)
// SEGMENTS_LEN length of the segments array (number of elements)
// SEGMENTS_POS position in 'pattern' of parenthesis i, where i=0..2n-1
// SEGMENTS_NUM index into segments to access POS of $1.open,
// $1.close, $2.open, $2.close,.., $n.open, $n.close
// Relative to FIRST_SEG_POS_INDEX. Ranges from 0..2n-1.
#define FIRST_SEG_POS_INDEX 2
#define SEGMENTS_COUNT(x) x[0]
#define SEGMENTS_LEN(x) (SEGMENTS_COUNT(x)*4+4)
#define SEGMENTS_POS(x,i) x[FIRST_SEG_POS_INDEX+i]
#define SEGMENTS_NUM(x,i) (x[x[1]+i]-FIRST_SEG_POS_INDEX)
U_NAMESPACE_BEGIN
const UChar TransliterationRule::ETHER = 0xFFFF;
/**
* Construct a new rule with the given input, output text, and other
* attributes. A cursor position may be specified for the output text.
* @param input input string, including key and optional ante and
* post context
* @param anteContextPos offset into input to end of ante context, or -1 if
* none. Must be <= input.length() if not -1.
* @param postContextPos offset into input to start of post context, or -1
* if none. Must be <= input.length() if not -1, and must be >=
* anteContextPos.
* @param output output string
* @param cursorPosition offset into output at which cursor is located, or -1 if
* none. If less than zero, then the cursor is placed after the
* output
; that is, -1 is equivalent to
* output.length()
. If greater than
* output.length()
then an exception is thrown.
* @param adoptedSegs array of 2n integers. Each of n pairs consists of offset,
* limit for a segment of the input string. Characters in the output string
* refer to these segments if they are in a special range determined by the
* associated RuleBasedTransliterator.Data object. May be null if there are
* no segments.
* @param anchorStart TRUE if the the rule is anchored on the left to
* the context start
* @param anchorEnd TRUE if the rule is anchored on the right to the
* context limit
*/
TransliterationRule::TransliterationRule(const UnicodeString& input,
int32_t anteContextPos, int32_t postContextPos,
const UnicodeString& outputStr,
int32_t cursorPosition, int32_t cursorOffset,
int32_t* adoptedSegs,
UBool anchorStart, UBool anchorEnd,
const TransliterationRuleData* theData,
UErrorCode& status) :
data(theData) {
if (U_FAILURE(status)) {
return;
}
// Do range checks only when warranted to save time
if (anteContextPos < 0) {
anteContextLength = 0;
} else {
if (anteContextPos > input.length()) {
// throw new IllegalArgumentException("Invalid ante context");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
anteContextLength = anteContextPos;
}
if (postContextPos < 0) {
keyLength = input.length() - anteContextLength;
} else {
if (postContextPos < anteContextLength ||
postContextPos > input.length()) {
// throw new IllegalArgumentException("Invalid post context");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
keyLength = postContextPos - anteContextLength;
}
if (cursorPosition < 0) {
cursorPosition = outputStr.length();
} else {
if (cursorPosition > outputStr.length()) {
// throw new IllegalArgumentException("Invalid cursor position");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
}
this->cursorPos = cursorPosition + cursorOffset;
this->output = outputStr;
// We don't validate the segments array. The caller must
// guarantee that the segments are well-formed.
this->segments = adoptedSegs;
// Find the position of the first segment index that is after the
// anteContext (in the key). Note that this may be a start or a
// limit index. If all segments are in the ante context,
// firstKeySeg should point past the last segment -- that is, it
// should point at the end marker, which is -1. This allows the
// code to back up by one to obtain the last ante context segment.
firstKeySeg = -1;
if (segments != 0) {
firstKeySeg = FIRST_SEG_POS_INDEX;
while (segments[firstKeySeg] >= 0 &&
segments[firstKeySeg] < anteContextLength) {
++firstKeySeg;
}
firstKeySeg -= FIRST_SEG_POS_INDEX; // make relative to FSPI
}
pattern = input;
flags = 0;
if (anchorStart) {
flags |= ANCHOR_START;
}
if (anchorEnd) {
flags |= ANCHOR_END;
}
}
/**
* Copy constructor.
*/
/* Ram: Reordered member initializers to match declaration order and make GCC happy */
TransliterationRule::TransliterationRule(TransliterationRule& other) :
pattern(other.pattern),
output(other.output),
firstKeySeg(other.firstKeySeg),
anteContextLength(other.anteContextLength),
keyLength(other.keyLength),
cursorPos(other.cursorPos),
flags(other.flags),
data(other.data) {
segments = 0;
if (other.segments != 0) {
int32_t len = SEGMENTS_LEN(other.segments);
segments = new int32_t[len];
uprv_memcpy(segments, other.segments, len*sizeof(segments[0]));
}
}
TransliterationRule::~TransliterationRule() {
delete[] segments;
}
/**
* Return the position of the cursor within the output string.
* @return a value from 0 to getOutput().length()
, inclusive.
*/
int32_t TransliterationRule::getCursorPos(void) const {
return cursorPos;
}
/**
* Return the preceding context length. This method is needed to
* support the Transliterator
method
* getMaximumContextLength()
. Internally, this is
* implemented as the anteContextLength, optionally plus one if
* there is a start anchor. The one character anchor gap is
* needed to make repeated incremental transliteration with
* anchors work.
*/
int32_t TransliterationRule::getContextLength(void) const {
return anteContextLength + ((flags & ANCHOR_START) ? 1 : 0);
}
/**
* Internal method. Returns 8-bit index value for this rule.
* This is the low byte of the first character of the key,
* unless the first character of the key is a set. If it's a
* set, or otherwise can match multiple keys, the index value is -1.
*/
int16_t TransliterationRule::getIndexValue() const {
if (anteContextLength == pattern.length()) {
// A pattern with just ante context {such as foo)>bar} can
// match any key.
return -1;
}
UChar32 c = pattern.char32At(anteContextLength);
return (int16_t)(data->lookup(c) == NULL ? (c & 0xFF) : -1);
}
/**
* Internal method. Returns true if this rule matches the given
* index value. The index value is an 8-bit integer, 0..255,
* representing the low byte of the first character of the key.
* It matches this rule if it matches the first character of the
* key, or if the first character of the key is a set, and the set
* contains any character with a low byte equal to the index
* value. If the rule contains only ante context, as in foo)>bar,
* then it will match any key.
*/
UBool TransliterationRule::matchesIndexValue(uint8_t v) const {
if (anteContextLength == pattern.length()) {
// A pattern with just ante context {such as foo)>bar} can
// match any key.
return TRUE;
}
UChar32 c = pattern.char32At(anteContextLength);
const UnicodeMatcher* matcher = data->lookup(c);
return matcher == NULL ? (uint8_t(c) == v) :
matcher->matchesIndexValue(v);
}
/**
* Return true if this rule masks another rule. If r1 masks r2 then
* r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks
* r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y".
* "[c]a>x" masks "[dc]a>y".
*/
UBool TransliterationRule::masks(const TransliterationRule& r2) const {
/* Rule r1 masks rule r2 if the string formed of the
* antecontext, key, and postcontext overlaps in the following
* way:
*
* r1: aakkkpppp
* r2: aaakkkkkpppp
* ^
*
* The strings must be aligned at the first character of the
* key. The length of r1 to the left of the alignment point
* must be <= the length of r2 to the left; ditto for the
* right. The characters of r1 must equal (or be a superset
* of) the corresponding characters of r2. The superset
* operation should be performed to check for UnicodeSet
* masking.
*
* Anchors: Two patterns that differ only in anchors only
* mask one another if they are exactly equal, and r2 has
* all the anchors r1 has (optionally, plus some). Here Y
* means the row masks the column, N means it doesn't.
*
* ab ^ab ab$ ^ab$
* ab Y Y Y Y
* ^ab N Y N Y
* ab$ N N Y Y
* ^ab$ N N N Y
*
* Post context: {a}b masks ab, but not vice versa, since {a}b
* matches everything ab matches, and {a}b matches {|a|}b but ab
* does not. Pre context is different (a{b} does not align with
* ab).
*/
/* LIMITATION of the current mask algorithm: Some rule
* maskings are currently not detected. For example,
* "{Lu}]a>x" masks "A]a>y". This can be added later. TODO
*/
int32_t len = pattern.length();
int32_t left = anteContextLength;
int32_t left2 = r2.anteContextLength;
int32_t right = len - left;
int32_t right2 = r2.pattern.length() - left2;
// TODO Clean this up -- some logic might be combinable with the
// next statement.
// Test for anchor masking
if (left == left2 && right == right2 &&
keyLength <= r2.keyLength &&
0 == r2.pattern.compare(0, len, pattern)) {
// The following boolean logic implements the table above
return (flags == r2.flags) ||
(!(flags & ANCHOR_START) && !(flags & ANCHOR_END)) ||
((r2.flags & ANCHOR_START) && (r2.flags & ANCHOR_END));
}
return left <= left2 &&
(right < right2 ||
(right == right2 && keyLength <= r2.keyLength)) &&
0 == r2.pattern.compare(left2 - left, len, pattern);
}
inline int32_t posBefore(const Replaceable& str, int32_t pos) {
return (pos > 0) ?
pos - UTF_CHAR_LENGTH(str.char32At(pos-1)) :
pos - 1;
}
inline int32_t posAfter(const Replaceable& str, int32_t pos) {
return (pos >= 0 && pos < str.length()) ?
pos + UTF_CHAR_LENGTH(str.char32At(pos)) :
pos + 1;
}
/**
* Attempt a match and replacement at the given position. Return
* the degree of match between this rule and the given text. The
* degree of match may be mismatch, a partial match, or a full
* match. A mismatch means at least one character of the text
* does not match the context or key. A partial match means some
* context and key characters match, but the text is not long
* enough to match all of them. A full match means all context
* and key characters match.
*
* If a full match is obtained, perform a replacement, update pos,
* and return U_MATCH. Otherwise both text and pos are unchanged.
*
* @param text the text
* @param pos the position indices
* @param incremental if TRUE, test for partial matches that may
* be completed by additional text inserted at pos.limit.
* @return one of U_MISMATCH
,
* U_PARTIAL_MATCH
, or U_MATCH
. If
* incremental is FALSE then U_PARTIAL_MATCH will not be returned.
*/
UMatchDegree TransliterationRule::matchAndReplace(Replaceable& text,
UTransPosition& pos,
UBool incremental) const {
// Matching and replacing are done in one method because the
// replacement operation needs information obtained during the
// match. Another way to do this is to have the match method
// create a match result struct with relevant offsets, and to pass
// this into the replace method.
// ============================ MATCH ===========================
// Record the actual positions, in the text, of the segments.
// These are recorded in the order that they occur in the pattern.
// segPos[] is an array of 2*SEGMENTS_COUNT elements. It
// records the position in 'text' of each segment boundary, in
// the order that they occur in 'pattern'.
int32_t _segPos[2*MAX_STATIC_SEGS];
int32_t *segPos = _segPos;
if (segments != 0 && SEGMENTS_COUNT(segments) > MAX_STATIC_SEGS) {
segPos = new int32_t[2*SEGMENTS_COUNT(segments)];
}
// iSeg is an index into segments[] that accesses the first
// array. As such it ranges from 0 to SEGMENTS_COUNT*2 - 1.
// When indexing into segments[] FIRST_SEG_POS_INDEX must be
// added to it: segments[FIRST_SEG_POS_INDEX + iSeg].
int32_t iSeg = firstKeySeg - 1;
// nextSegPos is an offset in 'pattern'. When the cursor is
// equal to nextSegPos, we are at a segment boundary, and we
// record the position in the real text in segPos[].
int32_t nextSegPos = (iSeg >= 0) ? segments[FIRST_SEG_POS_INDEX+iSeg] : -1;
UMatchDegree m;
int32_t lenDelta, keyLimit;
// ------------------------ Ante Context ------------------------
// A mismatch in the ante context, or with the start anchor,
// is an outright U_MISMATCH regardless of whether we are
// incremental or not.
int32_t oText; // offset into 'text'
int32_t newStart = 0;
int32_t minOText;
int32_t oPattern; // offset into 'pattern'
// Backup oText by one
oText = posBefore(text, pos.start);
for (oPattern=anteContextLength-1; oPattern>=0; --oPattern) {
UChar keyChar = pattern.charAt(oPattern);
const UnicodeMatcher* matcher = data->lookup(keyChar);
if (matcher == 0) {
if (oText >= pos.contextStart &&
keyChar == text.charAt(oText)) {
--oText;
} else {
m = U_MISMATCH;
goto exit;
}
} else {
// Subtract 1 from contextStart to make it a reverse limit
if (matcher->matches(text, oText, pos.contextStart-1, FALSE)
!= U_MATCH) {
m = U_MISMATCH;
goto exit;
}
}
while (nextSegPos == oPattern) {
segPos[iSeg] = oText;
if (oText >= 0) {
segPos[iSeg] += UTF_CHAR_LENGTH(text.char32At(oText));
} else {
++segPos[iSeg];
}
nextSegPos = (--iSeg >= FIRST_SEG_POS_INDEX) ? segments[FIRST_SEG_POS_INDEX+iSeg] : -1;
}
}
minOText = posAfter(text, oText);
// ------------------------ Start Anchor ------------------------
if ((flags & ANCHOR_START) && oText != posBefore(text, pos.contextStart)) {
m = U_MISMATCH;
goto exit;
}
// -------------------- Key and Post Context --------------------
iSeg = firstKeySeg;
nextSegPos = (iSeg >= 0) ? (segments[FIRST_SEG_POS_INDEX+iSeg] - anteContextLength) : -1;
oPattern = 0;
oText = pos.start;
keyLimit = 0;
while (oPattern < (pattern.length() - anteContextLength)) {
if (incremental && oText == pos.limit) {
// We've reached the limit without a mismatch and
// without completing our match.
m = U_PARTIAL_MATCH;
goto exit;
}
if (oText == pos.limit && oPattern < keyLength) {
// We're still in the pattern key but we're entering the
// post context.
m = U_MISMATCH;
goto exit;
}
while (oPattern == nextSegPos) {
segPos[iSeg] = oText;
nextSegPos = segments[FIRST_SEG_POS_INDEX+(++iSeg)] - anteContextLength;
}
if (oPattern == keyLength) {
keyLimit = oText;
}
UChar keyChar = pattern.charAt(anteContextLength + oPattern++);
const UnicodeMatcher* matcher = data->lookup(keyChar);
if (matcher == 0) {
// Don't need the oText < pos.contextLimit check if
// incremental is TRUE (because it's done above); do need
// it otherwise.
if (oText < pos.contextLimit &&
keyChar == text.charAt(oText)) {
++oText;
} else {
m = U_MISMATCH;
goto exit;
}
} else {
m = matcher->matches(text, oText, pos.contextLimit, incremental);
if (m != U_MATCH) {
goto exit;
}
}
}
while (oPattern == nextSegPos) {
segPos[iSeg] = oText;
nextSegPos = segments[FIRST_SEG_POS_INDEX+(++iSeg)] - anteContextLength;
}
if (oPattern == keyLength) {
keyLimit = oText;
}
// ------------------------- Stop Anchor ------------------------
if ((flags & ANCHOR_END) != 0) {
if (oText != pos.contextLimit) {
return U_MISMATCH;
}
if (incremental) {
return U_PARTIAL_MATCH;
}
}
// =========================== REPLACE ==========================
// We have a full match. The key is between pos.start and
// keyLimit. Segment indices have been recorded in segPos[].
// Perform a replacement.
if (segments == NULL) {
text.handleReplaceBetween(pos.start, keyLimit, output);
lenDelta = output.length() - (keyLimit - pos.start);
if (cursorPos >= 0 && cursorPos <= output.length()) {
// Within the output string, the cursor refers to 16-bit code units
newStart = pos.start + cursorPos;
} else {
newStart = pos.start;
int32_t n = cursorPos;
// Outside the output string, cursorPos counts code points
while (n > 0) {
newStart += UTF_CHAR_LENGTH(text.char32At(newStart));
--n;
}
while (n < 0) {
newStart -= UTF_CHAR_LENGTH(text.char32At(newStart-1));
++n;
}
}
} else {
/* When there are segments to be copied, use the Replaceable.copy()
* API in order to retain out-of-band data. Copy everything to the
* point after the key, then delete the key. That is, copy things
* into offset + keyLength, then replace offset .. offset +
* keyLength with the empty string.
*
* Minimize the number of calls to Replaceable.replace() and
* Replaceable.copy().
*/
int32_t dest = keyLimit; // copy new text to here
UnicodeString buf;
int oOutput; // offset into 'output'
for (oOutput=0; oOutputlookupSegmentReference(c);
if (b < 0) {
// Accumulate straight (non-segment) text.
buf.append(c);
} else {
// Insert any accumulated straight text.
if (buf.length() > 0) {
text.handleReplaceBetween(dest, dest, buf);
dest += buf.length();
buf.remove();
}
// Copy segment with out-of-band data
b *= 2;
int32_t start = segPos[SEGMENTS_NUM(segments,b)];
int32_t limit = segPos[SEGMENTS_NUM(segments,b+1)];
text.copy(start, limit, dest);
dest += limit - start;
}
oOutput += UTF_CHAR_LENGTH(c);
}
// Insert any accumulated straight text.
if (buf.length() > 0) {
text.handleReplaceBetween(dest, dest, buf);
dest += buf.length();
}
if (oOutput == cursorPos) {
// Record the position of the cursor
newStart = dest - (keyLimit - pos.start);
}
// Delete the key
buf.remove();
text.handleReplaceBetween(pos.start, keyLimit, buf);
lenDelta = dest - keyLimit - (keyLimit - pos.start);
// Handle cursor in postContext
if (cursorPos > output.length()) {
newStart = pos.start + (dest - keyLimit);
int32_t n = cursorPos - output.length();
// cursorPos counts code points
while (n > 0) {
newStart += UTF_CHAR_LENGTH(text.char32At(newStart));
n--;
}
}
}
oText += lenDelta;
pos.limit += lenDelta;
pos.contextLimit += lenDelta;
// Restrict new value of start to [minOText, min(oText, pos.limit)].
pos.start = uprv_max(minOText, uprv_min(uprv_min(oText, pos.limit), newStart));
m = U_MATCH;
exit:
if (segPos != _segPos) {
delete[] segPos;
}
return m;
}
/**
* Append a character to a rule that is being built up. To flush
* the quoteBuf to rule, make one final call with isLiteral == TRUE.
* If there is no final character, pass in (UChar32)-1 as c.
* @param rule the string to append the character to
* @param c the character to append, or (UChar32)-1 if none.
* @param isLiteral if true, then the given character should not be
* quoted or escaped. Usually this means it is a syntactic element
* such as > or $
* @param escapeUnprintable if true, then unprintable characters
* should be escaped using \uxxxx or \Uxxxxxxxx. These escapes will
* appear outside of quotes.
* @param quoteBuf a buffer which is used to build up quoted
* substrings. The caller should initially supply an empty buffer,
* and thereafter should not modify the buffer. The buffer should be
* cleared out by, at the end, calling this method with a literal
* character.
*/
void TransliterationRule::appendToRule(UnicodeString& rule,
UChar32 c,
UBool isLiteral,
UBool escapeUnprintable,
UnicodeString& quoteBuf) {
// If we are escaping unprintables, then escape them outside
// quotes. \u and \U are not recognized within quotes. The same
// logic applies to literals, but literals are never escaped.
if (isLiteral ||
(escapeUnprintable && UnicodeSet::_isUnprintable(c))) {
if (quoteBuf.length() > 0) {
// We prefer backslash APOSTROPHE to double APOSTROPHE
// (more readable, less similar to ") so if there are
// double APOSTROPHEs at the ends, we pull them outside
// of the quote.
// If the first thing in the quoteBuf is APOSTROPHE
// (doubled) then pull it out.
while (quoteBuf.length() >= 2 &&
quoteBuf.charAt(0) == APOSTROPHE &&
quoteBuf.charAt(1) == APOSTROPHE) {
rule.append(BACKSLASH).append(APOSTROPHE);
quoteBuf.remove(0, 2);
}
// If the last thing in the quoteBuf is APOSTROPHE
// (doubled) then remove and count it and add it after.
int32_t trailingCount = 0;
while (quoteBuf.length() >= 2 &&
quoteBuf.charAt(quoteBuf.length()-2) == APOSTROPHE &&
quoteBuf.charAt(quoteBuf.length()-1) == APOSTROPHE) {
quoteBuf.truncate(quoteBuf.length()-2);
++trailingCount;
}
if (quoteBuf.length() > 0) {
rule.append(APOSTROPHE);
rule.append(quoteBuf);
rule.append(APOSTROPHE);
quoteBuf.truncate(0);
}
while (trailingCount-- > 0) {
rule.append(BACKSLASH).append(APOSTROPHE);
}
}
if (c != (UChar32)-1) {
if (!escapeUnprintable || !UnicodeSet::_escapeUnprintable(rule, c)) {
rule.append(c);
}
}
}
// Escape ' and '\' and don't begin a quote just for them
else if (quoteBuf.length() == 0 &&
(c == APOSTROPHE || c == BACKSLASH)) {
rule.append(BACKSLASH);
rule.append(c);
}
// Specials (printable ascii that isn't [0-9a-zA-Z]) and
// whitespace need quoting. Also append stuff to quotes if we are
// building up a quoted substring already.
else if (quoteBuf.length() > 0 ||
(c >= 0x0021 && c <= 0x007E &&
!((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
(c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
(c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) ||
Unicode::isWhitespace(c)) {
quoteBuf.append(c);
// Double ' within a quote
if (c == APOSTROPHE) {
quoteBuf.append(c);
}
}
// Otherwise just append
else {
rule.append(c);
}
}
void TransliterationRule::appendToRule(UnicodeString& rule,
const UnicodeString& text,
UBool isLiteral,
UBool escapeUnprintable,
UnicodeString& quoteBuf) {
for (int32_t i=0; i MAX_STATIC_SEGS) {
isOpen = new UBool[2*SEGMENTS_COUNT(segments)];
}
for (i=0; i<2*SEGMENTS_COUNT(segments); i+=2) {
isOpen[SEGMENTS_NUM(segments,i) ] = TRUE;
isOpen[SEGMENTS_NUM(segments,i+1)] = FALSE;
}
nextSeg = segments[++iseg];
}
// Accumulate special characters (and non-specials following them)
// into quoteBuf. Append quoteBuf, within single quotes, when
// a non-quoted element must be inserted.
UnicodeString str, quoteBuf;
// Do not emit the braces '{' '}' around the pattern if there
// is neither anteContext nor postContext.
UBool emitBraces =
(anteContextLength != 0) || (keyLength != pattern.length());
// Emit start anchor
if ((flags & ANCHOR_START) != 0) {
rule.append((UChar)94/*^*/);
}
// Emit the input pattern
for (i=0; ilookup(c);
if (matcher == 0) {
appendToRule(rule, c, FALSE, escapeUnprintable, quoteBuf);
} else {
appendToRule(rule, matcher->toPattern(str, escapeUnprintable),
TRUE, escapeUnprintable, quoteBuf);
}
}
if (i == nextSeg) {
// assert(!isOpen[iSeg-FIRST_SEG_POS_INDEX]);
appendToRule(rule, (UChar)0x0029 /*)*/, TRUE, escapeUnprintable, quoteBuf);
}
if (emitBraces && i == (anteContextLength + keyLength)) {
appendToRule(rule, (UChar)0x007D /*}*/, TRUE, escapeUnprintable, quoteBuf);
}
// Emit end anchor
if ((flags & ANCHOR_END) != 0) {
rule.append((UChar)36/*$*/);
}
appendToRule(rule, UnicodeString(" > ", ""), TRUE, escapeUnprintable, quoteBuf);
// Emit the output pattern
// Handle a cursor preceding the output
int32_t cursor = cursorPos;
if (cursor < 0) {
while (cursor++ < 0) {
appendToRule(rule, (UChar) 0x0040 /*@*/, TRUE, escapeUnprintable, quoteBuf);
}
// Fall through and append '|' below
}
for (i=0; ilookupSegmentReference(c);
if (seg < 0) {
appendToRule(rule, c, FALSE, escapeUnprintable, quoteBuf);
} else {
++seg; // make 1-based
appendToRule(rule, (UChar)0x20, TRUE, escapeUnprintable, quoteBuf);
rule.append((UChar)0x24 /*$*/);
UBool show = FALSE; // TRUE if we should display digits
for (int32_t p=9; p>=0; --p) {
int32_t d = seg / POW10[p];
seg -= d * POW10[p];
if (d != 0 || p == 0) {
show = TRUE;
}
if (show) {
rule.append((UChar)(48+d));
}
}
rule.append((UChar)0x20);
}
}
// Handle a cursor after the output. Use > rather than >= because
// if cursor == output.length() it is at the end of the output,
// which is the default position, so we need not emit it.
if (cursor > output.length()) {
cursor -= output.length();
while (cursor-- > 0) {
appendToRule(rule, (UChar) 0x0040 /*@*/, TRUE, escapeUnprintable, quoteBuf);
}
appendToRule(rule, (UChar) 0x007C /*|*/, TRUE, escapeUnprintable, quoteBuf);
}
appendToRule(rule, (UChar) 0x003B /*;*/, TRUE, escapeUnprintable, quoteBuf);
if (isOpen != _isOpen) {
delete[] isOpen;
}
return rule;
}
U_NAMESPACE_END
//eof