/* ******************************************************************************* * * Copyright (C) 2000-2001, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: genuca.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created at the end of XX century * created by: Vladimir Weinstein * * This program reads the Franctional UCA table and generates * internal format for UCA table as well as inverse UCA table. * It then writes binary files containing the data: ucadata.dat * & invuca.dat * Change history: * 02/23/2001 grhoten Made it into a tool * 02/23/2001 weiv Moved element & table handling code to i18n * 05/09/2001 weiv Case bits are now in the CEs, not in front */ #include "genuca.h" #include "uoptions.h" #include "toolutil.h" #include "cstring.h" #include #ifdef XP_MAC_CONSOLE #include #endif /*UHashtable *elements = NULL;*/ UCAElements le; /* * Global - verbosity */ UBool VERBOSE = FALSE; /* void deleteElement(void *element) { UCAElements *el = (UCAElements *)element; int32_t i = 0; for(i = 0; i < el->noOfCEs; i++) { free(el->primary[i]); free(el->secondary[i]); free(el->tertiary[i]); } free(el); } */ int32_t readElement(char **from, char *to, char separator, UErrorCode *status) { if(U_FAILURE(*status)) { return 0; } char buffer[1024]; int32_t i = 0; while(**from != separator) { if(**from != ' ') { *(buffer+i++) = **from; } (*from)++; } (*from)++; *(buffer + i) = 0; //*to = (char *)malloc(strlen(buffer)+1); strcpy(to, buffer); return i/2; } uint32_t getSingleCEValue(char *primary, char *secondary, char *tertiary, UErrorCode *status) { if(U_FAILURE(*status)) { return 0; } uint32_t value = 0; char primsave = '\0'; char secsave = '\0'; char tersave = '\0'; char *primend = primary+4; if(strlen(primary) > 4) { primsave = *primend; *primend = '\0'; } char *secend = secondary+2; if(strlen(secondary) > 2) { secsave = *secend; *secend = '\0'; } char *terend = tertiary+2; if(strlen(tertiary) > 2) { tersave = *terend; *terend = '\0'; } uint32_t primvalue = (uint32_t)((*primary!='\0')?strtoul(primary, &primend, 16):0); uint32_t secvalue = (uint32_t)((*secondary!='\0')?strtoul(secondary, &secend, 16):0); uint32_t tervalue = (uint32_t)((*tertiary!='\0')?strtoul(tertiary, &terend, 16):0); if(primvalue <= 0xFF) { primvalue <<= 8; } value = ((primvalue<CEs[1])) { fprintf(stdout, "+"); } inversePos++; inverseTable[inversePos][0] = element->CEs[0]; if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) { inverseTable[inversePos][1] = element->CEs[1]; } else { inverseTable[inversePos][1] = 0; } if(element->cSize < 2) { inverseTable[inversePos][2] = element->cPoints[0]; } else { /* add a new store of cruft */ inverseTable[inversePos][2] = ((element->cSize+1) << UCOL_INV_SHIFTVALUE) | sContPos; memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize+1; } } static void insertInverse(UCAElements *element, uint32_t position, UErrorCode *status) { uint8_t space[4096]; if(U_FAILURE(*status)) { return; } if(VERBOSE && isContinuation(element->CEs[1])) { fprintf(stdout, "+"); } if(position <= inversePos) { /*move stuff around */ uprv_memcpy(space, inverseTable[position], (inversePos - position+1)*sizeof(inverseTable[0])); uprv_memcpy(inverseTable[position+1], space, (inversePos - position+1)*sizeof(inverseTable[0])); } inverseTable[position][0] = element->CEs[0]; if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) { inverseTable[position][1] = element->CEs[1]; } else { inverseTable[position][1] = 0; } if(element->cSize < 2) { inverseTable[position][2] = element->cPoints[0]; } else { /* add a new store of cruft */ inverseTable[position][2] = ((element->cSize+1) << UCOL_INV_SHIFTVALUE) | sContPos; memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize+1; } inversePos++; } static void addToExistingInverse(UCAElements *element, uint32_t position, UErrorCode *status) { if(U_FAILURE(*status)) { return; } if((inverseTable[position][2] & UCOL_INV_SIZEMASK) == 0) { /* single element, have to make new extension place and put both guys there */ stringContinue[sContPos] = (UChar)inverseTable[position][2]; inverseTable[position][2] = ((element->cSize+3) << UCOL_INV_SHIFTVALUE) | sContPos; sContPos++; stringContinue[sContPos++] = 0xFFFF; memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize; stringContinue[sContPos++] = 0xFFFE; } else { /* adding to the already existing continuing table */ uint32_t contIndex = inverseTable[position][2] & UCOL_INV_OFFSETMASK; uint32_t contSize = (inverseTable[position][2] & UCOL_INV_SIZEMASK) >> UCOL_INV_SHIFTVALUE; if(contIndex+contSize < sContPos) { /*fprintf(stderr, ".", sContPos, contIndex+contSize);*/ memcpy(stringContinue+contIndex+contSize+element->cSize+1, stringContinue+contIndex+contSize, (element->cSize+1)*sizeof(UChar)); } stringContinue[contIndex+contSize-1] = 0xFFFF; memcpy(stringContinue+contIndex+contSize, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize+1; stringContinue[contIndex+contSize+element->cSize] = 0xFFFE; inverseTable[position][2] = ((contSize+element->cSize+1) << UCOL_INV_SHIFTVALUE) | contIndex; } } static uint32_t addToInverse(UCAElements *element, UErrorCode *status) { uint32_t comp = 0; uint32_t position = inversePos; uint32_t saveElement = element->CEs[0]; element->CEs[0] &= 0xFFFFFF3F; if(element->noOfCEs == 1) { element->CEs[1] = 0; } if(inversePos == 0) { inverseTable[0][0] = inverseTable[0][1] = inverseTable[0][2] = 0; addNewInverse(element, status); } else if(inverseTable[inversePos][0] > element->CEs[0]) { while(inverseTable[--position][0] > element->CEs[0]) {} if(inverseTable[position][0] == element->CEs[0]) { if(isContinuation(element->CEs[1])) { comp = element->CEs[1]; } else { comp = 0; } if(inverseTable[position][1] > comp) { while(inverseTable[--position][1] > comp) {} } if(inverseTable[position][1] == comp) { addToExistingInverse(element, position, status); } else { insertInverse(element, position+1, status); } } else { insertInverse(element, position+1, status); } } else if(inverseTable[inversePos][0] == element->CEs[0]) { if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) { comp = element->CEs[1]; if(inverseTable[position][1] > comp) { while(inverseTable[--position][1] > comp) {} } if(inverseTable[position][1] == comp) { addToExistingInverse(element, position, status); } else { insertInverse(element, position+1, status); } } else { addToExistingInverse(element, inversePos, status); } } else { addNewInverse(element, status); } element->CEs[0] = saveElement; return inversePos; } static InverseTableHeader *assembleInverseTable(UErrorCode *status) { InverseTableHeader *result = NULL; uint32_t headerByteSize = paddedsize(sizeof(InverseTableHeader)); uint32_t inverseTableByteSize = (inversePos+2)*sizeof(uint32_t)*3; uint32_t contsByteSize = sContPos * sizeof(UChar); uint32_t i = 0; result = (InverseTableHeader *)malloc(headerByteSize + inverseTableByteSize + contsByteSize); if(result != NULL) { result->byteSize = headerByteSize + inverseTableByteSize + contsByteSize; inversePos++; inverseTable[inversePos][0] = 0xFFFFFFFF; inverseTable[inversePos][1] = 0xFFFFFFFF; inverseTable[inversePos][2] = 0x0000FFFF; inversePos++; for(i = 2; i inverseTable[i][0]) { fprintf(stderr, "Error at %i: %08X & %08X\n", i, inverseTable[i-1][0], inverseTable[i][0]); } else if(inverseTable[i-1][0] == inverseTable[i][0] && !(inverseTable[i-1][1] < inverseTable[i][1])) { fprintf(stderr, "Continuation error at %i: %08X %08X & %08X %08X\n", i, inverseTable[i-1][0], inverseTable[i-1][1], inverseTable[i][0], inverseTable[i][1]); } } result->tableSize = inversePos; result->contsSize = sContPos; result->table = headerByteSize; result->conts = headerByteSize + inverseTableByteSize; memcpy((uint8_t *)result + result->table, inverseTable, inverseTableByteSize); memcpy((uint8_t *)result + result->conts, stringContinue, contsByteSize); } else { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } return result; } static void writeOutInverseData(InverseTableHeader *data, const char *outputDir, const char *copyright, UErrorCode *status) { UNewDataMemory *pData; long dataLength; pData=udata_create(outputDir, INVC_DATA_TYPE, INVC_DATA_NAME, &invDataInfo, copyright, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: unable to create data memory, error %d\n", *status); return; } /* write the data to the file */ fprintf(stdout, "Writing out inverse UCA table: %s%s.%s\n", outputDir, INVC_DATA_NAME, INVC_DATA_TYPE); udata_writeBlock(pData, data, data->byteSize); /* finish up */ dataLength=udata_finish(pData, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: error %d writing the output file\n", *status); return; } } static int32_t hex2num(char hex) { if(hex>='0' && hex <='9') { return hex-'0'; } else if(hex>='a' && hex<='f') { return hex-'a'+10; } else if(hex>='A' && hex<='F') { return hex-'A'+10; } else { return 0; } } UCAElements *readAnElement(FILE *data, UErrorCode *status) { char buffer[2048], primary[100], secondary[100], tertiary[100]; UBool detectedContraction; int32_t i = 0; unsigned int theValue; char *pointer = NULL; char *commentStart = NULL; char *startCodePoint = NULL; char *endCodePoint = NULL; char *spacePointer = NULL; char *result = fgets(buffer, 2048, data); if(U_FAILURE(*status)) { return 0; } *primary = *secondary = *tertiary = '\0'; if(result == NULL) { if(feof(data)) { return NULL; } else { fprintf(stderr, "empty line but no EOF!\n"); *status = U_INVALID_FORMAT_ERROR; return NULL; } } if(buffer[0] == '#' || buffer[0] == '\n') { return NULL; // just a comment, skip whole line } UCAElements *element = ≤ //(UCAElements *)malloc(sizeof(UCAElements)); if(buffer[0] == '[') { const char *vt = "[variable top = "; uint32_t vtLen = uprv_strlen(vt); if(uprv_strncmp(buffer, vt, vtLen) == 0) { element->variableTop = TRUE; if(sscanf(buffer+vtLen, "%04X", &theValue) != 1) /* read first code point */ { fprintf(stderr, " scanf(hex) failed!\n "); } element->cPoints[0] = (UChar)theValue; return element; // just a comment, skip whole line } else { *status = U_INVALID_FORMAT_ERROR; return NULL; } } element->variableTop = FALSE; startCodePoint = buffer; endCodePoint = strchr(startCodePoint, ';'); if(endCodePoint == 0) { fprintf(stderr, "error - line with no code point!\n"); *status = U_INVALID_FORMAT_ERROR; /* No code point - could be an error, but probably only an empty line */ return NULL; } else { *(endCodePoint) = 0; } if(element != NULL) { memset(element, 0, sizeof(*element)); } else { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } element->cPoints = element->uchars; spacePointer = strchr(buffer, ' '); if(sscanf(buffer, "%04X", &theValue) != 1) /* read first code point */ { fprintf(stderr, " scanf(hex) failed!\n "); } element->cPoints[0] = (UChar)theValue; /*element->codepoint = element->cPoints[0];*/ if(spacePointer == 0) { detectedContraction = FALSE; element->cSize = 1; } else { i = 1; detectedContraction = TRUE; while(spacePointer != NULL) { sscanf(spacePointer+1, "%04X", &theValue); element->cPoints[i++] = (UChar)theValue; spacePointer = strchr(spacePointer+1, ' '); } element->cSize = i; //fprintf(stderr, "Number of codepoints in contraction: %i\n", i); } startCodePoint = endCodePoint+1; /* Case bit is now associated with each collation element */ /* Also, there are two case bits, but we don't care about it here */ #if 0 endCodePoint = strchr(startCodePoint, ';'); while(*startCodePoint != '0' && *startCodePoint != '1') { startCodePoint++; if(startCodePoint == endCodePoint) { *status = U_INVALID_FORMAT_ERROR; return NULL; } } if(*startCodePoint == '0') { element->caseBit = FALSE; } else { element->caseBit = TRUE; } startCodePoint = endCodePoint+1; #endif commentStart = strchr(startCodePoint, '#'); if(commentStart == NULL) { commentStart = strlen(startCodePoint) + startCodePoint - 1; } i = 0; uint32_t CEindex = 0; element->noOfCEs = 0; for(;;) { endCodePoint = strchr(startCodePoint, ']'); if(endCodePoint == NULL || endCodePoint >= commentStart) { break; } pointer = strchr(startCodePoint, '['); pointer++; element->sizePrim[i]=readElement(&pointer, primary, ',', status); element->sizeSec[i]=readElement(&pointer, secondary, ',', status); element->sizeTer[i]=readElement(&pointer, tertiary, ']', status); /* I want to get the CEs entered right here, including continuation */ element->CEs[CEindex++] = getSingleCEValue(primary, secondary, tertiary, status); uint32_t CEi = 1; while(2*CEisizePrim[i] || CEisizeSec[i] || CEisizeTer[i]) { //uint32_t value = element->caseBit?0xC0:0x80; /* Continuation marker */ uint32_t value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ if(2*CEisizePrim[i]) { value |= ((hex2num(*(primary+4*CEi))&0xF)<<28); value |= ((hex2num(*(primary+4*CEi+1))&0xF)<<24); } if(2*CEi+1sizePrim[i]) { value |= ((hex2num(*(primary+4*CEi+2))&0xF)<<20); value |= ((hex2num(*(primary+4*CEi+3))&0xF)<<16); } if(CEisizeSec[i]) { value |= ((hex2num(*(secondary+2*CEi))&0xF)<<12); value |= ((hex2num(*(secondary+2*CEi+1))&0xF)<<8); } if(CEisizeTer[i]) { value |= ((hex2num(*(tertiary+2*CEi))&0x3)<<4); value |= (hex2num(*(tertiary+2*CEi+1))&0xF); } CEi++; element->CEs[CEindex++] = value; } startCodePoint = endCodePoint+1; i++; } element->noOfCEs = CEindex; element->isThai = UCOL_ISTHAIPREVOWEL(element->cPoints[0]); // we don't want any strange stuff after useful data! while(pointer < commentStart) { if(*pointer != ' ') { *status=U_INVALID_FORMAT_ERROR; break; } pointer++; } /* strcpy(element->comment, commentStart); uhash_put(elements, (void *)element->codepoint, element, status); */ if(U_FAILURE(*status)) { fprintf(stderr, "problem putting stuff in hash table\n"); *status = U_INTERNAL_PROGRAM_ERROR; //free(element); return NULL; } return element; } void writeOutData(UCATableHeader *data, const char *outputDir, const char *copyright, UErrorCode *status) { if(U_FAILURE(*status)) { return; } UNewDataMemory *pData; long dataLength; pData=udata_create(outputDir, UCA_DATA_TYPE, UCA_DATA_NAME, &dataInfo, copyright, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: unable to create data memory, error %d\n", *status); return; } /* write the data to the file */ fprintf(stdout, "Writing out UCA table: %s%s.%s\n", outputDir, UCA_DATA_NAME, UCA_DATA_TYPE); udata_writeBlock(pData, data, data->size); /* finish up */ dataLength=udata_finish(pData, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: error %d writing the output file\n", *status); return; } } static int32_t write_uca_table(const char *filename, const char *outputDir, const char *copyright, UErrorCode *status) { FILE *data = fopen(filename, "r"); uint32_t line = 0; int32_t sizesPrim[35], sizesSec[35], sizesTer[35]; /* int32_t sizeBreakDown[35][35][35]; int32_t *secValue = (int32_t*)uprv_malloc(sizeof(int32_t)*0xffff); int32_t *terValue = (int32_t*)uprv_malloc(sizeof(int32_t)*0xffff);*/ UCAElements *element = NULL; UChar variableTopValue = 0; UCATableHeader *myD = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader)); UColOptionSet *opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet)); if(data == NULL) { fprintf(stderr, "Couldn't open file: %s\n", filename); return -1; } /* memset(secValue, 0, 0xffff*sizeof(int32_t)); memset(terValue, 0, 0xffff*sizeof(int32_t)); */ memset(sizesPrim, 0, 35*sizeof(int32_t)); memset(sizesSec, 0, 35*sizeof(int32_t)); memset(sizesTer, 0, 35*sizeof(int32_t)); /* memset(sizeBreakDown, 0, 35*35*35*sizeof(int32_t)); */ memset(inverseTable, 0xDA, sizeof(int32_t)*3*0xFFFF); opts->variableTopValue = variableTopValue; opts->strength = UCOL_TERTIARY; opts->frenchCollation = UCOL_OFF; opts->alternateHandling = UCOL_NON_IGNORABLE; /* attribute for handling variable elements*/ opts->caseFirst = UCOL_OFF; /* who goes first, lower case or uppercase */ opts->caseLevel = UCOL_OFF; /* do we have an extra case level */ opts->normalizationMode = UCOL_OFF; /*UCOL_ON*/ /* attribute for normalization */ /* populate the version info struct with version info*/ myD->version[0] = UCOL_BUILDER_VERSION; /*TODO:The fractional rules version should be taken from FractionalUCA.txt*/ myD->version[1] = UCA_TAILORING_RULES_VERSION; myD->jamoSpecial = FALSE; tempUCATable *t = uprv_uca_initTempTable(myD, opts, NULL, status); /* elements = uhash_open(uhash_hashLong, uhash_compareLong, &status); uhash_setValueDeleter(elements, deleteElement); */ while(!feof(data)) { if(U_FAILURE(*status)) { fprintf(stderr, "Something returned an error %i while processing line: %i\nExiting...", *status, line); exit(*status); } element = readAnElement(data, status); line++; if(element != NULL) { /* this does statistics on CE lengths, but is currently broken */ /* for( i = 0; inoOfCEs; i++) { sizesPrim[element->sizePrim[i]]++; sizesSec[element->sizeSec[i]]++; sizesTer[element->sizeTer[i]]++; sizeBreakDown[element->sizePrim[i]][element->sizeSec[i]][element->sizeTer[i]]++; if(element->sizePrim[i] == 2 && element->sizeSec[i]==2) { terValue[strtoul(element->tertiary[i], 0, 16)]++; secValue[strtoul(element->secondary[i], 0, 16)]++; } } */ // we have read the line, now do something sensible with the read data! if(element->variableTop == TRUE && variableTopValue == 0) { t->options->variableTopValue = element->cPoints[0]; } /* we're first adding to inverse, because addAnElement will reverse the order */ /* of code points and stuff... we don't want that to happen */ addToInverse(element, status); uprv_uca_addAnElement(t, element, status); //deleteElement(element); } } if (VERBOSE) { fprintf(stdout, "\nLines read: %i\n", line); } /* for(i = 0; i<35; i++) { fprintf(stderr, "size %i: P:%i S:%i T:%i\n", i, sizesPrim[i], sizesSec[i], sizesTer[i]); } for(i = 0; i<35; i++) { UBool printedPrimary = FALSE; for(j = 0; j<35; j++) { for(k = 0; k<35; k++) { if(sizeBreakDown[i][j][k] != 0) { if(!printedPrimary) { fprintf(stderr, "Primary: %i\n", i); printedPrimary = TRUE; } fprintf(stderr, "Sec: %i, Ter: %i = %i\n", j, k, sizeBreakDown[i][j][k]); } } } } for(i = 0; i<(uint32_t)0xffff; i++) { if(terValue[i] != 0) { fprintf(stderr, "Tertiaries with value %04X : %i\n", i, terValue[i]); } if(secValue[i] != 0) { fprintf(stderr, "Secondaries with value %04X : %i\n", i, secValue[i]); } } */ /* test */ UCATableHeader *myData = uprv_uca_assembleTable(t, status); writeOutData(myData, outputDir, copyright, status); InverseTableHeader *inverse = assembleInverseTable(status); writeOutInverseData(inverse, outputDir, copyright, status); /* uint32_t *itab = (uint32_t *)((uint8_t *)inverse + inverse->table); UChar *conts = (UChar *)((uint8_t *)inverse + inverse->conts); for(i = 0; itableSize; i++) { fprintf(stderr, "[%04X] 0x%08X 0x%08X 0x%08X\n", i, *(itab+3*i), *(itab+3*i+1), *(itab+3*i+2)); if((*(itab+3*i+2) & UCOL_INV_SIZEMASK) != 0) { uint32_t contIndex = *(itab+3*i+2) & UCOL_INV_OFFSETMASK; uint32_t contSize = (*(itab+3*i+2) & UCOL_INV_SIZEMASK) >> UCOL_INV_SHIFTVALUE; fprintf(stderr, "\t"); for(j = 0; jfilename && *(basename-1)!=U_FILE_SEP_CHAR) { *basename++=U_FILE_SEP_CHAR; } uprv_strcpy(basename, "FractionalUCA.txt"); } else { argv++; uprv_strcpy(filename, getLongPathname(*argv)); } return write_uca_table(filename, destdir, copyright, &status); } /* * Hey, Emacs, please set the following: * * Local Variables: * indent-tabs-mode: nil * End: * */