/* ****************************************************************************** * Copyright (C) 1997-2001, International Business Machines * Corporation and others. All Rights Reserved. ****************************************************************************** * Date Name Description * 03/22/00 aliu Adapted from original C++ ICU Hashtable. * 07/06/01 aliu Modified to support int32_t keys on * platforms with sizeof(void*) < 32. ****************************************************************************** */ #include "uhash.h" #include "unicode/ustring.h" #include "cstring.h" #include "cmemory.h" /* This hashtable is implemented as a double hash. All elements are * stored in a single array with no secondary storage for collision * resolution (no linked list, etc.). When there is a hash collision * (when two unequal keys have the same hashcode) we resolve this by * using a secondary hash. The secondary hash is an increment * computed as a hash function (a different one) of the primary * hashcode. This increment is added to the initial hash value to * obtain further slots assigned to the same hash code. For this to * work, the length of the array and the increment must be relatively * prime. The easiest way to achieve this is to have the length of * the array be prime, and the increment be any value from * 1..length-1. * * Hashcodes are 32-bit integers. We make sure all hashcodes are * non-negative by masking off the top bit. This has two effects: (1) * modulo arithmetic is simplified. If we allowed negative hashcodes, * then when we computed hashcode % length, we could get a negative * result, which we would then have to adjust back into range. It's * simpler to just make hashcodes non-negative. (2) It makes it easy * to check for empty vs. occupied slots in the table. We just mark * empty or deleted slots with a negative hashcode. * * The central function is _uhash_find(). This function looks for a * slot matching the given key and hashcode. If one is found, it * returns a pointer to that slot. If the table is full, and no match * is found, it returns NULL -- in theory. This would make the code * more complicated, since all callers of _uhash_find() would then * have to check for a NULL result. To keep this from happening, we * don't allow the table to fill. When there is only one * empty/deleted slot left, uhash_put() will refuse to increase the * count, and fail. This simplifies the code. In practice, one will * seldom encounter this using default UHashtables. However, if a * hashtable is set to a U_FIXED resize policy, or if memory is * exhausted, then the table may fill. * * High and low water ratios control rehashing. They establish levels * of fullness (from 0 to 1) outside of which the data array is * reallocated and repopulated. Setting the low water ratio to zero * means the table will never shrink. Setting the high water ratio to * one means the table will never grow. The ratios should be * coordinated with the ratio between successive elements of the * PRIMES table, so that when the primeIndex is incremented or * decremented during rehashing, it brings the ratio of count / length * back into the desired range (between low and high water ratios). */ /******************************************************************** * PRIVATE Constants, Macros ********************************************************************/ /* This is a list of non-consecutive primes chosen such that * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this * ratio is changed, the low and high water ratios should also be * adjusted to suit. */ static const int32_t PRIMES[] = { 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483647 }; #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) /* These ratios are tuned to the PRIMES array such that a resize * places the table back into the zone of non-resizing. That is, * after a call to _uhash_rehash(), a subsequent call to * _uhash_rehash() should do nothing (should not churn). This is only * a potential problem with U_GROW_AND_SHRINK. */ static const float RESIZE_POLICY_RATIO_TABLE[6] = { /* low, high water ratio */ 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ 0.0F, 1.0F /* U_FIXED: Never change size */ }; /* Invariants for hashcode values: * DELETED < 0 * EMPTY < 0 * Real hashes >= 0 Hashcodes may not start out this way, but internally they are adjusted so that they are always positive. We assume 32-bit hashcodes; adjust these constants for other hashcode sizes. */ #define HASH_DELETED ((int32_t) 0x80000000) #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) #define IS_EMPTY_OR_DELETED(x) ((x) < 0) /* This macro expects a UHashTok.pointer as its keypointer and valuepointer parameters */ #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ if (hash->keyDeleter != NULL && keypointer != NULL) { \ (*hash->keyDeleter)(keypointer); \ } \ if (hash->valueDeleter != NULL && valuepointer != NULL) { \ (*hash->valueDeleter)(valuepointer); \ } /* * Constants for hinting whether a key or value is an integer * or a pointer. If a hint bit is zero, then the associated * token is assumed to be an integer. */ #define HINT_KEY_POINTER (1) #define HINT_VALUE_POINTER (2) /******************************************************************** * Debugging ********************************************************************/ /* Enable this section to compile in runtime assertion checking. */ /* #define HASH_DEBUG */ #ifdef HASH_DEBUG #include #define assert(exp) (void)( (exp) || (_assert(#exp, __FILE__, __LINE__), 0) ) static void _assert(const char* exp, const char* file, int line) { printf("ERROR: assert(%s) failed: %s, line %d\n", exp, file, line); } #else #define assert(exp) #endif /******************************************************************** * PRIVATE Prototypes ********************************************************************/ static UHashtable* _uhash_create(UHashFunction keyHash, UKeyComparator keyComp, int32_t primeIndex, UErrorCode *status); static void _uhash_allocate(UHashtable *hash, int32_t primeIndex, UErrorCode *status); static void _uhash_rehash(UHashtable *hash); static UHashElement* _uhash_find(const UHashtable *hash, UHashTok key, int32_t hashcode); static UHashTok _uhash_put(UHashtable *hash, UHashTok key, UHashTok value, int8_t hint, UErrorCode *status); static UHashTok _uhash_remove(UHashtable *hash, UHashTok key); static UHashTok _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e); static UHashTok _uhash_setElement(UHashtable* hash, UHashElement* e, int32_t hashcode, UHashTok key, UHashTok value, int8_t hint); static void _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy); /******************************************************************** * PUBLIC API ********************************************************************/ U_CAPI UHashtable* U_EXPORT2 uhash_open(UHashFunction keyHash, UKeyComparator keyComp, UErrorCode *status) { return _uhash_create(keyHash, keyComp, 3, status); } U_CAPI UHashtable* U_EXPORT2 uhash_openSize(UHashFunction keyHash, UKeyComparator keyComp, int32_t size, UErrorCode *status) { /* Find the smallest index i for which PRIMES[i] >= size. */ int32_t i = 0; while (i<(PRIMES_LENGTH-1) && PRIMES[i]elements != NULL) { if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { int32_t pos=-1; UHashElement *e; while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); } } uprv_free(hash->elements); hash->elements = NULL; } uprv_free(hash); } U_CAPI UHashFunction U_EXPORT2 uhash_setKeyHasher(UHashtable *hash, UHashFunction fn) { UHashFunction result = hash->keyHasher; hash->keyHasher = fn; return result; } U_CAPI UKeyComparator U_EXPORT2 uhash_setKeyComparator(UHashtable *hash, UKeyComparator fn) { UKeyComparator result = hash->keyComparator; hash->keyComparator = fn; return result; } U_CAPI UObjectDeleter U_EXPORT2 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter fn) { UObjectDeleter result = hash->keyDeleter; hash->keyDeleter = fn; return result; } U_CAPI UObjectDeleter U_EXPORT2 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter fn) { UObjectDeleter result = hash->valueDeleter; hash->valueDeleter = fn; return result; } U_CAPI void U_EXPORT2 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { _uhash_internalSetResizePolicy(hash, policy); hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); _uhash_rehash(hash); } U_CAPI int32_t U_EXPORT2 uhash_count(const UHashtable *hash) { return hash->count; } U_CAPI void* U_EXPORT2 uhash_get(const UHashtable *hash, const void* key) { UHashTok keyholder; keyholder.pointer = (void*) key; return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; } U_CAPI void* U_EXPORT2 uhash_iget(const UHashtable *hash, int32_t key) { UHashTok keyholder; keyholder.integer = key; return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; } U_CAPI int32_t U_EXPORT2 uhash_geti(const UHashtable *hash, const void* key) { UHashTok keyholder; keyholder.pointer = (void*) key; return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; } U_CAPI void* U_EXPORT2 uhash_put(UHashtable *hash, void* key, void* value, UErrorCode *status) { UHashTok keyholder, valueholder; keyholder.pointer = key; valueholder.pointer = value; return _uhash_put(hash, keyholder, valueholder, HINT_KEY_POINTER | HINT_VALUE_POINTER, status).pointer; } U_CAPI void* U_EXPORT2 uhash_iput(UHashtable *hash, int32_t key, void* value, UErrorCode *status) { UHashTok keyholder, valueholder; keyholder.integer = key; valueholder.pointer = value; return _uhash_put(hash, keyholder, valueholder, HINT_VALUE_POINTER, status).pointer; } U_CAPI int32_t U_EXPORT2 uhash_puti(UHashtable *hash, void* key, int32_t value, UErrorCode *status) { UHashTok keyholder, valueholder; keyholder.pointer = key; valueholder.integer = value; return _uhash_put(hash, keyholder, valueholder, HINT_KEY_POINTER, status).integer; } U_CAPI void* U_EXPORT2 uhash_remove(UHashtable *hash, const void* key) { UHashTok keyholder; keyholder.pointer = (void*) key; return _uhash_remove(hash, keyholder).pointer; } U_CAPI void* U_EXPORT2 uhash_iremove(UHashtable *hash, int32_t key) { UHashTok keyholder; keyholder.integer = key; return _uhash_remove(hash, keyholder).pointer; } U_CAPI int32_t U_EXPORT2 uhash_removei(UHashtable *hash, const void* key) { UHashTok keyholder; keyholder.pointer = (void*) key; return _uhash_remove(hash, keyholder).integer; } U_CAPI void U_EXPORT2 uhash_removeAll(UHashtable *hash) { int32_t pos = -1; const UHashElement *e; assert(hash != NULL); if (hash->count != 0) { while ((e = uhash_nextElement(hash, &pos)) != NULL) { uhash_removeElement(hash, e); } } assert(hash->count == 0); } U_CAPI const UHashElement* U_EXPORT2 uhash_find(const UHashtable *hash, const void* key) { UHashTok keyholder; const UHashElement *e; keyholder.pointer = (void*) key; e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; } U_CAPI const UHashElement* U_EXPORT2 uhash_nextElement(const UHashtable *hash, int32_t *pos) { /* Walk through the array until we find an element that is not * EMPTY and not DELETED. */ int32_t i; assert(hash != NULL); for (i = *pos + 1; i < hash->length; ++i) { if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { *pos = i; return &(hash->elements[i]); } } /* No more elements */ return NULL; } U_CAPI void* U_EXPORT2 uhash_removeElement(UHashtable *hash, const UHashElement* e) { assert(hash != NULL); assert(e != NULL); if (!IS_EMPTY_OR_DELETED(e->hashcode)) { return _uhash_internalRemoveElement(hash, (UHashElement*) e).pointer; } return NULL; } /******************************************************************** * UHashTok convenience ********************************************************************/ /** * Return a UHashTok for an integer. */ U_CAPI UHashTok U_EXPORT2 uhash_toki(int32_t i) { UHashTok tok; tok.integer = i; return tok; } /** * Return a UHashTok for a pointer. */ U_CAPI UHashTok U_EXPORT2 uhash_tokp(void* p) { UHashTok tok; tok.pointer = p; return tok; } /******************************************************************** * PUBLIC Key Hash Functions ********************************************************************/ /* Compute the hash by iterating sparsely over about 32 (up to 63) characters spaced evenly through the string. For each character, multiply the previous hash value by a prime number and add the new character in, like a linear congruential random number generator, producing a pseudorandom deterministic value well distributed over the output range. [LIU] */ #define STRING_HASH(TYPE, STR, STRLEN, DEREF) \ int32_t hash = 0; \ const TYPE *p = (const TYPE*) STR; \ if (p != NULL) { \ int32_t len = STRLEN; \ int32_t inc = ((len - 32) / 32) + 1; \ const TYPE *limit = p + len; \ while (pkeyHasher = keyHash; result->keyComparator = keyComp; result->keyDeleter = NULL; result->valueDeleter = NULL; _uhash_internalSetResizePolicy(result, U_GROW); _uhash_allocate(result, primeIndex, status); if (U_FAILURE(*status)) { uprv_free(result); return NULL; } return result; } /** * Allocate internal data array of a size determined by the given * prime index. If the index is out of range it is pinned into range. * If the allocation fails the status is set to * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In * either case the previous array pointer is overwritten. * * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. */ static void _uhash_allocate(UHashtable *hash, int32_t primeIndex, UErrorCode *status) { UHashElement *p, *limit; UHashTok emptytok; if (U_FAILURE(*status)) return; assert(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); hash->primeIndex = primeIndex; hash->length = PRIMES[primeIndex]; p = hash->elements = (UHashElement*) uprv_malloc(sizeof(UHashElement) * hash->length); if (hash->elements == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } emptytok.pointer = NULL; /* Only one of these two is needed */ emptytok.integer = 0; /* but we don't know which one. */ limit = p + hash->length; while (p < limit) { p->key = emptytok; p->value = emptytok; p->hashcode = HASH_EMPTY; ++p; } hash->count = 0; hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); } /** * Attempt to grow or shrink the data arrays in order to make the * count fit between the high and low water marks. hash_put() and * hash_remove() call this method when the count exceeds the high or * low water marks. This method may do nothing, if memory allocation * fails, or if the count is already in range, or if the length is * already at the low or high limit. In any case, upon return the * arrays will be valid. */ static void _uhash_rehash(UHashtable *hash) { UHashElement *old = hash->elements; int32_t oldLength = hash->length; int32_t newPrimeIndex = hash->primeIndex; int32_t i; UErrorCode status = U_ZERO_ERROR; if (hash->count > hash->highWaterMark) { if (++newPrimeIndex >= PRIMES_LENGTH) { return; } } else if (hash->count < hash->lowWaterMark) { if (--newPrimeIndex < 0) { return; } } else { return; } _uhash_allocate(hash, newPrimeIndex, &status); if (U_FAILURE(status)) { hash->elements = old; hash->length = oldLength; return; } for (i = oldLength - 1; i >= 0; --i) { if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); assert(e != NULL); assert(e->hashcode == HASH_EMPTY); e->key = old[i].key; e->value = old[i].value; e->hashcode = old[i].hashcode; ++hash->count; } } uprv_free(old); } /** * Look for a key in the table, or if no such key exists, the first * empty slot matching the given hashcode. Keys are compared using * the keyComparator function. * * First find the start position, which is the hashcode modulo * the length. Test it to see if it is: * * a. identical: First check the hash values for a quick check, * then compare keys for equality using keyComparator. * b. deleted * c. empty * * Stop if it is identical or empty, otherwise continue by adding a * "jump" value (moduloing by the length again to keep it within * range) and retesting. For efficiency, there need enough empty * values so that the searchs stop within a reasonable amount of time. * This can be changed by changing the high/low water marks. * * In theory, this function can return NULL, if it is full (no empty * or deleted slots) and if no matching key is found. In practice, we * prevent this elsewhere (in uhash_put) by making sure the last slot * in the table is never filled. * * The size of the table should be prime for this algorithm to work; * otherwise we are not guaranteed that the jump value (the secondary * hash) is relatively prime to the table length. */ static UHashElement* _uhash_find(const UHashtable *hash, UHashTok key, int32_t hashcode) { int32_t firstDeleted = -1; /* assume invalid index */ int32_t theIndex, startIndex; int32_t jump = 0; /* lazy evaluate */ int32_t tableHash; hashcode &= 0x7FFFFFFF; /* must be positive */ startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; do { tableHash = hash->elements[theIndex].hashcode; if (tableHash == hashcode) { /* quick check */ if ((*hash->keyComparator)(key, hash->elements[theIndex].key)) { return &(hash->elements[theIndex]); } } else if (!IS_EMPTY_OR_DELETED(tableHash)) { /* We have hit a slot which contains a key-value pair, * but for which the hash code does not match. Keep * looking. */ } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ break; } else if (firstDeleted < 0) { /* remember first deleted */ firstDeleted = theIndex; } if (jump == 0) { /* lazy compute jump */ /* The jump value must be relatively prime to the table * length. As long as the length is prime, then any value * 1..length-1 will be relatively prime to it. */ jump = (hashcode % (hash->length - 1)) + 1; } theIndex = (theIndex + jump) % hash->length; } while (theIndex != startIndex); if (firstDeleted >= 0) { theIndex = firstDeleted; /* reset if had deleted slot */ } else if (tableHash != HASH_EMPTY) { /* We get to this point if the hashtable is full (no empty or * deleted slots), and we've failed to find a match. THIS * WILL NEVER HAPPEN as long as uhash_put() makes sure that * count is always < length. */ assert(FALSE); return NULL; /* Never happens if uhash_put() behaves */ } return &(hash->elements[theIndex]); } static UHashTok _uhash_put(UHashtable *hash, UHashTok key, UHashTok value, int8_t hint, UErrorCode *status) { /* Put finds the position in the table for the new value. If the * key is already in the table, it is deleted, if there is a * non-NULL keyDeleter. Then the key, the hash and the value are * all put at the position in their respective arrays. */ int32_t hashcode; UHashElement* e; UHashTok emptytok; if (U_FAILURE(*status)) { goto err; } assert(hash != NULL); /* Cannot always check pointer here or iSeries sees NULL every time. */ if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { /* Disallow storage of NULL values, since NULL is returned by * get() to indicate an absent key. Storing NULL == removing. */ return _uhash_remove(hash, key); } if (hash->count > hash->highWaterMark) { _uhash_rehash(hash); } hashcode = (*hash->keyHasher)(key); e = _uhash_find(hash, key, hashcode); assert(e != NULL); if (IS_EMPTY_OR_DELETED(e->hashcode)) { /* Important: We must never actually fill the table up. If we * do so, then _uhash_find() will return NULL, and we'll have * to check for NULL after every call to _uhash_find(). To * avoid this we make sure there is always at least one empty * or deleted slot in the table. This only is a problem if we * are out of memory and rehash isn't working. */ ++hash->count; if (hash->count == hash->length) { /* Don't allow count to reach length */ --hash->count; *status = U_MEMORY_ALLOCATION_ERROR; goto err; } } /* We must in all cases handle storage properly. If there was an * old key, then it must be deleted (if the deleter != NULL). * Make hashcodes stored in table positive. */ return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); err: /* If the deleters are non-NULL, this method adopts its key and/or * value arguments, and we must be sure to delete the key and/or * value in all cases, even upon failure. */ HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); emptytok.pointer = NULL; emptytok.integer = 0; return emptytok; } static UHashTok _uhash_remove(UHashtable *hash, UHashTok key) { /* First find the position of the key in the table. If the object * has not been removed already, remove it. If the user wanted * keys deleted, then delete it also. We have to put a special * hashcode in that position that means that something has been * deleted, since when we do a find, we have to continue PAST any * deleted values. */ UHashTok result; UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); assert(e != NULL); result.pointer = NULL; result.integer = 0; if (!IS_EMPTY_OR_DELETED(e->hashcode)) { result = _uhash_internalRemoveElement(hash, e); if (hash->count < hash->lowWaterMark) { _uhash_rehash(hash); } } return result; } static UHashTok _uhash_setElement(UHashtable *hash, UHashElement* e, int32_t hashcode, UHashTok key, UHashTok value, int8_t hint) { void* oldKeyPtr = e->key.pointer; UHashTok oldValue = e->value; if (hash->keyDeleter != NULL && oldKeyPtr != NULL && oldKeyPtr != key.pointer) { /* Avoid double deletion */ (*hash->keyDeleter)(oldKeyPtr); } if (hash->valueDeleter != NULL) { if (oldValue.pointer != NULL && oldValue.pointer != value.pointer) { /* Avoid double deletion */ (*hash->valueDeleter)(oldValue.pointer); } oldValue.pointer = NULL; } /* Compilers should copy the UHashTok union correctly, but even if * they do, memory heap tools (e.g. BoundsChecker) can get * confused when a pointer is cloaked in a union and then copied. * TO ALLEVIATE THIS, we use hints (based on what API the user is * calling) to copy pointers when we know the user thinks * something is a pointer. */ if (hint & HINT_KEY_POINTER) { e->key.pointer = key.pointer; } else { e->key = key; } if (hint & HINT_VALUE_POINTER) { e->value.pointer = value.pointer; } else { e->value = value; } e->hashcode = hashcode; return oldValue; } /** * Assumes that the given element is not empty or deleted. */ static UHashTok _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { UHashTok empty; assert(!IS_EMPTY_OR_DELETED(e->hashcode)); --hash->count; empty.pointer = NULL; empty.integer = 0; return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); } static void _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { assert(hash == 0); assert(((int32_t)policy) >= 0); assert(((int32_t)policy) < 3); hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; }