/* ******************************************************************************* * Copyright (C) 2012-2014, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * collationkeys.cpp * * created on: 2012sep02 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/bytestream.h" #include "collation.h" #include "collationiterator.h" #include "collationkeys.h" #include "collationsettings.h" #include "uassert.h" U_NAMESPACE_BEGIN SortKeyByteSink::~SortKeyByteSink() {} void SortKeyByteSink::Append(const char *bytes, int32_t n) { if (n <= 0 || bytes == NULL) { return; } if (ignore_ > 0) { int32_t ignoreRest = ignore_ - n; if (ignoreRest >= 0) { ignore_ = ignoreRest; return; } else { bytes += ignore_; n = -ignoreRest; ignore_ = 0; } } int32_t length = appended_; appended_ += n; if ((buffer_ + length) == bytes) { return; // the caller used GetAppendBuffer() and wrote the bytes already } int32_t available = capacity_ - length; if (n <= available) { uprv_memcpy(buffer_ + length, bytes, n); } else { AppendBeyondCapacity(bytes, n, length); } } char * SortKeyByteSink::GetAppendBuffer(int32_t min_capacity, int32_t desired_capacity_hint, char *scratch, int32_t scratch_capacity, int32_t *result_capacity) { if (min_capacity < 1 || scratch_capacity < min_capacity) { *result_capacity = 0; return NULL; } if (ignore_ > 0) { // Do not write ignored bytes right at the end of the buffer. *result_capacity = scratch_capacity; return scratch; } int32_t available = capacity_ - appended_; if (available >= min_capacity) { *result_capacity = available; return buffer_ + appended_; } else if (Resize(desired_capacity_hint, appended_)) { *result_capacity = capacity_ - appended_; return buffer_ + appended_; } else { *result_capacity = scratch_capacity; return scratch; } } namespace { /** * uint8_t byte buffer, similar to CharString but simpler. */ class SortKeyLevel : public UMemory { public: SortKeyLevel() : len(0), ok(TRUE) {} ~SortKeyLevel() {} /** @return FALSE if memory allocation failed */ UBool isOk() const { return ok; } UBool isEmpty() const { return len == 0; } int32_t length() const { return len; } const uint8_t *data() const { return buffer.getAlias(); } uint8_t operator[](int32_t index) const { return buffer[index]; } uint8_t *data() { return buffer.getAlias(); } void appendByte(uint32_t b); void appendWeight16(uint32_t w); void appendWeight32(uint32_t w); void appendReverseWeight16(uint32_t w); /** Appends all but the last byte to the sink. The last byte should be the 01 terminator. */ void appendTo(ByteSink &sink) const { U_ASSERT(len > 0 && buffer[len - 1] == 1); sink.Append(reinterpret_cast(buffer.getAlias()), len - 1); } private: MaybeStackArray buffer; int32_t len; UBool ok; UBool ensureCapacity(int32_t appendCapacity); SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class }; void SortKeyLevel::appendByte(uint32_t b) { if(len < buffer.getCapacity() || ensureCapacity(1)) { buffer[len++] = (uint8_t)b; } } void SortKeyLevel::appendWeight16(uint32_t w) { U_ASSERT((w & 0xffff) != 0); uint8_t b0 = (uint8_t)(w >> 8); uint8_t b1 = (uint8_t)w; int32_t appendLength = (b1 == 0) ? 1 : 2; if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) { buffer[len++] = b0; if(b1 != 0) { buffer[len++] = b1; } } } void SortKeyLevel::appendWeight32(uint32_t w) { U_ASSERT(w != 0); uint8_t bytes[4] = { (uint8_t)(w >> 24), (uint8_t)(w >> 16), (uint8_t)(w >> 8), (uint8_t)w }; int32_t appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4; if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) { buffer[len++] = bytes[0]; if(bytes[1] != 0) { buffer[len++] = bytes[1]; if(bytes[2] != 0) { buffer[len++] = bytes[2]; if(bytes[3] != 0) { buffer[len++] = bytes[3]; } } } } } void SortKeyLevel::appendReverseWeight16(uint32_t w) { U_ASSERT((w & 0xffff) != 0); uint8_t b0 = (uint8_t)(w >> 8); uint8_t b1 = (uint8_t)w; int32_t appendLength = (b1 == 0) ? 1 : 2; if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) { if(b1 == 0) { buffer[len++] = b0; } else { buffer[len] = b1; buffer[len + 1] = b0; len += 2; } } } UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) { if(!ok) { return FALSE; } int32_t newCapacity = 2 * buffer.getCapacity(); int32_t altCapacity = len + 2 * appendCapacity; if (newCapacity < altCapacity) { newCapacity = altCapacity; } if (newCapacity < 200) { newCapacity = 200; } if(buffer.resize(newCapacity, len)==NULL) { return ok = FALSE; } return TRUE; } } // namespace CollationKeys::LevelCallback::~LevelCallback() {} UBool CollationKeys::LevelCallback::needToWrite(Collation::Level /*level*/) { return TRUE; } /** * Map from collation strength (UColAttributeValue) * to a mask of Collation::Level bits up to that strength, * excluding the CASE_LEVEL which is independent of the strength, * and excluding IDENTICAL_LEVEL which this function does not write. */ static const uint32_t levelMasks[UCOL_STRENGTH_LIMIT] = { 2, // UCOL_PRIMARY -> PRIMARY_LEVEL 6, // UCOL_SECONDARY -> up to SECONDARY_LEVEL 0x16, // UCOL_TERTIARY -> up to TERTIARY_LEVEL 0x36, // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x36 // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL }; void CollationKeys::writeSortKeyUpToQuaternary(CollationIterator &iter, const UBool *compressibleBytes, const CollationSettings &settings, SortKeyByteSink &sink, Collation::Level minLevel, LevelCallback &callback, UBool preflight, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return; } int32_t options = settings.options; // Set of levels to process and write. uint32_t levels = levelMasks[CollationSettings::getStrength(options)]; if((options & CollationSettings::CASE_LEVEL) != 0) { levels |= Collation::CASE_LEVEL_FLAG; } // Minus the levels below minLevel. levels &= ~(((uint32_t)1 << minLevel) - 1); if(levels == 0) { return; } uint32_t variableTop; if((options & CollationSettings::ALTERNATE_MASK) == 0) { variableTop = 0; } else { // +1 so that we can use "<" and primary ignorables test out early. variableTop = settings.variableTop + 1; } const uint8_t *reorderTable = settings.reorderTable; uint32_t tertiaryMask = CollationSettings::getTertiaryMask(options); SortKeyLevel cases; SortKeyLevel secondaries; SortKeyLevel tertiaries; SortKeyLevel quaternaries; uint32_t compressedP1 = 0; // 0==no compression; otherwise reordered compressible lead byte int32_t commonCases = 0; int32_t commonSecondaries = 0; int32_t commonTertiaries = 0; int32_t commonQuaternaries = 0; uint32_t prevSecondary = 0; UBool anyMergeSeparators = FALSE; for(;;) { // No need to keep all CEs in the buffer when we write a sort key. iter.clearCEsIfNoneRemaining(); int64_t ce = iter.nextCE(errorCode); uint32_t p = (uint32_t)(ce >> 32); if(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY) { // Variable CE, shift it to quaternary level. // Ignore all following primary ignorables, and shift further variable CEs. if(commonQuaternaries != 0) { --commonQuaternaries; while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) { quaternaries.appendByte(QUAT_COMMON_MIDDLE); commonQuaternaries -= QUAT_COMMON_MAX_COUNT; } // Shifted primary weights are lower than the common weight. quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries); commonQuaternaries = 0; } do { if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) { uint32_t p1 = p >> 24; if(reorderTable != NULL) { p1 = reorderTable[p1]; } if(p1 >= QUAT_SHIFTED_LIMIT_BYTE) { // Prevent shifted primary lead bytes from // overlapping with the common compression range. quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE); } quaternaries.appendWeight32((p1 << 24) | (p & 0xffffff)); } do { ce = iter.nextCE(errorCode); p = (uint32_t)(ce >> 32); } while(p == 0); } while(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY); } // ce could be primary ignorable, or NO_CE, or the merge separator, // or a regular primary CE, but it is not variable. // If ce==NO_CE, then write nothing for the primary level but // terminate compression on all levels and then exit the loop. if(p > Collation::NO_CE_PRIMARY && (levels & Collation::PRIMARY_LEVEL_FLAG) != 0) { uint32_t p1 = p >> 24; if(reorderTable != NULL) { p1 = reorderTable[p1]; } if(p1 != compressedP1) { if(compressedP1 != 0) { if(p1 < compressedP1) { // No primary compression terminator // at the end of the level or merged segment. if(p1 > Collation::MERGE_SEPARATOR_BYTE) { sink.Append(Collation::PRIMARY_COMPRESSION_LOW_BYTE); } } else { sink.Append(Collation::PRIMARY_COMPRESSION_HIGH_BYTE); } } sink.Append(p1); // Test the un-reordered lead byte for compressibility but // remember the reordered lead byte. if(compressibleBytes[p >> 24]) { compressedP1 = p1; } else { compressedP1 = 0; } } char p2 = (char)(p >> 16); if(p2 != 0) { char buffer[3] = { p2, (char)(p >> 8), (char)p }; sink.Append(buffer, (buffer[1] == 0) ? 1 : (buffer[2] == 0) ? 2 : 3); } // Optimization for internalNextSortKeyPart(): // When the primary level overflows we can stop because we need not // calculate (preflight) the whole sort key length. if(!preflight && sink.Overflowed()) { if(U_SUCCESS(errorCode) && !sink.IsOk()) { errorCode = U_MEMORY_ALLOCATION_ERROR; } return; } } uint32_t lower32 = (uint32_t)ce; if(lower32 == 0) { continue; } // completely ignorable, no secondary/case/tertiary/quaternary if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) { uint32_t s = lower32 >> 16; if(s == 0) { // secondary ignorable } else if(s == Collation::COMMON_WEIGHT16) { ++commonSecondaries; } else if((options & CollationSettings::BACKWARD_SECONDARY) == 0) { if(commonSecondaries != 0) { --commonSecondaries; while(commonSecondaries >= SEC_COMMON_MAX_COUNT) { secondaries.appendByte(SEC_COMMON_MIDDLE); commonSecondaries -= SEC_COMMON_MAX_COUNT; } uint32_t b; if(s < Collation::COMMON_WEIGHT16) { b = SEC_COMMON_LOW + commonSecondaries; } else { b = SEC_COMMON_HIGH - commonSecondaries; } secondaries.appendByte(b); commonSecondaries = 0; } secondaries.appendWeight16(s); } else { if(commonSecondaries != 0) { --commonSecondaries; // Append reverse weights. The level will be re-reversed later. int32_t remainder = commonSecondaries % SEC_COMMON_MAX_COUNT; uint32_t b; if(prevSecondary < Collation::COMMON_WEIGHT16) { b = SEC_COMMON_LOW + remainder; } else { b = SEC_COMMON_HIGH - remainder; } secondaries.appendByte(b); commonSecondaries -= remainder; // commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT. while(commonSecondaries > 0) { // same as >= SEC_COMMON_MAX_COUNT secondaries.appendByte(SEC_COMMON_MIDDLE); commonSecondaries -= SEC_COMMON_MAX_COUNT; } // commonSecondaries == 0 } // Reduce separators so that we can look for byte<=1 later. if(s <= Collation::MERGE_SEPARATOR_WEIGHT16) { if(s == Collation::MERGE_SEPARATOR_WEIGHT16) { anyMergeSeparators = TRUE; } secondaries.appendByte((s >> 8) - 1); } else { secondaries.appendReverseWeight16(s); } prevSecondary = s; } } if((levels & Collation::CASE_LEVEL_FLAG) != 0) { if((CollationSettings::getStrength(options) == UCOL_PRIMARY) ? p == 0 : lower32 <= 0xffff) { // Primary+caseLevel: Ignore case level weights of primary ignorables. // Otherwise: Ignore case level weights of secondary ignorables. // For details see the comments in the CollationCompare class. } else { uint32_t c = (lower32 >> 8) & 0xff; // case bits & tertiary lead byte U_ASSERT((c & 0xc0) != 0xc0); if((c & 0xc0) == 0 && c > Collation::MERGE_SEPARATOR_BYTE) { ++commonCases; } else { if((options & CollationSettings::UPPER_FIRST) == 0) { // lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14, upper=15. if(commonCases != 0) { --commonCases; while(commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) { cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4); commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT; } uint32_t b; if(c <= Collation::MERGE_SEPARATOR_BYTE) { b = CASE_LOWER_FIRST_COMMON_LOW + commonCases; } else { b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases; } cases.appendByte(b << 4); commonCases = 0; } if(c > Collation::MERGE_SEPARATOR_BYTE) { c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >> 6)) << 4; // 14 or 15 } } else { // upperFirst: Compress common weights to nibbles 3..15, mixed=2, upper=1. // The compressed common case weights only go up from the "low" value // because with upperFirst the common weight is the highest one. if(commonCases != 0) { --commonCases; while(commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) { cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4); commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT; } cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4); commonCases = 0; } if(c > Collation::MERGE_SEPARATOR_BYTE) { c = (CASE_UPPER_FIRST_COMMON_LOW - (c >> 6)) << 4; // 2 or 1 } } // c is a separator byte 01 or 02, // or a left-shifted nibble 0x10, 0x20, ... 0xf0. cases.appendByte(c); } } } if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) { uint32_t t = lower32 & tertiaryMask; U_ASSERT((lower32 & 0xc000) != 0xc000); if(t == Collation::COMMON_WEIGHT16) { ++commonTertiaries; } else if((tertiaryMask & 0x8000) == 0) { // Tertiary weights without case bits. // Move lead bytes 06..3F to C6..FF for a large common-weight range. if(commonTertiaries != 0) { --commonTertiaries; while(commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) { tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE); commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT; } uint32_t b; if(t < Collation::COMMON_WEIGHT16) { b = TER_ONLY_COMMON_LOW + commonTertiaries; } else { b = TER_ONLY_COMMON_HIGH - commonTertiaries; } tertiaries.appendByte(b); commonTertiaries = 0; } if(t > Collation::COMMON_WEIGHT16) { t += 0xc000; } tertiaries.appendWeight16(t); } else if((options & CollationSettings::UPPER_FIRST) == 0) { // Tertiary weights with caseFirst=lowerFirst. // Move lead bytes 06..BF to 46..FF for the common-weight range. if(commonTertiaries != 0) { --commonTertiaries; while(commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) { tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE); commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT; } uint32_t b; if(t < Collation::COMMON_WEIGHT16) { b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries; } else { b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries; } tertiaries.appendByte(b); commonTertiaries = 0; } if(t > Collation::COMMON_WEIGHT16) { t += 0x4000; } tertiaries.appendWeight16(t); } else { // Tertiary weights with caseFirst=upperFirst. // Do not change the artificial uppercase weight of a tertiary CE (0.0.ut), // to keep tertiary CEs well-formed. // Their case+tertiary weights must be greater than those of // primary and secondary CEs. // // Separators 01..02 -> 01..02 (unchanged) // Lowercase 03..04 -> 83..84 (includes uncased) // Common weight 05 -> 85..C5 (common-weight compression range) // Lowercase 06..3F -> C6..FF // Mixed case 43..7F -> 43..7F // Uppercase 83..BF -> 03..3F // Tertiary CE 86..BF -> C6..FF if(t <= Collation::MERGE_SEPARATOR_WEIGHT16) { // Keep separators unchanged. } else if(lower32 > 0xffff) { // Invert case bits of primary & secondary CEs. t ^= 0xc000; if(t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) { t -= 0x4000; } } else { // Keep uppercase bits of tertiary CEs. U_ASSERT(0x8600 <= t && t <= 0xbfff); t += 0x4000; } if(commonTertiaries != 0) { --commonTertiaries; while(commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) { tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE); commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT; } uint32_t b; if(t < (TER_UPPER_FIRST_COMMON_LOW << 8)) { b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries; } else { b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries; } tertiaries.appendByte(b); commonTertiaries = 0; } tertiaries.appendWeight16(t); } } if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) { uint32_t q = lower32 & 0xffff; if((q & 0xc0) == 0 && q > Collation::MERGE_SEPARATOR_WEIGHT16) { ++commonQuaternaries; } else if(q <= Collation::MERGE_SEPARATOR_WEIGHT16 && (options & CollationSettings::ALTERNATE_MASK) == 0 && (quaternaries.isEmpty() || quaternaries[quaternaries.length() - 1] == Collation::MERGE_SEPARATOR_BYTE)) { // If alternate=non-ignorable and there are only // common quaternary weights between two separators, // then we need not write anything between these separators. // The only weights greater than the merge separator and less than the common weight // are shifted primary weights, which are not generated for alternate=non-ignorable. // There are also exactly as many quaternary weights as tertiary weights, // so level length differences are handled already on tertiary level. // Any above-common quaternary weight will compare greater regardless. quaternaries.appendByte(q >> 8); } else { if(q <= Collation::MERGE_SEPARATOR_WEIGHT16) { q >>= 8; } else { q = 0xfc + ((q >> 6) & 3); } if(commonQuaternaries != 0) { --commonQuaternaries; while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) { quaternaries.appendByte(QUAT_COMMON_MIDDLE); commonQuaternaries -= QUAT_COMMON_MAX_COUNT; } uint32_t b; if(q < QUAT_COMMON_LOW) { b = QUAT_COMMON_LOW + commonQuaternaries; } else { b = QUAT_COMMON_HIGH - commonQuaternaries; } quaternaries.appendByte(b); commonQuaternaries = 0; } quaternaries.appendByte(q); } } if((lower32 >> 24) == Collation::LEVEL_SEPARATOR_BYTE) { break; } // ce == NO_CE } if(U_FAILURE(errorCode)) { return; } // Append the beyond-primary levels. UBool ok = TRUE; if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) { if(!callback.needToWrite(Collation::SECONDARY_LEVEL)) { return; } ok &= secondaries.isOk(); sink.Append(Collation::LEVEL_SEPARATOR_BYTE); uint8_t *secs = secondaries.data(); int32_t length = secondaries.length() - 1; // Ignore the trailing NO_CE. if((options & CollationSettings::BACKWARD_SECONDARY) != 0) { // The backwards secondary level compares secondary weights backwards // within segments separated by the merge separator (U+FFFE, weight 02). // The separator weights 01 & 02 were reduced to 00 & 01 so that // we do not accidentally separate at a _second_ weight byte of 02. int32_t start = 0; for(;;) { // Find the merge separator or the NO_CE terminator. int32_t limit; if(anyMergeSeparators) { limit = start; while(secs[limit] > 1) { ++limit; } } else { limit = length; } // Reverse this segment. if(start < limit) { uint8_t *p = secs + start; uint8_t *q = secs + limit - 1; while(p < q) { uint8_t s = *p; *p++ = *q; *q-- = s; } } // Did we reach the end of the string? if(secs[limit] == 0) { break; } // Restore the merge separator. secs[limit] = 2; // Skip the merge separator and continue. start = limit + 1; } } sink.Append(reinterpret_cast(secs), length); } if((levels & Collation::CASE_LEVEL_FLAG) != 0) { if(!callback.needToWrite(Collation::CASE_LEVEL)) { return; } ok &= cases.isOk(); sink.Append(Collation::LEVEL_SEPARATOR_BYTE); // Write pairs of nibbles as bytes, except separator bytes as themselves. int32_t length = cases.length() - 1; // Ignore the trailing NO_CE. uint8_t b = 0; for(int32_t i = 0; i < length; ++i) { uint8_t c = (uint8_t)cases[i]; if(c <= Collation::MERGE_SEPARATOR_BYTE) { U_ASSERT(c != 0); if(b != 0) { sink.Append(b); b = 0; } sink.Append(c); } else { U_ASSERT((c & 0xf) == 0); if(b == 0) { b = c; } else { sink.Append(b | (c >> 4)); b = 0; } } } if(b != 0) { sink.Append(b); } } if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) { if(!callback.needToWrite(Collation::TERTIARY_LEVEL)) { return; } ok &= tertiaries.isOk(); sink.Append(Collation::LEVEL_SEPARATOR_BYTE); tertiaries.appendTo(sink); } if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) { if(!callback.needToWrite(Collation::QUATERNARY_LEVEL)) { return; } ok &= quaternaries.isOk(); sink.Append(Collation::LEVEL_SEPARATOR_BYTE); quaternaries.appendTo(sink); } if(!ok || !sink.IsOk()) { errorCode = U_MEMORY_ALLOCATION_ERROR; } } U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION