/* ******************************************************************** * * Copyright (C) 1997-1999, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************** */ #ifndef _STDLIB_H #include #endif #ifndef _STDIO_H #include #endif #include "ucmp8.h" #include "cmemory.h" static int32_t findOverlappingPosition(CompactByteArray* this, uint32_t start, const UChar *tempIndex, int32_t tempIndexCount, uint32_t cycle); /* internal constants*/ #define kUnicodeCount_int 65536 #define kBlockShift_int 7 #define kBlockCount_int (1<fArray[(array->fIndex[index >> UCMP8_kBlockShift] & 0xFFFF) + (index & UCMP8_kBlockMask)]); } U_CAPI uint8_t ucmp8_getu(CompactByteArray* array, uint16_t index) { return (uint8_t)ucmp8_get(array,index); } CompactByteArray* ucmp8_open(int8_t defaultValue) { /* set up the index array and the data array. * the index array always points into particular parts of the data array * it is initially set up to point at regular block boundaries * The following example uses blocks of 4 for simplicity * Example: Expanded * INDEX# 0 1 2 3 4 * INDEX 0 4 8 12 16 ... * ARRAY abcdeababcedzyabcdea... * | | | | | |... * whenever you set an element in the array, it unpacks to this state * After compression, the index will point to various places in the data array * wherever there is a runs of the same elements as in the original * Example: Compressed * INDEX# 0 1 2 3 4 * INDEX 0 4 1 8 2 ... * ARRAY abcdeabazyabc... * If you look at the example, index# 2 in the expanded version points * to data position number 8, which has elements "bced". In the compressed * version, index# 2 points to data position 1, which also has "bced" */ CompactByteArray* this = (CompactByteArray*) uprv_malloc(sizeof(CompactByteArray)); int32_t i; if (this == NULL) return NULL; this->fArray = NULL; this->fIndex = NULL; this->fCount = UCMP8_kUnicodeCount; this->fCompact = FALSE; this->fBogus = FALSE; this->fArray = (int8_t*) uprv_malloc(sizeof(int8_t) * UCMP8_kUnicodeCount); if (!this->fArray) { this->fBogus = TRUE; return NULL; } this->fIndex = (uint16_t*) uprv_malloc(sizeof(uint16_t) * UCMP8_kIndexCount); if (!this->fIndex) { uprv_free(this->fArray); this->fArray = NULL; this->fBogus = TRUE; return NULL; } for (i = 0; i < UCMP8_kUnicodeCount; ++i) { this->fArray[i] = defaultValue; } for (i = 0; i < UCMP8_kIndexCount; ++i) { this->fIndex[i] = (uint16_t)(i << UCMP8_kBlockShift); } return this; } CompactByteArray* ucmp8_openAdopt(uint16_t *indexArray, int8_t *newValues, int32_t count) { CompactByteArray* this = (CompactByteArray*) uprv_malloc(sizeof(CompactByteArray)); if (!this) return NULL; this->fArray = NULL; this->fIndex = NULL; this->fCount = count; this->fBogus = FALSE; this->fArray = newValues; this->fIndex = indexArray; this->fCompact = (count < UCMP8_kUnicodeCount) ? TRUE : FALSE; return this; } /*=======================================================*/ void ucmp8_close(CompactByteArray* this) { uprv_free(this->fArray); this->fArray = NULL; uprv_free(this->fIndex); this->fIndex = NULL; this->fCount = 0; this->fCompact = FALSE; uprv_free(this); } /*=======================================================*/ void ucmp8_expand(CompactByteArray* this) { /* can optimize later. * if we have to expand, then walk through the blocks instead of using Get * this code unpacks the array by copying the blocks to the normalized position. * Example: Compressed * INDEX# 0 1 2 3 4 * INDEX 0 4 1 8 2 ... * ARRAY abcdeabazyabc... * turns into * Example: Expanded * INDEX# 0 1 2 3 4 * INDEX 0 4 8 12 16 ... * ARRAY abcdeababcedzyabcdea... */ int32_t i; if (this->fCompact) { int8_t* tempArray; tempArray = (int8_t*) uprv_malloc(sizeof(int8_t) * UCMP8_kUnicodeCount); if (!tempArray) { this->fBogus = TRUE; return; } for (i = 0; i < UCMP8_kUnicodeCount; ++i) { tempArray[i] = ucmp8_get(this,(UChar)i); /* HSYS : How expand?*/ } for (i = 0; i < UCMP8_kIndexCount; ++i) { this->fIndex[i] = (uint16_t)(i<< UCMP8_kBlockShift); } uprv_free(this->fArray); this->fArray = tempArray; this->fCompact = FALSE; } } /*=======================================================*/ /* this->fArray: an array to be overlapped * start and count: specify the block to be overlapped * tempIndex: the overlapped array (actually indices back into inputContents) * inputHash: an index of hashes for tempIndex, where * inputHash[i] = XOR of values from i-count+1 to i */ int32_t findOverlappingPosition(CompactByteArray* this, uint32_t start, const UChar* tempIndex, int32_t tempIndexCount, uint32_t cycle) { /* this is a utility routine for finding blocks that overlap. * IMPORTANT: the cycle number is very important. Small cycles take a lot * longer to work. In some cases, they may be able to get better compaction. */ int32_t i; int32_t j; int32_t currentCount; for (i = 0; i < tempIndexCount; i += cycle) { currentCount = UCMP8_kBlockCount; if (i + UCMP8_kBlockCount > tempIndexCount) { currentCount = tempIndexCount - i; } for (j = 0; j < currentCount; ++j) { if (this->fArray[start + j] != this->fArray[tempIndex[i + j]]) break; } if (j == currentCount) break; } return i; } UBool ucmp8_isBogus(const CompactByteArray* this) { return this->fBogus; } const int8_t* ucmp8_getArray(const CompactByteArray* this) { return this->fArray; } const uint16_t* ucmp8_getIndex(const CompactByteArray* this) { return this->fIndex; } int32_t ucmp8_getCount(const CompactByteArray* this) { return this->fCount; } void ucmp8_set(CompactByteArray* this, UChar c, int8_t value) { if (this->fCompact == TRUE) { ucmp8_expand(this); if (this->fBogus) return; } this->fArray[(int32_t)c] = value; } void ucmp8_setRange(CompactByteArray* this, UChar start, UChar end, int8_t value) { int32_t i; if (this->fCompact == TRUE) { ucmp8_expand(this); if (this->fBogus) return; } for (i = start; i <= end; ++i) { this->fArray[i] = value; } } /*=======================================================*/ void ucmp8_compact(CompactByteArray* this, uint32_t cycle) { if (!this->fCompact) { /* this actually does the compaction. * it walks throught the contents of the expanded array, finding the * first block in the data that matches the contents of the current index. * As it works, it keeps an updated pointer to the last position, * so that it knows how big to make the final array * If the matching succeeds, then the index will point into the data * at some earlier position. * If the matching fails, then last position pointer will be bumped, * and the index will point to that last block of data. */ UChar* tempIndex; int32_t tempIndexCount; int8_t* tempArray; int32_t iBlock, iIndex; /* fix cycle, must be 0 < cycle <= blockcount*/ if (cycle < 0) cycle = 1; else if (cycle > (uint32_t)UCMP8_kBlockCount) cycle = UCMP8_kBlockCount; /* make temp storage, larger than we need*/ tempIndex = (UChar*) uprv_malloc(sizeof(UChar)* UCMP8_kUnicodeCount); if (!tempIndex) { this->fBogus = TRUE; return; } /* set up first block.*/ tempIndexCount = UCMP8_kBlockCount; for (iIndex = 0; iIndex < UCMP8_kBlockCount; ++iIndex) { tempIndex[iIndex] = (uint16_t)iIndex; }; /* endfor (iIndex = 0; .....)*/ this->fIndex[0] = 0; /* for each successive block, find out its first position in the compacted array*/ for (iBlock = 1; iBlock < UCMP8_kIndexCount; ++iBlock) { int32_t newCount, firstPosition, block; block = iBlock << UCMP8_kBlockShift; /* if (debugSmall) if (block > debugSmallLimit) break;*/ firstPosition = findOverlappingPosition(this, block, tempIndex, tempIndexCount, cycle); /* if not contained in the current list, copy the remainder * invariant; cumulativeHash[iBlock] = XOR of values from iBlock-kBlockCount+1 to iBlock * we do this by XORing out cumulativeHash[iBlock-kBlockCount] */ newCount = firstPosition + UCMP8_kBlockCount; if (newCount > tempIndexCount) { for (iIndex = tempIndexCount; iIndex < newCount; ++iIndex) { tempIndex[iIndex] = (uint16_t)(iIndex - firstPosition + block); } /* endfor (iIndex = tempIndexCount....)*/ tempIndexCount = newCount; } /* endif (newCount > tempIndexCount)*/ this->fIndex[iBlock] = (uint16_t)firstPosition; } /* endfor (iBlock = 1.....)*/ /* now allocate and copy the items into the array*/ tempArray = (int8_t*) uprv_malloc(tempIndexCount * sizeof(int8_t)); if (!tempArray) { this->fBogus = TRUE; uprv_free(tempIndex); return; } for (iIndex = 0; iIndex < tempIndexCount; ++iIndex) { tempArray[iIndex] = this->fArray[tempIndex[iIndex]]; } uprv_free(this->fArray); this->fArray = tempArray; this->fCount = tempIndexCount; /* free up temp storage*/ uprv_free(tempIndex); this->fCompact = TRUE; } /* endif (!this->fCompact)*/ }