/*
**********************************************************************
*   Copyright (C) 1999-2005, International Business Machines
*   Corporation and others.  All Rights Reserved.
**********************************************************************
*   Date        Name        Description
*   11/10/99    aliu        Creation.
**********************************************************************
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_TRANSLITERATION

#include "transtst.h"
#include "unicode/locid.h"
#include "unicode/dtfmtsym.h"
#include "unicode/normlzr.h"
#include "unicode/translit.h"
#include "unicode/uchar.h"
#include "unicode/unifilt.h"
#include "unicode/uniset.h"
#include "unicode/ustring.h"
#include "unicode/usetiter.h"
#include "unicode/uscript.h"
#include "cpdtrans.h"
#include "nultrans.h"
#include "rbt.h"
#include "anytrans.h"
#include "esctrn.h"
#include "name2uni.h"
#include "nortrans.h"
#include "remtrans.h"
#include "titletrn.h"
#include "tolowtrn.h"
#include "toupptrn.h"
#include "unesctrn.h"
#include "uni2name.h"
#include "cstring.h"
#include "cmemory.h"
#include <stdio.h>

/***********************************************************************

                     HOW TO USE THIS TEST FILE
                               -or-
                  How I developed on two platforms
                without losing (too much of) my mind


1. Add new tests by copying/pasting/changing existing tests.  On Java,
   any public void method named Test...() taking no parameters becomes
   a test.  On C++, you need to modify the header and add a line to
   the runIndexedTest() dispatch method.

2. Make liberal use of the expect() method; it is your friend.

3. The tests in this file exactly match those in a sister file on the
   other side.  The two files are:

   icu4j:  src/com/ibm/test/translit/TransliteratorTest.java
   icu4c:  source/test/intltest/transtst.cpp

                  ==> THIS IS THE IMPORTANT PART <==

   When you add a test in this file, add it in TransliteratorTest.java
   too.  Give it the same name and put it in the same relative place.
   This makes maintenance a lot simpler for any poor soul who ends up
   trying to synchronize the tests between icu4j and icu4c.

4. If you MUST enter a test that is NOT paralleled in the sister file,
   then add it in the special non-mirrored section.  These are
   labeled

     "icu4j ONLY"

   or

     "icu4c ONLY"

   Make sure you document the reason the test is here and not there.


Thank you.
The Management
***********************************************************************/

// Define character constants thusly to be EBCDIC-friendly
enum {
    LEFT_BRACE=((UChar)0x007B), /*{*/
    PIPE      =((UChar)0x007C), /*|*/
    ZERO      =((UChar)0x0030), /*0*/
    UPPER_A   =((UChar)0x0041)  /*A*/
};

TransliteratorTest::TransliteratorTest()
:   DESERET_DEE((UChar32)0x10414),
    DESERET_dee((UChar32)0x1043C)
{
}

TransliteratorTest::~TransliteratorTest() {}

void
TransliteratorTest::runIndexedTest(int32_t index, UBool exec,
                                   const char* &name, char* /*par*/) {
    switch (index) {
        TESTCASE(0,TestInstantiation);
        TESTCASE(1,TestSimpleRules);
        TESTCASE(2,TestRuleBasedInverse);
        TESTCASE(3,TestKeyboard);
        TESTCASE(4,TestKeyboard2);
        TESTCASE(5,TestKeyboard3);
        TESTCASE(6,TestArabic);
        TESTCASE(7,TestCompoundKana);
        TESTCASE(8,TestCompoundHex);
        TESTCASE(9,TestFiltering);
        TESTCASE(10,TestInlineSet);
        TESTCASE(11,TestPatternQuoting);
        TESTCASE(12,TestJ277);
        TESTCASE(13,TestJ243);
        TESTCASE(14,TestJ329);
        TESTCASE(15,TestSegments);
        TESTCASE(16,TestCursorOffset);
        TESTCASE(17,TestArbitraryVariableValues);
        TESTCASE(18,TestPositionHandling);
        TESTCASE(19,TestHiraganaKatakana);
        TESTCASE(20,TestCopyJ476);
        TESTCASE(21,TestAnchors);
        TESTCASE(22,TestInterIndic);
        TESTCASE(23,TestFilterIDs);
        TESTCASE(24,TestCaseMap);
        TESTCASE(25,TestNameMap);
        TESTCASE(26,TestLiberalizedID);
        TESTCASE(27,TestCreateInstance);
        TESTCASE(28,TestNormalizationTransliterator);
        TESTCASE(29,TestCompoundRBT);
        TESTCASE(30,TestCompoundFilter);
        TESTCASE(31,TestRemove);
        TESTCASE(32,TestToRules);
        TESTCASE(33,TestContext);
        TESTCASE(34,TestSupplemental);
        TESTCASE(35,TestQuantifier);
        TESTCASE(36,TestSTV);
        TESTCASE(37,TestCompoundInverse);
        TESTCASE(38,TestNFDChainRBT);
        TESTCASE(39,TestNullInverse);
        TESTCASE(40,TestAliasInverseID);
        TESTCASE(41,TestCompoundInverseID);
        TESTCASE(42,TestUndefinedVariable);
        TESTCASE(43,TestEmptyContext);
        TESTCASE(44,TestCompoundFilterID);
        TESTCASE(45,TestPropertySet);
        TESTCASE(46,TestNewEngine);
        TESTCASE(47,TestQuantifiedSegment);
        TESTCASE(48,TestDevanagariLatinRT);
        TESTCASE(49,TestTeluguLatinRT);
        TESTCASE(50,TestCompoundLatinRT);
        TESTCASE(51,TestSanskritLatinRT);
        TESTCASE(52,TestLocaleInstantiation);
        TESTCASE(53,TestTitleAccents);
        TESTCASE(54,TestLocaleResource);
        TESTCASE(55,TestParseError);
        TESTCASE(56,TestOutputSet);
        TESTCASE(57,TestVariableRange);
        TESTCASE(58,TestInvalidPostContext);
        TESTCASE(59,TestIDForms);
        TESTCASE(60,TestToRulesMark);
        TESTCASE(61,TestEscape);
        TESTCASE(62,TestAnchorMasking);
        TESTCASE(63,TestDisplayName);
        TESTCASE(64,TestSpecialCases);
        TESTCASE(65,TestIncrementalProgress);
        TESTCASE(66,TestSurrogateCasing);
        TESTCASE(67,TestFunction);
        TESTCASE(68,TestInvalidBackRef);
        TESTCASE(69,TestMulticharStringSet);
        TESTCASE(70,TestUserFunction);
        TESTCASE(71,TestAnyX);
        TESTCASE(72,TestSourceTargetSet);
        TESTCASE(73,TestGurmukhiDevanagari);
        TESTCASE(74,TestRuleWhitespace);
        TESTCASE(75,TestAllCodepoints);
        TESTCASE(76,TestBoilerplate);
        TESTCASE(77,TestAlternateSyntax);
        TESTCASE(78,TestBeginEnd);
        TESTCASE(79,TestBeginEndToRules);
        default: name = ""; break;
    }
}

static const UVersionInfo ICU_31 = {3,1,0,0};
/**
 * Make sure every system transliterator can be instantiated.
 * 
 * ALSO test that the result of toRules() for each rule is a valid
 * rule.  Do this here so we don't have to have another test that
 * instantiates everything as well.
 */
void TransliteratorTest::TestInstantiation() {
    UErrorCode ec = U_ZERO_ERROR;
    StringEnumeration* avail = Transliterator::getAvailableIDs(ec);
    assertSuccess("getAvailableIDs()", ec);
    assertTrue("getAvailableIDs()!=NULL", avail!=NULL);
    int32_t n = Transliterator::countAvailableIDs();
    assertTrue("getAvailableIDs().count()==countAvailableIDs()",
               avail->count(ec) == n);
    assertSuccess("count()", ec);
    UnicodeString name;
    for (int32_t i=0; i<n; ++i) {
        const UnicodeString& id = *avail->snext(ec);
        if (!assertSuccess("snext()", ec) ||
            !assertTrue("snext()!=NULL", (&id)!=NULL, TRUE)) {
            break;
        }
        UnicodeString id2 = Transliterator::getAvailableID(i);
        if (id.length() < 1) {
            errln(UnicodeString("FAIL: getAvailableID(") +
                  i + ") returned empty string");
            continue;
        }
        if (id != id2) {
            errln(UnicodeString("FAIL: getAvailableID(") +
                  i + ") != getAvailableIDs().snext()");
            continue;
        }
        if(id2.indexOf("Thai")>-1 && isICUVersionAtLeast(ICU_31)){
            continue;
        }
        UParseError parseError;
        UErrorCode status = U_ZERO_ERROR;
        Transliterator* t = Transliterator::createInstance(id,
                              UTRANS_FORWARD, parseError,status);
        name.truncate(0);
        Transliterator::getDisplayName(id, name);
        if (t == 0) {
            errln(UnicodeString("FAIL: Couldn't create ") + id +
                  /*", parse error " + parseError.code +*/
                  ", line " + parseError.line +
                  ", offset " + parseError.offset +
                  ", pre-context " + prettify(parseError.preContext, TRUE) +
                  ", post-context " +prettify(parseError.postContext,TRUE) +
                  ", Error: " + u_errorName(status));
            // When createInstance fails, it deletes the failing
            // entry from the available ID list.  We detect this
            // here by looking for a change in countAvailableIDs.
            int32_t nn = Transliterator::countAvailableIDs();
            if (nn == (n - 1)) {
                n = nn;
                --i; // Compensate for deleted entry
            }
        } else {
            logln(UnicodeString("OK: ") + name + " (" + id + ")");

            // Now test toRules
            UnicodeString rules;
            t->toRules(rules, TRUE);
            Transliterator *u = Transliterator::createFromRules("x",
                                    rules, UTRANS_FORWARD, parseError,status);
            if (u == 0) {
                errln(UnicodeString("FAIL: ") + id +
                      ".createFromRules() => bad rules" +
                      /*", parse error " + parseError.code +*/
                      ", line " + parseError.line +
                      ", offset " + parseError.offset +
                      ", context " + prettify(parseError.preContext, TRUE) +
                      ", rules: " + prettify(rules, TRUE));
            } else {
                delete u;
            }
            delete t;
        }
    }
    assertTrue("snext()==NULL", avail->snext(ec)==NULL);
    assertSuccess("snext()", ec);
    delete avail;

    // Now test the failure path
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    UnicodeString id("<Not a valid Transliterator ID>");
    Transliterator* t = Transliterator::createInstance(id, UTRANS_FORWARD, parseError, status);
    if (t != 0) {
        errln("FAIL: " + id + " returned a transliterator");
        delete t;
    } else {
        logln("OK: Bogus ID handled properly");
    }
}

void TransliteratorTest::TestSimpleRules(void) {
    /* Example: rules 1. ab>x|y
     *                2. yc>z
     *
     * []|eabcd  start - no match, copy e to tranlated buffer
     * [e]|abcd  match rule 1 - copy output & adjust cursor
     * [ex|y]cd  match rule 2 - copy output & adjust cursor
     * [exz]|d   no match, copy d to transliterated buffer
     * [exzd]|   done
     */
    expect(UnicodeString("ab>x|y;", "") +
           "yc>z",
           "eabcd", "exzd");

    /* Another set of rules:
     *    1. ab>x|yzacw
     *    2. za>q
     *    3. qc>r
     *    4. cw>n
     *
     * []|ab       Rule 1
     * [x|yzacw]   No match
     * [xy|zacw]   Rule 2
     * [xyq|cw]    Rule 4
     * [xyqn]|     Done
     */
    expect(UnicodeString("ab>x|yzacw;") +
           "za>q;" +
           "qc>r;" +
           "cw>n",
           "ab", "xyqn");

    /* Test categories
     */
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedTransliterator t(
        "<ID>",
        UnicodeString("$dummy=").append((UChar)0xE100) +
        UnicodeString(";"
                      "$vowel=[aeiouAEIOU];"
                      "$lu=[:Lu:];"
                      "$vowel } $lu > '!';"
                      "$vowel > '&';"
                      "'!' { $lu > '^';"
                      "$lu > '*';"
                      "a > ERROR", ""),
        status);
    if (U_FAILURE(status)) {
        errln("FAIL: RBT constructor failed");
        return;
    }
    expect(t, "abcdefgABCDEFGU", "&bcd&fg!^**!^*&");
}

/**
 * Test inline set syntax and set variable syntax.
 */
void TransliteratorTest::TestInlineSet(void) {
    expect("{ [:Ll:] } x > y; [:Ll:] > z;", "aAbxq", "zAyzz");
    expect("a[0-9]b > qrs", "1a7b9", "1qrs9");
    
    expect(UnicodeString(
           "$digit = [0-9];"
           "$alpha = [a-zA-Z];"
           "$alphanumeric = [$digit $alpha];" // ***
           "$special = [^$alphanumeric];"     // ***
           "$alphanumeric > '-';"
           "$special > '*';", ""),
           
           "thx-1138", "---*----");
}

/**
 * Create some inverses and confirm that they work.  We have to be
 * careful how we do this, since the inverses will not be true
 * inverses -- we can't throw any random string at the composition
 * of the transliterators and expect the identity function.  F x
 * F' != I.  However, if we are careful about the input, we will
 * get the expected results.
 */
void TransliteratorTest::TestRuleBasedInverse(void) {
    UnicodeString RULES =
        UnicodeString("abc>zyx;") +
        "ab>yz;" +
        "bc>zx;" +
        "ca>xy;" +
        "a>x;" +
        "b>y;" +
        "c>z;" +

        "abc<zyx;" +
        "ab<yz;" +
        "bc<zx;" +
        "ca<xy;" +
        "a<x;" +
        "b<y;" +
        "c<z;" +

        "";

    const char* DATA[] = {
        // Careful here -- random strings will not work.  If we keep
        // the left side to the domain and the right side to the range
        // we will be okay though (left, abc; right xyz).
        "a", "x",
        "abcacab", "zyxxxyy",
        "caccb", "xyzzy",
    };

    int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));

    UErrorCode status = U_ZERO_ERROR;
    RuleBasedTransliterator fwd("<ID>", RULES, status);
    RuleBasedTransliterator rev("<ID>", RULES,
                                UTRANS_REVERSE, status);
    if (U_FAILURE(status)) {
        errln("FAIL: RBT constructor failed");
        return;
    }
    for (int32_t i=0; i<DATA_length; i+=2) {
        expect(fwd, DATA[i], DATA[i+1]);
        expect(rev, DATA[i+1], DATA[i]);
    }
}

/**
 * Basic test of keyboard.
 */
void TransliteratorTest::TestKeyboard(void) {
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedTransliterator t("<ID>",
                              UnicodeString("psch>Y;")
                              +"ps>y;"
                              +"ch>x;"
                              +"a>A;",
                              status);
    if (U_FAILURE(status)) {
        errln("FAIL: RBT constructor failed");
        return;
    }
    const char* DATA[] = {
        // insertion, buffer
        "a", "A",
        "p", "Ap",
        "s", "Aps",
        "c", "Apsc",
        "a", "AycA",
        "psch", "AycAY",
        0, "AycAY", // null means finishKeyboardTransliteration
    };

    keyboardAux(t, DATA, (int32_t)(sizeof(DATA)/sizeof(DATA[0])));
}

/**
 * Basic test of keyboard with cursor.
 */
void TransliteratorTest::TestKeyboard2(void) {
    UErrorCode status = U_ZERO_ERROR;
    RuleBasedTransliterator t("<ID>",
                              UnicodeString("ych>Y;")
                              +"ps>|y;"
                              +"ch>x;"
                              +"a>A;",
                              status);
    if (U_FAILURE(status)) {
        errln("FAIL: RBT constructor failed");
        return;
    }
    const char* DATA[] = {
        // insertion, buffer
        "a", "A",
        "p", "Ap",
        "s", "Aps", // modified for rollback - "Ay",
        "c", "Apsc", // modified for rollback - "Ayc",
        "a", "AycA",
        "p", "AycAp",
        "s", "AycAps", // modified for rollback - "AycAy",
        "c", "AycApsc", // modified for rollback - "AycAyc",
        "h", "AycAY",
        0, "AycAY", // null means finishKeyboardTransliteration
    };

    keyboardAux(t, DATA, (int32_t)(sizeof(DATA)/sizeof(DATA[0])));
}

/**
 * Test keyboard transliteration with back-replacement.
 */
void TransliteratorTest::TestKeyboard3(void) {
    // We want th>z but t>y.  Furthermore, during keyboard
    // transliteration we want t>y then yh>z if t, then h are
    // typed.
    UnicodeString RULES("t>|y;"
                        "yh>z;");

    const char* DATA[] = {
        // Column 1: characters to add to buffer (as if typed)
        // Column 2: expected appearance of buffer after
        //           keyboard xliteration.
        "a", "a",
        "b", "ab",
        "t", "abt", // modified for rollback - "aby",
        "c", "abyc",
        "t", "abyct", // modified for rollback - "abycy",
        "h", "abycz",
        0, "abycz", // null means finishKeyboardTransliteration
    };

    UErrorCode status = U_ZERO_ERROR;
    RuleBasedTransliterator t("<ID>", RULES, status);
    if (U_FAILURE(status)) {
        errln("FAIL: RBT constructor failed");
        return;
    }
    keyboardAux(t, DATA, (int32_t)(sizeof(DATA)/sizeof(DATA[0])));
}

void TransliteratorTest::keyboardAux(const Transliterator& t,
                                     const char* DATA[], int32_t DATA_length) {
    UErrorCode status = U_ZERO_ERROR;
    UTransPosition index={0, 0, 0, 0};
    UnicodeString s;
    for (int32_t i=0; i<DATA_length; i+=2) {
        UnicodeString log;
        if (DATA[i] != 0) {
            log = s + " + "
                + DATA[i]
                + " -> ";
            t.transliterate(s, index, DATA[i], status);
        } else {
            log = s + " => ";
            t.finishTransliteration(s, index);
        }
        // Show the start index '{' and the cursor '|'
        UnicodeString a, b, c;
        s.extractBetween(0, index.contextStart, a);
        s.extractBetween(index.contextStart, index.start, b);
        s.extractBetween(index.start, s.length(), c);
        log.append(a).
            append((UChar)LEFT_BRACE).
            append(b).
            append((UChar)PIPE).
            append(c);
        if (s == DATA[i+1] && U_SUCCESS(status)) {
            logln(log);
        } else {
            errln(UnicodeString("FAIL: ") + log + ", expected " + DATA[i+1]);
        }
    }
}

void TransliteratorTest::TestArabic(void) {
// Test disabled for 2.0 until new Arabic transliterator can be written.
//    /*
//    const char* DATA[] = {
//        "Arabic", "\u062a\u062a\u0645\u062a\u0639\u0020"+
//                  "\u0627\u0644\u0644\u063a\u0629\u0020"+
//                  "\u0627\u0644\u0639\u0631\u0628\u0628\u064a\u0629\u0020"+
//                  "\u0628\u0628\u0646\u0638\u0645\u0020"+
//                  "\u0643\u062a\u0627\u0628\u0628\u064a\u0629\u0020"+
//                  "\u062c\u0645\u064a\u0644\u0629",
//    };
//    */
//
//    UChar ar_raw[] = {
//        0x062a, 0x062a, 0x0645, 0x062a, 0x0639, 0x0020, 0x0627,
//        0x0644, 0x0644, 0x063a, 0x0629, 0x0020, 0x0627, 0x0644,
//        0x0639, 0x0631, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
//        0x0628, 0x0628, 0x0646, 0x0638, 0x0645, 0x0020, 0x0643,
//        0x062a, 0x0627, 0x0628, 0x0628, 0x064a, 0x0629, 0x0020,
//        0x062c, 0x0645, 0x064a, 0x0644, 0x0629, 0
//    };
//    UnicodeString ar(ar_raw);
//    UErrorCode status=U_ZERO_ERROR;
//    UParseError parseError;
//    Transliterator *t = Transliterator::createInstance("Latin-Arabic", UTRANS_FORWARD, parseError, status);
//    if (t == 0) {
//        errln("FAIL: createInstance failed");
//        return;
//    }
//    expect(*t, "Arabic", ar);
//    delete t;
}

/**
 * Compose the Kana transliterator forward and reverse and try
 * some strings that should come out unchanged.
 */
void TransliteratorTest::TestCompoundKana(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* t = Transliterator::createInstance("Latin-Hiragana;Hiragana-Latin", UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: construction of Latin-Hiragana;Hiragana-Latin failed");
    } else {
        expect(*t, "aaaaa", "aaaaa");
        delete t;
    }
}

/**
 * Compose the hex transliterators forward and reverse.
 */
void TransliteratorTest::TestCompoundHex(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* a = Transliterator::createInstance("Any-Hex", UTRANS_FORWARD, parseError, status);
    Transliterator* b = Transliterator::createInstance("Hex-Any", UTRANS_FORWARD, parseError, status);
    Transliterator* transab[] = { a, b };
    Transliterator* transba[] = { b, a };
    if (a == 0 || b == 0) {
        errln("FAIL: construction failed");
        delete a;
        delete b;
        return;
    }
    // Do some basic tests of a
    expect(*a, "01", UnicodeString("\\u0030\\u0031", ""));
    // Do some basic tests of b
    expect(*b, UnicodeString("\\u0030\\u0031", ""), "01");

    Transliterator* ab = new CompoundTransliterator(transab, 2);
    UnicodeString s("abcde", "");
    expect(*ab, s, s);

    UnicodeString str(s);
    a->transliterate(str);
    Transliterator* ba = new CompoundTransliterator(transba, 2);
    expect(*ba, str, str);

    delete ab;
    delete ba;
    delete a;
    delete b;
}

int gTestFilterClassID = 0;
/**
 * Used by TestFiltering().
 */
class TestFilter : public UnicodeFilter {
    virtual UnicodeFunctor* clone() const {
        return new TestFilter(*this);
    }
    virtual UBool contains(UChar32 c) const {
        return c != (UChar)0x0063 /*c*/;
    }
    // Stubs
    virtual UnicodeString& toPattern(UnicodeString& result,
                                     UBool /*escapeUnprintable*/) const {
        return result;
    }
    virtual UBool matchesIndexValue(uint8_t /*v*/) const {
        return FALSE;
    }
    virtual void addMatchSetTo(UnicodeSet& /*toUnionTo*/) const {}
public:
    UClassID getDynamicClassID() const { return (UClassID)&gTestFilterClassID; }
};

/**
 * Do some basic tests of filtering.
 */
void TransliteratorTest::TestFiltering(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* hex = Transliterator::createInstance("Any-Hex", UTRANS_FORWARD, parseError, status);
    if (hex == 0) {
        errln("FAIL: createInstance(Any-Hex) failed");
        return;
    }
    hex->adoptFilter(new TestFilter());
    UnicodeString s("abcde");
    hex->transliterate(s);
    UnicodeString exp("\\u0061\\u0062c\\u0064\\u0065", "");
    if (s == exp) {
        logln(UnicodeString("Ok:   \"") + exp + "\"");
    } else {
        logln(UnicodeString("FAIL: \"") + s + "\", wanted \"" + exp + "\"");
    }
    
    // ICU4C ONLY. Do not find Transliterator.orphanFilter() in ICU4J.
    UnicodeFilter *f = hex->orphanFilter();
    if (f == NULL){
        errln("FAIL: orphanFilter() should get a UnicodeFilter");
    } else {
        delete f;
    }
    delete hex;
}

/**
 * Test anchors
 */
void TransliteratorTest::TestAnchors(void) {
    expect(UnicodeString("^a  > 0; a$ > 2 ; a > 1;", ""),
           "aaa",
           "012");
    expect(UnicodeString("$s=[z$]; $s{a>0; a}$s>2; a>1;", ""),
           "aaa",
           "012");
    expect(UnicodeString("^ab  > 01 ;"
           " ab  > |8 ;"
           "  b  > k ;"
           " 8x$ > 45 ;"
           " 8x  > 77 ;", ""),

           "ababbabxabx",
           "018k7745");
    expect(UnicodeString("$s = [z$] ;"
           "$s{ab    > 01 ;"
           "   ab    > |8 ;"
           "    b    > k ;"
           "   8x}$s > 45 ;"
           "   8x    > 77 ;", ""),

           "abzababbabxzabxabx",
           "01z018k45z01x45");
}

/**
 * Test pattern quoting and escape mechanisms.
 */
void TransliteratorTest::TestPatternQuoting(void) {
    // Array of 3n items
    // Each item is <rules>, <input>, <expected output>
    const UnicodeString DATA[] = {
        UnicodeString(UChar(0x4E01)) + ">'[male adult]'",
        UnicodeString(UChar(0x4E01)),
        "[male adult]"
    };

    for (int32_t i=0; i<3; i+=3) {
        logln(UnicodeString("Pattern: ") + prettify(DATA[i]));
        UErrorCode status = U_ZERO_ERROR;
        RuleBasedTransliterator t("<ID>", DATA[i], status);
        if (U_FAILURE(status)) {
            errln("RBT constructor failed");
        } else {
            expect(t, DATA[i+1], DATA[i+2]);
        }
    }
}

/**
 * Regression test for bugs found in Greek transliteration.
 */
void TransliteratorTest::TestJ277(void) {
    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    Transliterator *gl = Transliterator::createInstance("Greek-Latin; NFD; [:M:]Remove; NFC", UTRANS_FORWARD, parseError, status);
    if (gl == NULL) {
        errln("FAIL: createInstance(Greek-Latin) returned NULL");
        return;
    }

    UChar sigma = 0x3C3;
    UChar upsilon = 0x3C5;
    UChar nu = 0x3BD;
//    UChar PHI = 0x3A6;
    UChar alpha = 0x3B1;
//    UChar omega = 0x3C9;
//    UChar omicron = 0x3BF;
//    UChar epsilon = 0x3B5;

    // sigma upsilon nu -> syn
    UnicodeString syn;
    syn.append(sigma).append(upsilon).append(nu);
    expect(*gl, syn, "syn");

    // sigma alpha upsilon nu -> saun
    UnicodeString sayn;
    sayn.append(sigma).append(alpha).append(upsilon).append(nu);
    expect(*gl, sayn, "saun");

    // Again, using a smaller rule set
    UnicodeString rules(
                "$alpha   = \\u03B1;"
                "$nu      = \\u03BD;"
                "$sigma   = \\u03C3;"
                "$ypsilon = \\u03C5;"
                "$vowel   = [aeiouAEIOU$alpha$ypsilon];"
                "s <>           $sigma;"
                "a <>           $alpha;"
                "u <>  $vowel { $ypsilon;"
                "y <>           $ypsilon;"
                "n <>           $nu;",
                "");
    RuleBasedTransliterator mini("mini", rules, UTRANS_REVERSE, status);
    if (U_FAILURE(status)) { errln("FAIL: Transliterator constructor failed"); return; }
    expect(mini, syn, "syn");
    expect(mini, sayn, "saun");

#if !UCONFIG_NO_FORMATTING
    // Transliterate the Greek locale data
    Locale el("el");
    DateFormatSymbols syms(el, status);
    if (U_FAILURE(status)) { errln("FAIL: Transliterator constructor failed"); return; }
    int32_t i, count;
    const UnicodeString* data = syms.getMonths(count);
    for (i=0; i<count; ++i) {
        if (data[i].length() == 0) {
            continue;
        }
        UnicodeString out(data[i]);
        gl->transliterate(out);
        UBool ok = TRUE;
        if (data[i].length() >= 2 && out.length() >= 2 &&
            u_isupper(data[i].charAt(0)) && u_islower(data[i].charAt(1))) {
            if (!(u_isupper(out.charAt(0)) && u_islower(out.charAt(1)))) {
                ok = FALSE;
            }
        }
        if (ok) {
            logln(prettify(data[i] + " -> " + out));
        } else {
            errln(UnicodeString("FAIL: ") + prettify(data[i] + " -> " + out));
        }
    }
#endif

    delete gl;
}

/**
 * Prefix, suffix support in hex transliterators
 */
void TransliteratorTest::TestJ243(void) {
    UErrorCode ec = U_ZERO_ERROR;

    // Test default Hex-Any, which should handle
    // \u, \U, u+, and U+
    Transliterator *hex =
        Transliterator::createInstance("Hex-Any", UTRANS_FORWARD, ec);
    if (assertSuccess("getInstance", ec)) {
        expect(*hex, UnicodeString("\\u0041+\\U00000042,U+0043uU+0044z", ""), "A+B,CuDz");
    }
    delete hex;

//    // Try a custom Hex-Unicode
//    // \uXXXX and &#xXXXX;
//    ec = U_ZERO_ERROR;
//    HexToUnicodeTransliterator hex2(UnicodeString("\\\\u###0;&\\#x###0\\;", ""), ec);
//    expect(hex2, UnicodeString("\\u61\\u062\\u0063\\u00645\\u66x&#x30;&#x031;&#x0032;&#x00033;", ""),
//           "abcd5fx012&#x00033;");
//    // Try custom Any-Hex (default is tested elsewhere)
//    ec = U_ZERO_ERROR;
//    UnicodeToHexTransliterator hex3(UnicodeString("&\\#x###0;", ""), ec);
//    expect(hex3, "012", "&#x30;&#x31;&#x32;");
}

/**
 * Parsers need better syntax error messages.
 */
void TransliteratorTest::TestJ329(void) {
    
    struct { UBool containsErrors; const char* rule; } DATA[] = {
        { FALSE, "a > b; c > d" },
        { TRUE,  "a > b; no operator; c > d" },
    };
    int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));

    for (int32_t i=0; i<DATA_length; ++i) {
        UErrorCode status = U_ZERO_ERROR;
        UParseError parseError;
        RuleBasedTransliterator rbt("<ID>",
                                    DATA[i].rule,
                                    UTRANS_FORWARD,
                                    0,
                                    parseError,
                                    status);
        UBool gotError = U_FAILURE(status);
        UnicodeString desc(DATA[i].rule);
        desc.append(gotError ? " -> error" : " -> no error");
        if (gotError) {
            desc = desc + ", ParseError code=" + u_errorName(status) +
                " line=" + parseError.line +
                " offset=" + parseError.offset +
                " context=" + parseError.preContext;
        }
        if (gotError == DATA[i].containsErrors) {
            logln(UnicodeString("Ok:   ") + desc);
        } else {
            errln(UnicodeString("FAIL: ") + desc);
        }
    }
}

/**
 * Test segments and segment references.
 */
void TransliteratorTest::TestSegments(void) {
    // Array of 3n items
    // Each item is <rules>, <input>, <expected output>
    UnicodeString DATA[] = {
        "([a-z]) '.' ([0-9]) > $2 '-' $1",
        "abc.123.xyz.456",
        "ab1-c23.xy4-z56",

        // nested
        "(([a-z])([0-9])) > $1 '.' $2 '.' $3;",
        "a1 b2",
        "a1.a.1 b2.b.2",
    };
    int32_t DATA_length = (int32_t)(sizeof(DATA)/sizeof(*DATA));

    for (int32_t i=0; i<DATA_length; i+=3) {
        logln("Pattern: " + prettify(DATA[i]));
        UErrorCode status = U_ZERO_ERROR;
        RuleBasedTransliterator t("ID", DATA[i], status);
        if (U_FAILURE(status)) {
            errln("FAIL: RBT constructor");
        } else {
            expect(t, DATA[i+1], DATA[i+2]);
        }
    }
}

/**
 * Test cursor positioning outside of the key
 */
void TransliteratorTest::TestCursorOffset(void) {
    // Array of 3n items
    // Each item is <rules>, <input>, <expected output>
    UnicodeString DATA[] = {
        "pre {alpha} post > | @ ALPHA ;"
        "eALPHA > beta ;"
        "pre {beta} post > BETA @@ | ;"
        "post > xyz",

        "prealphapost prebetapost",

        "prbetaxyz preBETApost",
    };
    int32_t DATA_length = (int32_t)(sizeof(DATA)/sizeof(*DATA));

    for (int32_t i=0; i<DATA_length; i+=3) {
        logln("Pattern: " + prettify(DATA[i]));
        UErrorCode status = U_ZERO_ERROR;
        RuleBasedTransliterator t("<ID>", DATA[i], status);
        if (U_FAILURE(status)) {
            errln("FAIL: RBT constructor");
        } else {
            expect(t, DATA[i+1], DATA[i+2]);
        }
    }
}

/**
 * Test zero length and > 1 char length variable values.  Test
 * use of variable refs in UnicodeSets.
 */
void TransliteratorTest::TestArbitraryVariableValues(void) {
    // Array of 3n items
    // Each item is <rules>, <input>, <expected output>
    UnicodeString DATA[] = {
        "$abe = ab;"
        "$pat = x[yY]z;"
        "$ll  = 'a-z';"
        "$llZ = [$ll];"
        "$llY = [$ll$pat];"
        "$emp = ;"

        "$abe > ABE;"
        "$pat > END;"
        "$llZ > 1;"
        "$llY > 2;"
        "7$emp 8 > 9;"
        "",

        "ab xYzxyz stY78",
        "ABE ENDEND 1129",
    };
    int32_t DATA_length = (int32_t)(sizeof(DATA)/sizeof(*DATA));

    for (int32_t i=0; i<DATA_length; i+=3) {
        logln("Pattern: " + prettify(DATA[i]));
        UErrorCode status = U_ZERO_ERROR;
        RuleBasedTransliterator t("<ID>", DATA[i], status);
        if (U_FAILURE(status)) {
            errln("FAIL: RBT constructor");
        } else {
            expect(t, DATA[i+1], DATA[i+2]);
        }
    }
}

/**
 * Confirm that the contextStart, contextLimit, start, and limit
 * behave correctly. J474.
 */
void TransliteratorTest::TestPositionHandling(void) {
    // Array of 3n items
    // Each item is <rules>, <input>, <expected output>
    const char* DATA[] = {
        "a{t} > SS ; {t}b > UU ; {t} > TT ;",
        "xtat txtb", // pos 0,9,0,9
        "xTTaSS TTxUUb",

        "a{t} > SS ; {t}b > UU ; {t} > TT ; a > A ; b > B ;",
        "xtat txtb", // pos 2,9,3,8
        "xtaSS TTxUUb",

        "a{t} > SS ; {t}b > UU ; {t} > TT ; a > A ; b > B ;",
        "xtat txtb", // pos 3,8,3,8
        "xtaTT TTxTTb",
    };

    // Array of 4n positions -- these go with the DATA array
    // They are: contextStart, contextLimit, start, limit
    int32_t POS[] = {
        0, 9, 0, 9,
        2, 9, 3, 8,
        3, 8, 3, 8,
    };

    int32_t n = (int32_t)(sizeof(DATA) / sizeof(DATA[0])) / 3;
    for (int32_t i=0; i<n; i++) {
        UErrorCode status = U_ZERO_ERROR;
        Transliterator *t = new RuleBasedTransliterator("<ID>",
                                                        DATA[3*i], status);
        if (U_FAILURE(status)) {
            delete t;
            errln("FAIL: RBT constructor");
            return;
        }
        UTransPosition pos;
        pos.contextStart= POS[4*i];
        pos.contextLimit = POS[4*i+1];
        pos.start = POS[4*i+2];
        pos.limit = POS[4*i+3];
        UnicodeString rsource(DATA[3*i+1]);
        t->transliterate(rsource, pos, status);
        if (U_FAILURE(status)) {
            delete t;
            errln("FAIL: transliterate");
            return;
        }
        t->finishTransliteration(rsource, pos);
        expectAux(DATA[3*i],
                  DATA[3*i+1],
                  rsource,
                  DATA[3*i+2]);
        delete t;
    }
}

/**
 * Test the Hiragana-Katakana transliterator.
 */
void TransliteratorTest::TestHiraganaKatakana(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* hk = Transliterator::createInstance("Hiragana-Katakana", UTRANS_FORWARD, parseError, status);
    Transliterator* kh = Transliterator::createInstance("Katakana-Hiragana", UTRANS_FORWARD, parseError, status);
    if (hk == 0 || kh == 0) {
        errln("FAIL: createInstance failed");
        delete hk;
        delete kh;
        return;
    }

    // Array of 3n items
    // Each item is "hk"|"kh"|"both", <Hiragana>, <Katakana>
    const char* DATA[] = {
        "both",
        "\\u3042\\u3090\\u3099\\u3092\\u3050",
        "\\u30A2\\u30F8\\u30F2\\u30B0",

        "kh",
        "\\u307C\\u3051\\u3060\\u3042\\u3093\\u30FC",
        "\\u30DC\\u30F6\\u30C0\\u30FC\\u30F3\\u30FC",
    };
    int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));

    for (int32_t i=0; i<DATA_length; i+=3) {
        UnicodeString h = CharsToUnicodeString(DATA[i+1]);
        UnicodeString k = CharsToUnicodeString(DATA[i+2]);
        switch (*DATA[i]) {
        case 0x68: //'h': // Hiragana-Katakana
            expect(*hk, h, k);
            break;
        case 0x6B: //'k': // Katakana-Hiragana
            expect(*kh, k, h);
            break;
        case 0x62: //'b': // both
            expect(*hk, h, k);
            expect(*kh, k, h);
            break;
        }
    }
    delete hk;
    delete kh;
}

/**
 * Test cloning / copy constructor of RBT.
 */
void TransliteratorTest::TestCopyJ476(void) {
    // The real test here is what happens when the destructors are
    // called.  So we let one object get destructed, and check to
    // see that its copy still works.
    RuleBasedTransliterator *t2 = 0;
    {
        UErrorCode status = U_ZERO_ERROR;
        RuleBasedTransliterator t1("t1", "a>A;b>B;", status);
        if (U_FAILURE(status)) {
            errln("FAIL: RBT constructor");
            return;
        }
        t2 = new RuleBasedTransliterator(t1);
        expect(t1, "abc", "ABc");
    }
    expect(*t2, "abc", "ABc");
    delete t2;
}

/**
 * Test inter-Indic transliterators.  These are composed.
 * ICU4C Jitterbug 483.
 */
void TransliteratorTest::TestInterIndic(void) {
    UnicodeString ID("Devanagari-Gujarati", "");
    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    Transliterator* dg = Transliterator::createInstance(ID, UTRANS_FORWARD, parseError, status);
    if (dg == 0) {
        errln("FAIL: createInstance(" + ID + ") returned NULL");
        return;
    }
    UnicodeString id = dg->getID();
    if (id != ID) {
        errln("FAIL: createInstance(" + ID + ")->getID() => " + id);
    }
    UnicodeString dev = CharsToUnicodeString("\\u0901\\u090B\\u0925");
    UnicodeString guj = CharsToUnicodeString("\\u0A81\\u0A8B\\u0AA5");
    expect(*dg, dev, guj);
    delete dg;
}

/**
 * Test filter syntax in IDs. (J918)
 */
void TransliteratorTest::TestFilterIDs(void) {
    // Array of 3n strings:
    // <id>, <inverse id>, <input>, <expected output>
    const char* DATA[] = {
        "[aeiou]Any-Hex", // ID
        "[aeiou]Hex-Any", // expected inverse ID
        "quizzical",      // src
        "q\\u0075\\u0069zz\\u0069c\\u0061l", // expected ID.translit(src)
        
        "[aeiou]Any-Hex;[^5]Hex-Any",
        "[^5]Any-Hex;[aeiou]Hex-Any",
        "quizzical",
        "q\\u0075izzical",
        
        "[abc]Null",
        "[abc]Null",
        "xyz",
        "xyz",
    };
    enum { DATA_length = sizeof(DATA) / sizeof(DATA[0]) };

    for (int i=0; i<DATA_length; i+=4) {
        UnicodeString ID(DATA[i], "");
        UnicodeString uID(DATA[i+1], "");
        UnicodeString data2(DATA[i+2], "");
        UnicodeString data3(DATA[i+3], "");
        UParseError parseError;
        UErrorCode status = U_ZERO_ERROR;
        Transliterator *t = Transliterator::createInstance(ID, UTRANS_FORWARD, parseError, status);
        if (t == 0) {
            errln("FAIL: createInstance(" + ID + ") returned NULL");
            return;
        }
        expect(*t, data2, data3);

        // Check the ID
        if (ID != t->getID()) {
            errln("FAIL: createInstance(" + ID + ").getID() => " +
                  t->getID());
        }

        // Check the inverse
        Transliterator *u = t->createInverse(status);
        if (u == 0) {
            errln("FAIL: " + ID + ".createInverse() returned NULL");
        } else if (u->getID() != uID) {
            errln("FAIL: " + ID + ".createInverse().getID() => " +
                  u->getID() + ", expected " + uID);
        }

        delete t;
        delete u;
    }
}

/**
 * Test the case mapping transliterators.
 */
void TransliteratorTest::TestCaseMap(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* toUpper =
        Transliterator::createInstance("Any-Upper[^xyzXYZ]", UTRANS_FORWARD, parseError, status);
    Transliterator* toLower =
        Transliterator::createInstance("Any-Lower[^xyzXYZ]", UTRANS_FORWARD, parseError, status);
    Transliterator* toTitle =
        Transliterator::createInstance("Any-Title[^xyzXYZ]", UTRANS_FORWARD, parseError, status);
    if (toUpper==0 || toLower==0 || toTitle==0) {
        errln("FAIL: createInstance returned NULL");
        delete toUpper;
        delete toLower;
        delete toTitle;
        return;
    }

    expect(*toUpper, "The quick brown fox jumped over the lazy dogs.",
           "THE QUICK BROWN FOx JUMPED OVER THE LAzy DOGS.");
    expect(*toLower, "The quIck brown fOX jUMPED OVER THE LAzY dogs.",
           "the quick brown foX jumped over the lazY dogs.");
    expect(*toTitle, "the quick brown foX can't jump over the laZy dogs.",
           "The Quick Brown FoX Can't Jump Over The LaZy Dogs.");

    delete toUpper;
    delete toLower;
    delete toTitle;
}

/**
 * Test the name mapping transliterators.
 */
void TransliteratorTest::TestNameMap(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* uni2name =
        Transliterator::createInstance("Any-Name[^abc]", UTRANS_FORWARD, parseError, status);
    Transliterator* name2uni =
        Transliterator::createInstance("Name-Any", UTRANS_FORWARD, parseError, status);
    if (uni2name==0 || name2uni==0) {
        errln("FAIL: createInstance returned NULL");
        delete uni2name;
        delete name2uni;
        return;
    }

    // Careful:  CharsToUS will convert "\\N" => "N"; use "\\\\N" for \N
    expect(*uni2name, CharsToUnicodeString("\\u00A0abc\\u4E01\\u00B5\\u0A81\\uFFFD\\u0004\\u0009\\u0081\\uFFFF"),
           CharsToUnicodeString("\\\\N{NO-BREAK SPACE}abc\\\\N{CJK UNIFIED IDEOGRAPH-4E01}\\\\N{MICRO SIGN}\\\\N{GUJARATI SIGN CANDRABINDU}\\\\N{REPLACEMENT CHARACTER}\\\\N{END OF TRANSMISSION}\\\\N{CHARACTER TABULATION}\\\\N{<control-0081>}\\\\N{<noncharacter-FFFF>}"));
    expect(*name2uni, "{\\N { NO-BREAK SPACE}abc\\N{  CJK UNIFIED  IDEOGRAPH-4E01  }\\N{x\\N{MICRO SIGN}\\N{GUJARATI SIGN CANDRABINDU}\\N{REPLACEMENT CHARACTER}\\N{END OF TRANSMISSION}\\N{CHARACTER TABULATION}\\N{<control-0081>}\\N{<noncharacter-FFFF>}\\N{<control-0004>}\\N{",
           CharsToUnicodeString("{\\u00A0abc\\u4E01\\\\N{x\\u00B5\\u0A81\\uFFFD\\u0004\\u0009\\u0081\\uFFFF\\u0004\\\\N{"));

    delete uni2name;
    delete name2uni;

    // round trip
    Transliterator* t =
        Transliterator::createInstance("Any-Name;Name-Any", UTRANS_FORWARD, parseError, status);
    if (t==0) {
        errln("FAIL: createInstance returned NULL");
        delete t;
        return;
    }

    // Careful:  CharsToUS will convert "\\N" => "N"; use "\\\\N" for \N
    UnicodeString s = CharsToUnicodeString("{\\u00A0abc\\u4E01\\\\N{x\\u00B5\\u0A81\\uFFFD\\u0004\\u0009\\u0081\\uFFFF\\u0004\\\\N{");
    expect(*t, s, s);
    delete t;
}

/**
 * Test liberalized ID syntax.  1006c
 */
void TransliteratorTest::TestLiberalizedID(void) {
    // Some test cases have an expected getID() value of NULL.  This
    // means I have disabled the test case for now.  This stuff is
    // still under development, and I haven't decided whether to make
    // getID() return canonical case yet.  It will all get rewritten
    // with the move to Source-Target/Variant IDs anyway. [aliu]
    const char* DATA[] = {
        "latin-greek", NULL /*"Latin-Greek"*/, "case insensitivity",
        "  Null  ", "Null", "whitespace",
        " Latin[a-z]-Greek  ", "[a-z]Latin-Greek", "inline filter",
        "  null  ; latin-greek  ", NULL /*"Null;Latin-Greek"*/, "compound whitespace",
    };
    const int32_t DATA_length = sizeof(DATA)/sizeof(DATA[0]);
    UParseError parseError;
    UErrorCode status= U_ZERO_ERROR;
    for (int32_t i=0; i<DATA_length; i+=3) {
        Transliterator *t = Transliterator::createInstance(DATA[i], UTRANS_FORWARD, parseError, status);
        if (t == 0) {
            errln(UnicodeString("FAIL: ") + DATA[i+2] +
                  " cannot create ID \"" + DATA[i] + "\"");
        } else {
            UnicodeString exp;
            if (DATA[i+1]) {
                exp = UnicodeString(DATA[i+1], "");
            }
            // Don't worry about getID() if the expected char*
            // is NULL -- see above.
            if (exp.length() == 0 || exp == t->getID()) {
                logln(UnicodeString("Ok: ") + DATA[i+2] +
                      " create ID \"" + DATA[i] + "\" => \"" +
                      exp + "\"");
            } else {
                errln(UnicodeString("FAIL: ") + DATA[i+2] +
                      " create ID \"" + DATA[i] + "\" => \"" +
                      t->getID() + "\", exp \"" + exp + "\"");
            }
            delete t;
        }
    }
}

/* test for Jitterbug 912 */
void TransliteratorTest::TestCreateInstance(){
    const char* FORWARD = "F";
    const char* REVERSE = "R";
    const char* DATA[] = {
        // Column 1: id
        // Column 2: direction
        // Column 3: expected ID, or "" if expect failure
        "Latin-Hangul", REVERSE, "Hangul-Latin", // JB#912

        // JB#2689: bad compound causes crash
        "InvalidSource-InvalidTarget", FORWARD, "",
        "InvalidSource-InvalidTarget", REVERSE, "",
        "Hex-Any;InvalidSource-InvalidTarget", FORWARD, "",
        "Hex-Any;InvalidSource-InvalidTarget", REVERSE, "",
        "InvalidSource-InvalidTarget;Hex-Any", FORWARD, "",
        "InvalidSource-InvalidTarget;Hex-Any", REVERSE, "",

        NULL
    };

    for (int32_t i=0; DATA[i]; i+=3) {
        UParseError err;
        UErrorCode ec = U_ZERO_ERROR;
        UnicodeString id(DATA[i]);
        UTransDirection dir = (DATA[i+1]==FORWARD)?
            UTRANS_FORWARD:UTRANS_REVERSE;
        UnicodeString expID(DATA[i+2]);
        Transliterator* t =
            Transliterator::createInstance(id,dir,err,ec);
        UnicodeString newID;
        if (t) {
            newID = t->getID();
        }
        UBool ok = (newID == expID);
        if (!t) {
            newID = u_errorName(ec);
        }
        if (ok) {
            logln((UnicodeString)"Ok: createInstance(" +
                  id + "," + DATA[i+1] + ") => " + newID);
        } else {
            errln((UnicodeString)"FAIL: createInstance(" +
                  id + "," + DATA[i+1] + ") => " + newID +
                  ", expected " + expID);
        }
        delete t;
    }
}

/**
 * Test the normalization transliterator.
 */
void TransliteratorTest::TestNormalizationTransliterator() {
    // THE FOLLOWING TWO TABLES ARE COPIED FROM com.ibm.test.normalizer.BasicTest
    // PLEASE KEEP THEM IN SYNC WITH BasicTest.
    const char* CANON[] = {
        // Input               Decomposed            Composed
        "cat",                "cat",                "cat"               ,
        "\\u00e0ardvark",      "a\\u0300ardvark",     "\\u00e0ardvark"    ,

        "\\u1e0a",             "D\\u0307",            "\\u1e0a"            , // D-dot_above
        "D\\u0307",            "D\\u0307",            "\\u1e0a"            , // D dot_above

        "\\u1e0c\\u0307",       "D\\u0323\\u0307",      "\\u1e0c\\u0307"      , // D-dot_below dot_above
        "\\u1e0a\\u0323",       "D\\u0323\\u0307",      "\\u1e0c\\u0307"      , // D-dot_above dot_below
        "D\\u0307\\u0323",      "D\\u0323\\u0307",      "\\u1e0c\\u0307"      , // D dot_below dot_above

        "\\u1e10\\u0307\\u0323", "D\\u0327\\u0323\\u0307","\\u1e10\\u0323\\u0307", // D dot_below cedilla dot_above
        "D\\u0307\\u0328\\u0323","D\\u0328\\u0323\\u0307","\\u1e0c\\u0328\\u0307", // D dot_above ogonek dot_below

        "\\u1E14",             "E\\u0304\\u0300",      "\\u1E14"            , // E-macron-grave
        "\\u0112\\u0300",       "E\\u0304\\u0300",      "\\u1E14"            , // E-macron + grave
        "\\u00c8\\u0304",       "E\\u0300\\u0304",      "\\u00c8\\u0304"      , // E-grave + macron

        "\\u212b",             "A\\u030a",            "\\u00c5"            , // angstrom_sign
        "\\u00c5",             "A\\u030a",            "\\u00c5"            , // A-ring

        "\\u00fdffin",         "y\\u0301ffin",        "\\u00fdffin"        ,    //updated with 3.0
        "\\u00fd\\uFB03n",      "y\\u0301\\uFB03n",     "\\u00fd\\uFB03n"     , //updated with 3.0

        "Henry IV",           "Henry IV",           "Henry IV"          ,
        "Henry \\u2163",       "Henry \\u2163",       "Henry \\u2163"      ,

        "\\u30AC",             "\\u30AB\\u3099",       "\\u30AC"            , // ga (Katakana)
        "\\u30AB\\u3099",       "\\u30AB\\u3099",       "\\u30AC"            , // ka + ten
        "\\uFF76\\uFF9E",       "\\uFF76\\uFF9E",       "\\uFF76\\uFF9E"      , // hw_ka + hw_ten
        "\\u30AB\\uFF9E",       "\\u30AB\\uFF9E",       "\\u30AB\\uFF9E"      , // ka + hw_ten
        "\\uFF76\\u3099",       "\\uFF76\\u3099",       "\\uFF76\\u3099"      , // hw_ka + ten

        "A\\u0300\\u0316",      "A\\u0316\\u0300",      "\\u00C0\\u0316"      ,
        0 // end
    };

    const char* COMPAT[] = {
        // Input               Decomposed            Composed
        "\\uFB4f",             "\\u05D0\\u05DC",       "\\u05D0\\u05DC"     , // Alef-Lamed vs. Alef, Lamed

        "\\u00fdffin",         "y\\u0301ffin",        "\\u00fdffin"        ,    //updated for 3.0
        "\\u00fd\\uFB03n",      "y\\u0301ffin",        "\\u00fdffin"        , // ffi ligature -> f + f + i

        "Henry IV",           "Henry IV",           "Henry IV"          ,
        "Henry \\u2163",       "Henry IV",           "Henry IV"          ,

        "\\u30AC",             "\\u30AB\\u3099",       "\\u30AC"            , // ga (Katakana)
        "\\u30AB\\u3099",       "\\u30AB\\u3099",       "\\u30AC"            , // ka + ten

        "\\uFF76\\u3099",       "\\u30AB\\u3099",       "\\u30AC"            , // hw_ka + ten
        0 // end
    };

    int32_t i;
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* NFD = Transliterator::createInstance("NFD", UTRANS_FORWARD, parseError, status);
    Transliterator* NFC = Transliterator::createInstance("NFC", UTRANS_FORWARD, parseError, status);
    if (!NFD || !NFC) {
        errln("FAIL: createInstance failed");
        delete NFD;
        delete NFC;
        return;
    }
    for (i=0; CANON[i]; i+=3) {
        UnicodeString in = CharsToUnicodeString(CANON[i]);
        UnicodeString expd = CharsToUnicodeString(CANON[i+1]);
        UnicodeString expc = CharsToUnicodeString(CANON[i+2]);
        expect(*NFD, in, expd);
        expect(*NFC, in, expc);
    }
    delete NFD;
    delete NFC;

    Transliterator* NFKD = Transliterator::createInstance("NFKD", UTRANS_FORWARD, parseError, status);
    Transliterator* NFKC = Transliterator::createInstance("NFKC", UTRANS_FORWARD, parseError, status);
    if (!NFKD || !NFKC) {
        errln("FAIL: createInstance failed");
        delete NFKD;
        delete NFKC;
        return;
    }
    for (i=0; COMPAT[i]; i+=3) {
        UnicodeString in = CharsToUnicodeString(COMPAT[i]);
        UnicodeString expkd = CharsToUnicodeString(COMPAT[i+1]);
        UnicodeString expkc = CharsToUnicodeString(COMPAT[i+2]);
        expect(*NFKD, in, expkd);
        expect(*NFKC, in, expkc);
    }
    delete NFKD;
    delete NFKC;

    UParseError pe;
    status = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance("NFD; [x]Remove",
                                                       UTRANS_FORWARD,
                                                       pe, status);
    if (t == 0) {
        errln("FAIL: createInstance failed");
    }
    expect(*t, CharsToUnicodeString("\\u010dx"),
           CharsToUnicodeString("c\\u030C"));
    delete t;
}

/**
 * Test compound RBT rules.
 */
void TransliteratorTest::TestCompoundRBT(void) {
    // Careful with spacing and ';' here:  Phrase this exactly
    // as toRules() is going to return it.  If toRules() changes
    // with regard to spacing or ';', then adjust this string.
    UnicodeString rule("::Hex-Any;\n"
                       "::Any-Lower;\n"
                       "a > '.A.';\n"
                       "b > '.B.';\n"
                       "::[^t]Any-Upper;", "");
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createFromRules("Test", rule, UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: createFromRules failed");
        return;
    }
    expect(*t, "\\u0043at in the hat, bat on the mat",
           "C.A.t IN tHE H.A.t, .B..A.t ON tHE M.A.t");
    UnicodeString r;
    t->toRules(r, TRUE);
    if (r == rule) {
        logln((UnicodeString)"OK: toRules() => " + r);
    } else {
        errln((UnicodeString)"FAIL: toRules() => " + r +
              ", expected " + rule);
    }
    delete t;

    // Now test toRules
    t = Transliterator::createInstance("Greek-Latin; Latin-Cyrillic", UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: createInstance failed");
        return;
    }
    UnicodeString exp("::Greek-Latin;\n::Latin-Cyrillic;");
    t->toRules(r, TRUE);
    if (r != exp) {
        errln((UnicodeString)"FAIL: toRules() => " + r +
              ", expected " + exp);
    } else {
        logln((UnicodeString)"OK: toRules() => " + r);
    }
    delete t;

    // Round trip the result of toRules
    t = Transliterator::createFromRules("Test", r, UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: createFromRules #2 failed");
        return;
    } else {
        logln((UnicodeString)"OK: createFromRules(" + r + ") succeeded");
    }

    // Test toRules again
    t->toRules(r, TRUE);
    if (r != exp) {
        errln((UnicodeString)"FAIL: toRules() => " + r +
              ", expected " + exp);
    } else {
        logln((UnicodeString)"OK: toRules() => " + r);
    }

    delete t;

    // Test Foo(Bar) IDs.  Careful with spacing in id; make it conform
    // to what the regenerated ID will look like.
    UnicodeString id("Upper(Lower);(NFKC)", "");
    t = Transliterator::createInstance(id, UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: createInstance #2 failed");
        return;
    }
    if (t->getID() == id) {
        logln((UnicodeString)"OK: created " + id);
    } else {
        errln((UnicodeString)"FAIL: createInstance(" + id +
              ").getID() => " + t->getID());
    }

    Transliterator *u = t->createInverse(status);
    if (u == 0) {
        errln("FAIL: createInverse failed");
        delete t;
        return;
    }
    exp = "NFKC();Lower(Upper)";
    if (u->getID() == exp) {
        logln((UnicodeString)"OK: createInverse(" + id + ") => " +
              u->getID());
    } else {
        errln((UnicodeString)"FAIL: createInverse(" + id + ") => " +
              u->getID());
    }
    delete t;
    delete u;
}

/**
 * Compound filter semantics were orginially not implemented
 * correctly.  Originally, each component filter f(i) is replaced by
 * f'(i) = f(i) && g, where g is the filter for the compound
 * transliterator.
 * 
 * From Mark:
 *
 * Suppose and I have a transliterator X. Internally X is
 * "Greek-Latin; Latin-Cyrillic; Any-Lower". I use a filter [^A].
 * 
 * The compound should convert all greek characters (through latin) to
 * cyrillic, then lowercase the result. The filter should say "don't
 * touch 'A' in the original". But because an intermediate result
 * happens to go through "A", the Greek Alpha gets hung up.
 */
void TransliteratorTest::TestCompoundFilter(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance
        ("Greek-Latin; Latin-Greek; Lower", UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: createInstance failed");
        return;
    }
    t->adoptFilter(new UnicodeSet("[^A]", status));
    if (U_FAILURE(status)) {
        errln("FAIL: UnicodeSet ct failed");
        delete t;
        return;
    }
    
    // Only the 'A' at index 1 should remain unchanged
    expect(*t,
           CharsToUnicodeString("BA\\u039A\\u0391"),
           CharsToUnicodeString("\\u03b2A\\u03ba\\u03b1"));
    delete t;
}

void TransliteratorTest::TestRemove(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance("Remove[abc]", UTRANS_FORWARD, parseError, status);
    if (t == 0) {
        errln("FAIL: createInstance failed");
        return;
    }
    
    expect(*t, "Able bodied baker's cats", "Ale odied ker's ts");
    
    // extra test for RemoveTransliterator::clone(), which at one point wasn't
    // duplicating the filter
    Transliterator* t2 = t->clone();
    expect(*t2, "Able bodied baker's cats", "Ale odied ker's ts");
    
    delete t;
    delete t2;
}

void TransliteratorTest::TestToRules(void) {
    const char* RBT = "rbt";
    const char* SET = "set";
    static const char* DATA[] = {
        RBT,
        "$a=\\u4E61; [$a] > A;",
        "[\\u4E61] > A;",

        RBT,
        "$white=[[:Zs:][:Zl:]]; $white{a} > A;",
        "[[:Zs:][:Zl:]]{a} > A;",

        SET,
        "[[:Zs:][:Zl:]]",
        "[[:Zs:][:Zl:]]",

        SET,
        "[:Ps:]",
        "[:Ps:]",

        SET,
        "[:L:]",
        "[:L:]",

        SET,
        "[[:L:]-[A]]",
        "[[:L:]-[A]]",

        SET,
        "[~[:Lu:][:Ll:]]",
        "[~[:Lu:][:Ll:]]",

        SET,
        "[~[a-z]]",
        "[~[a-z]]",

        RBT,
        "$white=[:Zs:]; $black=[^$white]; $black{a} > A;",
        "[^[:Zs:]]{a} > A;",

        RBT,
        "$a=[:Zs:]; $b=[[a-z]-$a]; $b{a} > A;",
        "[[a-z]-[:Zs:]]{a} > A;",

        RBT,
        "$a=[:Zs:]; $b=[$a&[a-z]]; $b{a} > A;",
        "[[:Zs:]&[a-z]]{a} > A;",

        RBT,
        "$a=[:Zs:]; $b=[x$a]; $b{a} > A;",
        "[x[:Zs:]]{a} > A;",

        RBT,
        "$accentMinus = [ [\\u0300-\\u0345] & [:M:] - [\\u0338]] ;"
        "$macron = \\u0304 ;"
        "$evowel = [aeiouyAEIOUY] ;"
        "$iotasub = \\u0345 ;" 
        "($evowel $macron $accentMinus *) i > | $1 $iotasub ;",
        "([AEIOUYaeiouy]\\u0304[[\\u0300-\\u0345]&[:M:]-[\\u0338]]*)i > | $1 \\u0345;",

        RBT,
        "([AEIOUYaeiouy]\\u0304[[:M:]-[\\u0304\\u0345]]*)i > | $1 \\u0345;",
        "([AEIOUYaeiouy]\\u0304[[:M:]-[\\u0304\\u0345]]*)i > | $1 \\u0345;",
    };
    static const int32_t DATA_length = (int32_t)(sizeof(DATA) / sizeof(DATA[0]));

    for (int32_t d=0; d < DATA_length; d+=3) {
        if (DATA[d] == RBT) {
            // Transliterator test
            UParseError parseError;
            UErrorCode status = U_ZERO_ERROR;
            Transliterator *t = Transliterator::createFromRules("ID",
                                                                DATA[d+1], UTRANS_FORWARD, parseError, status);
            if (t == 0) {
                errln("FAIL: createFromRules failed");
                return;
            }
            UnicodeString rules, escapedRules;
            t->toRules(rules, FALSE);
            t->toRules(escapedRules, TRUE);
            UnicodeString expRules = CharsToUnicodeString(DATA[d+2]);
            UnicodeString expEscapedRules(DATA[d+2]);
            if (rules == expRules) {
                logln((UnicodeString)"Ok: " + DATA[d+1] +
                      " => " + rules);
            } else {
                errln((UnicodeString)"FAIL: " + DATA[d+1] +
                      " => " + rules + ", exp " + expRules);
            }
            if (escapedRules == expEscapedRules) {
                logln((UnicodeString)"Ok: " + DATA[d+1] +
                      " => " + escapedRules);
            } else {
                errln((UnicodeString)"FAIL: " + DATA[d+1] +
                      " => " + escapedRules + ", exp " + expEscapedRules);
            }
            delete t;
            
        } else {
            // UnicodeSet test
            UErrorCode status = U_ZERO_ERROR;
            UnicodeString pat(DATA[d+1]);
            UnicodeString expToPat(DATA[d+2]);
            UnicodeSet set(pat, status);
            if (U_FAILURE(status)) {
                errln("FAIL: UnicodeSet ct failed");
                return;
            }
            // Adjust spacing etc. as necessary.
            UnicodeString toPat;
            set.toPattern(toPat);
            if (expToPat == toPat) {
                logln((UnicodeString)"Ok: " + pat +
                      " => " + toPat);
            } else {
                errln((UnicodeString)"FAIL: " + pat +
                      " => " + prettify(toPat, TRUE) +
                      ", exp " + prettify(pat, TRUE));
            }
        }
    }
}

void TransliteratorTest::TestContext() {
    UTransPosition pos = {0, 2, 0, 1}; // cs cl s l
    expect("de > x; {d}e > y;",
           "de",
           "ye",
           &pos);

    expect("ab{c} > z;",
           "xadabdabcy",
           "xadabdabzy");
}

void TransliteratorTest::TestSupplemental() { 

    expect(CharsToUnicodeString("$a=\\U00010300; $s=[\\U00010300-\\U00010323];"
                                "a > $a; $s > i;"),
           CharsToUnicodeString("ab\\U0001030Fx"),
           CharsToUnicodeString("\\U00010300bix"));

    expect(CharsToUnicodeString("$a=[a-z\\U00010300-\\U00010323];"
                                "$b=[A-Z\\U00010400-\\U0001044D];"
                                "($a)($b) > $2 $1;"),
           CharsToUnicodeString("aB\\U00010300\\U00010400c\\U00010401\\U00010301D"),
           CharsToUnicodeString("Ba\\U00010400\\U00010300\\U00010401cD\\U00010301"));

    // k|ax\\U00010300xm

    // k|a\\U00010400\\U00010300xm
    // ky|\\U00010400\\U00010300xm
    // ky\\U00010400|\\U00010300xm

    // ky\\U00010400|\\U00010300\\U00010400m
    // ky\\U00010400y|\\U00010400m
    expect(CharsToUnicodeString("$a=[a\\U00010300-\\U00010323];"
                                "$a {x} > | @ \\U00010400;"
                                "{$a} [^\\u0000-\\uFFFF] > y;"),
           CharsToUnicodeString("kax\\U00010300xm"),
           CharsToUnicodeString("ky\\U00010400y\\U00010400m"));

    expectT("Any-Name",
           CharsToUnicodeString("\\U00010330\\U000E0061\\u00A0"),
           "\\N{GOTHIC LETTER AHSA}\\N{TAG LATIN SMALL LETTER A}\\N{NO-BREAK SPACE}");

    expectT("Any-Hex/Unicode",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           "U+10330U+10FF00U+E0061U+00A0");

    expectT("Any-Hex/C",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           "\\U00010330\\U0010FF00\\U000E0061\\u00A0");

    expectT("Any-Hex/Perl",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           "\\x{10330}\\x{10FF00}\\x{E0061}\\x{A0}");

    expectT("Any-Hex/Java",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           "\\uD800\\uDF30\\uDBFF\\uDF00\\uDB40\\uDC61\\u00A0");

    expectT("Any-Hex/XML",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           "&#x10330;&#x10FF00;&#xE0061;&#xA0;");

    expectT("Any-Hex/XML10",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           "&#66352;&#1113856;&#917601;&#160;");

    expectT("[\\U000E0000-\\U000E0FFF] Remove",
           CharsToUnicodeString("\\U00010330\\U0010FF00\\U000E0061\\u00A0"),
           CharsToUnicodeString("\\U00010330\\U0010FF00\\u00A0"));
}

void TransliteratorTest::TestQuantifier() { 

    // Make sure @ in a quantified anteContext works
    expect("a+ {b} > | @@ c; A > a; (a+ c) > '(' $1 ')';",
           "AAAAAb",
           "aaa(aac)");

    // Make sure @ in a quantified postContext works
    expect("{b} a+ > c @@ |; (a+) > '(' $1 ')';",
           "baaaaa",
           "caa(aaa)");

    // Make sure @ in a quantified postContext with seg ref works
    expect("{(b)} a+ > $1 @@ |; (a+) > '(' $1 ')';",
           "baaaaa",
           "baa(aaa)");

    // Make sure @ past ante context doesn't enter ante context
    UTransPosition pos = {0, 5, 3, 5};
    expect("a+ {b} > | @@ c; x > y; (a+ c) > '(' $1 ')';",
           "xxxab",
           "xxx(ac)",
           &pos);

    // Make sure @ past post context doesn't pass limit
    UTransPosition pos2 = {0, 4, 0, 2};
    expect("{b} a+ > c @@ |; x > y; a > A;",
           "baxx",
           "caxx",
           &pos2);

    // Make sure @ past post context doesn't enter post context
    expect("{b} a+ > c @@ |; x > y; a > A;",
           "baxx",
           "cayy");

    expect("(ab)? c > d;",
           "c abc ababc",
           "d d abd");
    
    // NOTE: The (ab)+ when referenced just yields a single "ab",
    // not the full sequence of them.  This accords with perl behavior.
    expect("(ab)+ {x} > '(' $1 ')';",
           "x abx ababxy",
           "x ab(ab) abab(ab)y");

    expect("b+ > x;",
           "ac abc abbc abbbc",
           "ac axc axc axc");

    expect("[abc]+ > x;",
           "qac abrc abbcs abtbbc",
           "qx xrx xs xtx");

    expect("q{(ab)+} > x;",
           "qa qab qaba qababc qaba",
           "qa qx qxa qxc qxa");

    expect("q(ab)* > x;",
           "qa qab qaba qababc",
           "xa x xa xc");

    // NOTE: The (ab)+ when referenced just yields a single "ab",
    // not the full sequence of them.  This accords with perl behavior.
    expect("q(ab)* > '(' $1 ')';",
           "qa qab qaba qababc",
           "()a (ab) (ab)a (ab)c");

    // 'foo'+ and 'foo'* -- the quantifier should apply to the entire
    // quoted string
    expect("'ab'+ > x;",
           "bb ab ababb",
           "bb x xb");

    // $foo+ and $foo* -- the quantifier should apply to the entire
    // variable reference
    expect("$var = ab; $var+ > x;",
           "bb ab ababb",
           "bb x xb");
}

class TestTrans : public NullTransliterator {
public:
    TestTrans(const UnicodeString& id) {
        setID(id);
    }
};

/**
 * Test Source-Target/Variant.
 */
void TransliteratorTest::TestSTV(void) {
    int32_t ns = Transliterator::countAvailableSources();
    if (ns < 0 || ns > 255) {
        errln((UnicodeString)"FAIL: Bad source count: " + ns);
        return;
    }
    int32_t i, j;
    for (i=0; i<ns; ++i) {
        UnicodeString source;
        Transliterator::getAvailableSource(i, source);
        logln((UnicodeString)"" + i + ": " + source);
        if (source.length() == 0) {
            errln("FAIL: empty source");
            continue;
        }
        int32_t nt = Transliterator::countAvailableTargets(source);
        if (nt < 0 || nt > 255) {
            errln((UnicodeString)"FAIL: Bad target count: " + nt);
            continue;
        }
        for (int32_t j=0; j<nt; ++j) {
            UnicodeString target;
            Transliterator::getAvailableTarget(j, source, target);
            logln((UnicodeString)" " + j + ": " + target);
            if (target.length() == 0) {
                errln("FAIL: empty target");
                continue;
            }
            int32_t nv = Transliterator::countAvailableVariants(source, target);
            if (nv < 0 || nv > 255) {
                errln((UnicodeString)"FAIL: Bad variant count: " + nv);
                continue;
            }
            for (int32_t k=0; k<nv; ++k) {
                UnicodeString variant;
                Transliterator::getAvailableVariant(k, source, target, variant);
                if (variant.length() == 0) { 
                    logln((UnicodeString)"  " + k + ": <empty>");
                } else {
                    logln((UnicodeString)"  " + k + ": " + variant);
                }
            }
        }
    }

    // Test registration
    const char* IDS[] = { "Fieruwer", "Seoridf-Sweorie", "Oewoir-Oweri/Vsie" };
    const char* FULL_IDS[] = { "Any-Fieruwer", "Seoridf-Sweorie", "Oewoir-Oweri/Vsie" };
    const char* SOURCES[] = { NULL, "Seoridf", "Oewoir" };
    for (i=0; i<3; ++i) {
        Transliterator *t = new TestTrans(IDS[i]);
        if (t == 0) {
            errln("FAIL: out of memory");
            return;
        }
        if (t->getID() != IDS[i]) {
            errln((UnicodeString)"FAIL: ID mismatch for " + IDS[i]);
            delete t;
            return;
        }
        Transliterator::registerInstance(t);
        UErrorCode status = U_ZERO_ERROR;
        t = Transliterator::createInstance(IDS[i], UTRANS_FORWARD, status);
        if (t == NULL) {
            errln((UnicodeString)"FAIL: Registration/creation failed for ID " +
                  IDS[i]);
        } else {
            logln((UnicodeString)"Ok: Registration/creation succeeded for ID " +
                  IDS[i]);
            delete t;
        }
        Transliterator::unregister(IDS[i]);
        t = Transliterator::createInstance(IDS[i], UTRANS_FORWARD, status);
        if (t != NULL) {
            errln((UnicodeString)"FAIL: Unregistration failed for ID " +
                  IDS[i]);
            delete t;
        }
    }

    // Make sure getAvailable API reflects removal
    int32_t n = Transliterator::countAvailableIDs();
    for (i=0; i<n; ++i) {
        UnicodeString id = Transliterator::getAvailableID(i);
        for (j=0; j<3; ++j) {
            if (id.caseCompare(FULL_IDS[j],0)==0) {
                errln((UnicodeString)"FAIL: unregister(" + id + ") failed");
            }
        }
    }
    n = Transliterator::countAvailableTargets("Any");
    for (i=0; i<n; ++i) {
        UnicodeString t;
        Transliterator::getAvailableTarget(i, "Any", t);
        if (t.caseCompare(IDS[0],0)==0) {
            errln((UnicodeString)"FAIL: unregister(Any-" + t + ") failed");
        }
    }
    n = Transliterator::countAvailableSources();
    for (i=0; i<n; ++i) {
        UnicodeString s;
        Transliterator::getAvailableSource(i, s);
        for (j=0; j<3; ++j) {
            if (SOURCES[j] == NULL) continue;
            if (s.caseCompare(SOURCES[j],0)==0) {
                errln((UnicodeString)"FAIL: unregister(" + s + "-*) failed");
            }
        }
    }
}

/**
 * Test inverse of Greek-Latin; Title()
 */
void TransliteratorTest::TestCompoundInverse(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance
        ("Greek-Latin; Title()", UTRANS_REVERSE,parseError, status);
    if (t == 0) {
        errln("FAIL: createInstance");
        return;
    }
    UnicodeString exp("(Title);Latin-Greek");
    if (t->getID() == exp) {
        logln("Ok: inverse of \"Greek-Latin; Title()\" is \"" +
              t->getID());
    } else {
        errln("FAIL: inverse of \"Greek-Latin; Title()\" is \"" +
              t->getID() + "\", expected \"" + exp + "\"");
    }
    delete t;
}

/**
 * Test NFD chaining with RBT
 */
void TransliteratorTest::TestNFDChainRBT() {
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator* t = Transliterator::createFromRules(
                               "TEST", "::NFD; aa > Q; a > q;",
                               UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln("FAIL: Transliterator::createFromRules failed with %s", u_errorName(ec));
        return;
    }
    expect(*t, "aa", "Q");
    delete t;

    // TEMPORARY TESTS -- BEING DEBUGGED
//=-    UnicodeString s, s2;
//=-    t = Transliterator::createInstance("Latin-Devanagari", UTRANS_FORWARD, pe, ec);
//=-    s = CharsToUnicodeString("rmk\\u1E63\\u0113t");
//=-    s2 = CharsToUnicodeString("\\u0930\\u094D\\u092E\\u094D\\u0915\\u094D\\u0937\\u0947\\u0924\\u094D");
//=-    expect(*t, s, s2);
//=-    delete t;
//=-
//=-    t = Transliterator::createInstance("Devanagari-Latin", UTRANS_FORWARD, pe, ec);
//=-    expect(*t, s2, s);
//=-    delete t;
//=-
//=-    t = Transliterator::createInstance("Latin-Devanagari;Devanagari-Latin", UTRANS_FORWARD, pe, ec);
//=-    s = CharsToUnicodeString("rmk\\u1E63\\u0113t");
//=-    expect(*t, s, s);
//=-    delete t;

//    const char* source[] = {
//        /*
//        "\\u015Br\\u012Bmad",
//        "bhagavadg\\u012Bt\\u0101",
//        "adhy\\u0101ya",
//        "arjuna",
//        "vi\\u1E63\\u0101da",
//        "y\\u014Dga",
//        "dhr\\u0325tar\\u0101\\u1E63\\u1E6Dra",
//        "uv\\u0101cr\\u0325",
//        */
//        "rmk\\u1E63\\u0113t",
//      //"dharmak\\u1E63\\u0113tr\\u0113",
//        /*
//        "kuruk\\u1E63\\u0113tr\\u0113",
//        "samav\\u0113t\\u0101",
//        "yuyutsava-\\u1E25",
//        "m\\u0101mak\\u0101-\\u1E25",
//     // "p\\u0101\\u1E47\\u1E0Dav\\u0101\\u015Bcaiva",
//        "kimakurvata",
//        "san\\u0304java",
//        */
//
//        0
//    };
//    const char* expected[] = {
//        /*
//        "\\u0936\\u094d\\u0930\\u0940\\u092e\\u0926\\u094d",
//        "\\u092d\\u0917\\u0935\\u0926\\u094d\\u0917\\u0940\\u0924\\u093e",
//        "\\u0905\\u0927\\u094d\\u092f\\u093e\\u092f",
//        "\\u0905\\u0930\\u094d\\u091c\\u0941\\u0928",
//        "\\u0935\\u093f\\u0937\\u093e\\u0926",
//        "\\u092f\\u094b\\u0917",
//        "\\u0927\\u0943\\u0924\\u0930\\u093e\\u0937\\u094d\\u091f\\u094d\\u0930",
//        "\\u0909\\u0935\\u093E\\u091A\\u0943",
//        */
//        "\\u0927",
//        //"\\u0927\\u0930\\u094d\\u092e\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
//        /*
//        "\\u0915\\u0941\\u0930\\u0941\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
//        "\\u0938\\u092e\\u0935\\u0947\\u0924\\u093e",
//        "\\u092f\\u0941\\u092f\\u0941\\u0924\\u094d\\u0938\\u0935\\u0903",
//        "\\u092e\\u093e\\u092e\\u0915\\u093e\\u0903",
//    //  "\\u092a\\u093e\\u0923\\u094d\\u0921\\u0935\\u093e\\u0936\\u094d\\u091a\\u0948\\u0935",
//        "\\u0915\\u093f\\u092e\\u0915\\u0941\\u0930\\u094d\\u0935\\u0924",
//        "\\u0938\\u0902\\u091c\\u0935",
//        */
//        0
//    };
//    UErrorCode status = U_ZERO_ERROR;
//    UParseError parseError;
//    UnicodeString message;
//    Transliterator* latinToDevToLatin=Transliterator::createInstance("Latin-Devanagari;Devanagari-Latin", UTRANS_FORWARD, parseError, status);
//    Transliterator* devToLatinToDev=Transliterator::createInstance("Devanagari-Latin;Latin-Devanagari", UTRANS_FORWARD, parseError, status);
//    if(U_FAILURE(status)){
//        errln("FAIL: construction " +   UnicodeString(" Error: ") + u_errorName(status));
//        errln("PreContext: " + prettify(parseError.preContext) + "PostContext: " + prettify( parseError.postContext) );
//        delete latinToDevToLatin;
//        delete devToLatinToDev;
//        return;
//    }
//    UnicodeString gotResult;
//    for(int i= 0; source[i] != 0; i++){
//        gotResult = source[i];
//        expect(*latinToDevToLatin,CharsToUnicodeString(source[i]),CharsToUnicodeString(source[i]));
//        expect(*devToLatinToDev,CharsToUnicodeString(expected[i]),CharsToUnicodeString(expected[i]));
//    }
//    delete latinToDevToLatin;
//    delete devToLatinToDev;
}

/**
 * Inverse of "Null" should be "Null". (J21)
 */
void TransliteratorTest::TestNullInverse() {
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance("Null", UTRANS_FORWARD, pe, ec);
    if (t == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInstance");
        return;
    }
    Transliterator *u = t->createInverse(ec);
    if (u == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInverse");
        delete t;
        return;
    }
    if (u->getID() != "Null") {
        errln("FAIL: Inverse of Null should be Null");
    }
    delete t;
    delete u;
}

/**
 * Check ID of inverse of alias. (J22)
 */
void TransliteratorTest::TestAliasInverseID() {
    UnicodeString ID("Latin-Hangul", ""); // This should be any alias ID with an inverse
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance(ID, UTRANS_FORWARD, pe, ec);
    if (t == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInstance");
        return;
    }
    Transliterator *u = t->createInverse(ec);
    if (u == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInverse");
        delete t;
        return;
    }
    UnicodeString exp = "Hangul-Latin";
    UnicodeString got = u->getID();
    if (got != exp) {
        errln((UnicodeString)"FAIL: Inverse of " + ID + " is " + got +
              ", expected " + exp);
    }
    delete t;
    delete u;
}

/**
 * Test IDs of inverses of compound transliterators. (J20)
 */
void TransliteratorTest::TestCompoundInverseID() {
    UnicodeString ID = "Latin-Jamo;NFC(NFD)";
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance(ID, UTRANS_FORWARD, pe, ec);
    if (t == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInstance");
        return;
    }
    Transliterator *u = t->createInverse(ec);
    if (u == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInverse");
        delete t;
        return;
    }
    UnicodeString exp = "NFD(NFC);Jamo-Latin";
    UnicodeString got = u->getID();
    if (got != exp) {
        errln((UnicodeString)"FAIL: Inverse of " + ID + " is " + got +
              ", expected " + exp);
    }
    delete t;
    delete u;
}

/**
 * Test undefined variable.

 */
void TransliteratorTest::TestUndefinedVariable() {
    UnicodeString rule = "$initial } a <> \\u1161;";
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = new RuleBasedTransliterator("<ID>", rule, UTRANS_FORWARD, 0, pe, ec);
    delete t;
    if (U_FAILURE(ec)) {
        logln((UnicodeString)"OK: Got exception for " + rule + ", as expected: " +
              u_errorName(ec));
        return;
    }
    errln((UnicodeString)"Fail: bogus rule " + rule + " compiled with error " +
          u_errorName(ec));
}

/**
 * Test empty context.
 */
void TransliteratorTest::TestEmptyContext() {
    expect(" { a } > b;", "xay a ", "xby b ");
}

/**
* Test compound filter ID syntax
*/
void TransliteratorTest::TestCompoundFilterID(void) {
    static const char* DATA[] = {
        // Col. 1 = ID or rule set (latter must start with #)

        // = columns > 1 are null if expect col. 1 to be illegal =

        // Col. 2 = direction, "F..." or "R..."
        // Col. 3 = source string
        // Col. 4 = exp result

        "[abc]; [abc]", NULL, NULL, NULL, // multiple filters
        "Latin-Greek; [abc];", NULL, NULL, NULL, // misplaced filter
        "[b]; Latin-Greek; Upper; ([xyz])", "F", "abc", "a\\u0392c",
        "[b]; (Lower); Latin-Greek; Upper(); ([\\u0392])", "R", "\\u0391\\u0392\\u0393", "\\u0391b\\u0393",
        "#\n::[b]; ::Latin-Greek; ::Upper; ::([xyz]);", "F", "abc", "a\\u0392c",
        "#\n::[b]; ::(Lower); ::Latin-Greek; ::Upper(); ::([\\u0392]);", "R", "\\u0391\\u0392\\u0393", "\\u0391b\\u0393",
        NULL,
    };

    for (int32_t i=0; DATA[i]; i+=4) {
        UnicodeString id = CharsToUnicodeString(DATA[i]);
        UTransDirection direction = (DATA[i+1] != NULL && DATA[i+1][0] == 'R') ?
            UTRANS_REVERSE : UTRANS_FORWARD;
        UnicodeString source;
        UnicodeString exp;
        if (DATA[i+2] != NULL) {
            source = CharsToUnicodeString(DATA[i+2]);
            exp = CharsToUnicodeString(DATA[i+3]);
        }
        UBool expOk = (DATA[i+1] != NULL);
        Transliterator* t = NULL;
        UParseError pe;
        UErrorCode ec = U_ZERO_ERROR;
        if (id.charAt(0) == 0x23/*#*/) {
            t = Transliterator::createFromRules("ID", id, direction, pe, ec);
        } else {
            t = Transliterator::createInstance(id, direction, pe, ec);
        }
        UBool ok = (t != NULL && U_SUCCESS(ec));
        UnicodeString transID;
        if (t!=0) {
            transID = t->getID();
        }
        else {
            transID = UnicodeString("NULL", "");
        }
        if (ok == expOk) {
            logln((UnicodeString)"Ok: " + id + " => " + transID + ", " +
                  u_errorName(ec));
            if (source.length() != 0) {
                expect(*t, source, exp);
            }
            delete t;
        } else {
            errln((UnicodeString)"FAIL: " + id + " => " + transID + ", " +
                  u_errorName(ec));
        }
    }
}

/**
 * Test new property set syntax
 */
void TransliteratorTest::TestPropertySet() {
    expect("a>A; \\p{Lu}>x; \\p{ANY}>y;", "abcDEF", "Ayyxxx");
    expect("(.+)>'[' $1 ']';", " a stitch \n in time \r saves 9",
           "[ a stitch ]\n[ in time ]\r[ saves 9]");
}

/**
 * Test various failure points of the new 2.0 engine.
 */
void TransliteratorTest::TestNewEngine() {
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance("Latin-Hiragana", UTRANS_FORWARD, pe, ec);
    if (t == 0 || U_FAILURE(ec)) {
        errln("FAIL: createInstance Latin-Hiragana");
        return;
    }
    // Katakana should be untouched
    expect(*t, CharsToUnicodeString("a\\u3042\\u30A2"),
           CharsToUnicodeString("\\u3042\\u3042\\u30A2"));

    delete t;

#if 1
    // This test will only work if Transliterator.ROLLBACK is
    // true.  Otherwise, this test will fail, revealing a
    // limitation of global filters in incremental mode.
    Transliterator *a =
        Transliterator::createFromRules("a_to_A", "a > A;", UTRANS_FORWARD, pe, ec);
    Transliterator *A =
        Transliterator::createFromRules("A_to_b", "A > b;", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        delete a;
        delete A;
        return;
    }

    Transliterator* array[3];
    array[0] = a;
    array[1] = Transliterator::createInstance("NFD", UTRANS_FORWARD, pe, ec);
    array[2] = A;
    if (U_FAILURE(ec)) {
        errln("FAIL: createInstance NFD");
        delete a;
        delete A;
        delete array[1];
        return;
    }

    t = new CompoundTransliterator(array, 3, new UnicodeSet("[:Ll:]", ec));
    if (U_FAILURE(ec)) {
        errln("FAIL: UnicodeSet constructor");
        delete a;
        delete A;
        delete array[1];
        delete t;
        return;
    }

    expect(*t, "aAaA", "bAbA");

    assertTrue("countElements", t->countElements() == 3);
    assertEquals("getElement(0)", t->getElement(0, ec).getID(), "a_to_A");
    assertEquals("getElement(1)", t->getElement(1, ec).getID(), "NFD");
    assertEquals("getElement(2)", t->getElement(2, ec).getID(), "A_to_b");
    assertSuccess("getElement", ec);

    delete a;
    delete A;
    delete array[1];
    delete t;
#endif

    expect("$smooth = x; $macron = q; [:^L:] { ([aeiouyAEIOUY] $macron?) } [^aeiouyAEIOUY$smooth$macron] > | $1 $smooth ;",
           "a",
           "ax");

    UnicodeString gr = CharsToUnicodeString(
        "$ddot = \\u0308 ;"
        "$lcgvowel = [\\u03b1\\u03b5\\u03b7\\u03b9\\u03bf\\u03c5\\u03c9] ;"
        "$rough = \\u0314 ;"
        "($lcgvowel+ $ddot?) $rough > h | $1 ;"
        "\\u03b1 <> a ;"
        "$rough <> h ;");

    expect(gr, CharsToUnicodeString("\\u03B1\\u0314"), "ha");
}

/**
 * Test quantified segment behavior.  We want:
 * ([abc])+ > x $1 x; applied to "cba" produces "xax"
 */
void TransliteratorTest::TestQuantifiedSegment(void) {
    // The normal case
    expect("([abc]+) > x $1 x;", "cba", "xcbax");

    // The tricky case; the quantifier is around the segment
    expect("([abc])+ > x $1 x;", "cba", "xax");

    // Tricky case in reverse direction
    expect("([abc])+ { q > x $1 x;", "cbaq", "cbaxax");

    // Check post-context segment
    expect("{q} ([a-d])+ > '(' $1 ')';", "ddqcba", "dd(a)cba");

    // Test toRule/toPattern for non-quantified segment.
    // Careful with spacing here.
    UnicodeString r("([a-c]){q} > x $1 x;");
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator* t = Transliterator::createFromRules("ID", r, UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln("FAIL: createFromRules");
        delete t;
        return;
    }
    UnicodeString rr;
    t->toRules(rr, TRUE);
    if (r != rr) {
        errln((UnicodeString)"FAIL: \"" + r + "\" x toRules() => \"" + rr + "\"");
    } else {
        logln((UnicodeString)"Ok: \"" + r + "\" x toRules() => \"" + rr + "\"");
    }
    delete t;

    // Test toRule/toPattern for quantified segment.
    // Careful with spacing here.
    r = "([a-c])+{q} > x $1 x;";
    t = Transliterator::createFromRules("ID", r, UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln("FAIL: createFromRules");
        delete t;
        return;
    }
    t->toRules(rr, TRUE);
    if (r != rr) {
        errln((UnicodeString)"FAIL: \"" + r + "\" x toRules() => \"" + rr + "\"");
    } else {
        logln((UnicodeString)"Ok: \"" + r + "\" x toRules() => \"" + rr + "\"");
    }
    delete t;
}

//======================================================================
// Ram's tests
//======================================================================
void TransliteratorTest::TestDevanagariLatinRT(){
    const int MAX_LEN= 52;
    const char* const source[MAX_LEN] = {
        "bh\\u0101rata",
        "kra",
        "k\\u1E63a",
        "khra",
        "gra",
        "\\u1E45ra",
        "cra",
        "chra",
        "j\\u00F1a",
        "jhra",
        "\\u00F1ra",
        "\\u1E6Dya",
        "\\u1E6Dhra",
        "\\u1E0Dya",
      //"r\\u0323ya", // \u095c is not valid in Devanagari
        "\\u1E0Dhya",
        "\\u1E5Bhra",
        "\\u1E47ra",
        "tta",
        "thra",
        "dda",
        "dhra",
        "nna",
        "pra",
        "phra",
        "bra",
        "bhra",
        "mra",
        "\\u1E49ra",
      //"l\\u0331ra",
        "yra",
        "\\u1E8Fra",
      //"l-",
        "vra",
        "\\u015Bra",
        "\\u1E63ra",
        "sra",
        "hma",
        "\\u1E6D\\u1E6Da",
        "\\u1E6D\\u1E6Dha",
        "\\u1E6Dh\\u1E6Dha",
        "\\u1E0D\\u1E0Da",
        "\\u1E0D\\u1E0Dha",
        "\\u1E6Dya",
        "\\u1E6Dhya",
        "\\u1E0Dya",
        "\\u1E0Dhya",
        // Not roundtrippable -- 
        // \\u0939\\u094d\\u094d\\u092E  - hma
        // \\u0939\\u094d\\u092E         - hma
        // CharsToUnicodeString("hma"),
        "hya",
        "\\u015Br\\u0325",
        "\\u015Bca",
        "\\u0115",
        "san\\u0304j\\u012Bb s\\u0113nagupta",
        "\\u0101nand vaddir\\u0101ju",    
        "\\u0101",
        "a"
    };
    const char* const expected[MAX_LEN] = {
        "\\u092D\\u093E\\u0930\\u0924",   /* bha\\u0304rata */
        "\\u0915\\u094D\\u0930",          /* kra         */
        "\\u0915\\u094D\\u0937",          /* ks\\u0323a  */
        "\\u0916\\u094D\\u0930",          /* khra        */
        "\\u0917\\u094D\\u0930",          /* gra         */
        "\\u0919\\u094D\\u0930",          /* n\\u0307ra  */
        "\\u091A\\u094D\\u0930",          /* cra         */
        "\\u091B\\u094D\\u0930",          /* chra        */
        "\\u091C\\u094D\\u091E",          /* jn\\u0303a  */
        "\\u091D\\u094D\\u0930",          /* jhra        */
        "\\u091E\\u094D\\u0930",          /* n\\u0303ra  */
        "\\u091F\\u094D\\u092F",          /* t\\u0323ya  */
        "\\u0920\\u094D\\u0930",          /* t\\u0323hra */
        "\\u0921\\u094D\\u092F",          /* d\\u0323ya  */
      //"\\u095C\\u094D\\u092F",        /* r\\u0323ya  */ // \u095c is not valid in Devanagari
        "\\u0922\\u094D\\u092F",          /* d\\u0323hya */
        "\\u0922\\u093C\\u094D\\u0930",   /* r\\u0323hra */
        "\\u0923\\u094D\\u0930",          /* n\\u0323ra  */
        "\\u0924\\u094D\\u0924",          /* tta         */
        "\\u0925\\u094D\\u0930",          /* thra        */
        "\\u0926\\u094D\\u0926",          /* dda         */
        "\\u0927\\u094D\\u0930",          /* dhra        */
        "\\u0928\\u094D\\u0928",          /* nna         */
        "\\u092A\\u094D\\u0930",          /* pra         */
        "\\u092B\\u094D\\u0930",          /* phra        */
        "\\u092C\\u094D\\u0930",          /* bra         */
        "\\u092D\\u094D\\u0930",          /* bhra        */
        "\\u092E\\u094D\\u0930",          /* mra         */
        "\\u0929\\u094D\\u0930",          /* n\\u0331ra  */
      //"\\u0934\\u094D\\u0930",        /* l\\u0331ra  */
        "\\u092F\\u094D\\u0930",          /* yra         */
        "\\u092F\\u093C\\u094D\\u0930",   /* y\\u0307ra  */
      //"l-",
        "\\u0935\\u094D\\u0930",          /* vra         */
        "\\u0936\\u094D\\u0930",          /* s\\u0301ra  */
        "\\u0937\\u094D\\u0930",          /* s\\u0323ra  */
        "\\u0938\\u094D\\u0930",          /* sra         */
        "\\u0939\\u094d\\u092E",          /* hma         */
        "\\u091F\\u094D\\u091F",          /* t\\u0323t\\u0323a  */
        "\\u091F\\u094D\\u0920",          /* t\\u0323t\\u0323ha */
        "\\u0920\\u094D\\u0920",          /* t\\u0323ht\\u0323ha*/
        "\\u0921\\u094D\\u0921",          /* d\\u0323d\\u0323a  */
        "\\u0921\\u094D\\u0922",          /* d\\u0323d\\u0323ha */
        "\\u091F\\u094D\\u092F",          /* t\\u0323ya  */
        "\\u0920\\u094D\\u092F",          /* t\\u0323hya */
        "\\u0921\\u094D\\u092F",          /* d\\u0323ya  */
        "\\u0922\\u094D\\u092F",          /* d\\u0323hya */
     // "hma",                         /* hma         */
        "\\u0939\\u094D\\u092F",          /* hya         */
        "\\u0936\\u0943",                 /* s\\u0301r\\u0325a  */
        "\\u0936\\u094D\\u091A",          /* s\\u0301ca  */
        "\\u090d",                        /* e\\u0306    */
        "\\u0938\\u0902\\u091C\\u0940\\u092C\\u094D \\u0938\\u0947\\u0928\\u0917\\u0941\\u092A\\u094D\\u0924",
        "\\u0906\\u0928\\u0902\\u0926\\u094D \\u0935\\u0926\\u094D\\u0926\\u093F\\u0930\\u093E\\u091C\\u0941",    
        "\\u0906",
        "\\u0905",
    };
    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    UnicodeString message;
    Transliterator* latinToDev=Transliterator::createInstance("Latin-Devanagari", UTRANS_FORWARD, parseError, status);
    Transliterator* devToLatin=Transliterator::createInstance("Devanagari-Latin", UTRANS_FORWARD, parseError, status);
    if(U_FAILURE(status)){
        errln("FAIL: construction " +   UnicodeString(" Error: ") + u_errorName(status));
        errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
        return;
    }
    UnicodeString gotResult;
    for(int i= 0; i<MAX_LEN; i++){
        gotResult = source[i];
        expect(*latinToDev,CharsToUnicodeString(source[i]),CharsToUnicodeString(expected[i]));
        expect(*devToLatin,CharsToUnicodeString(expected[i]),CharsToUnicodeString(source[i]));
    }
    delete latinToDev;
    delete devToLatin;
}

void TransliteratorTest::TestTeluguLatinRT(){
    const int MAX_LEN=10;
    const char* const source[MAX_LEN] = {   
        "raghur\\u0101m vi\\u015Bvan\\u0101dha",                         /* Raghuram Viswanadha    */
        "\\u0101nand vaddir\\u0101ju",                                   /* Anand Vaddiraju        */
        "r\\u0101j\\u012Bv ka\\u015Barab\\u0101da",                      /* Rajeev Kasarabada      */
        "san\\u0304j\\u012Bv ka\\u015Barab\\u0101da",                    /* sanjeev kasarabada     */
        "san\\u0304j\\u012Bb sen'gupta",                                 /* sanjib sengupata       */
        "amar\\u0113ndra hanum\\u0101nula",                              /* Amarendra hanumanula   */
        "ravi kum\\u0101r vi\\u015Bvan\\u0101dha",                       /* Ravi Kumar Viswanadha  */
        "\\u0101ditya kandr\\u0113gula",                                 /* Aditya Kandregula      */
        "\\u015Br\\u012Bdhar ka\\u1E47\\u1E6Dama\\u015Be\\u1E6D\\u1E6Di",/* Shridhar Kantamsetty   */
        "m\\u0101dhav de\\u015Be\\u1E6D\\u1E6Di"                         /* Madhav Desetty         */
    };

    const char* const expected[MAX_LEN] = {
        "\\u0c30\\u0c18\\u0c41\\u0c30\\u0c3e\\u0c2e\\u0c4d \\u0c35\\u0c3f\\u0c36\\u0c4d\\u0c35\\u0c28\\u0c3e\\u0c27",     
        "\\u0c06\\u0c28\\u0c02\\u0c26\\u0c4d \\u0C35\\u0C26\\u0C4D\\u0C26\\u0C3F\\u0C30\\u0C3E\\u0C1C\\u0C41",     
        "\\u0c30\\u0c3e\\u0c1c\\u0c40\\u0c35\\u0c4d \\u0c15\\u0c36\\u0c30\\u0c2c\\u0c3e\\u0c26",
        "\\u0c38\\u0c02\\u0c1c\\u0c40\\u0c35\\u0c4d \\u0c15\\u0c36\\u0c30\\u0c2c\\u0c3e\\u0c26",
        "\\u0c38\\u0c02\\u0c1c\\u0c40\\u0c2c\\u0c4d \\u0c38\\u0c46\\u0c28\\u0c4d\\u0c17\\u0c41\\u0c2a\\u0c4d\\u0c24",
        "\\u0c05\\u0c2e\\u0c30\\u0c47\\u0c02\\u0c26\\u0c4d\\u0c30 \\u0c39\\u0c28\\u0c41\\u0c2e\\u0c3e\\u0c28\\u0c41\\u0c32",
        "\\u0c30\\u0c35\\u0c3f \\u0c15\\u0c41\\u0c2e\\u0c3e\\u0c30\\u0c4d \\u0c35\\u0c3f\\u0c36\\u0c4d\\u0c35\\u0c28\\u0c3e\\u0c27",
        "\\u0c06\\u0c26\\u0c3f\\u0c24\\u0c4d\\u0c2f \\u0C15\\u0C02\\u0C26\\u0C4D\\u0C30\\u0C47\\u0C17\\u0C41\\u0c32",
        "\\u0c36\\u0c4d\\u0c30\\u0c40\\u0C27\\u0C30\\u0C4D \\u0c15\\u0c02\\u0c1f\\u0c2e\\u0c36\\u0c46\\u0c1f\\u0c4d\\u0c1f\\u0c3f",
        "\\u0c2e\\u0c3e\\u0c27\\u0c35\\u0c4d \\u0c26\\u0c46\\u0c36\\u0c46\\u0c1f\\u0c4d\\u0c1f\\u0c3f",
    };

    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    UnicodeString message;
    Transliterator* latinToDev=Transliterator::createInstance("Latin-Telugu", UTRANS_FORWARD, parseError, status);
    Transliterator* devToLatin=Transliterator::createInstance("Telugu-Latin", UTRANS_FORWARD, parseError, status);
    if(U_FAILURE(status)){
        errln("FAIL: construction " +   UnicodeString(" Error: ") + u_errorName(status));
        errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
        return;
    }
    UnicodeString gotResult;
    for(int i= 0; i<MAX_LEN; i++){
        gotResult = source[i];
        expect(*latinToDev,CharsToUnicodeString(source[i]),CharsToUnicodeString(expected[i]));
        expect(*devToLatin,CharsToUnicodeString(expected[i]),CharsToUnicodeString(source[i]));
    }
    delete latinToDev;
    delete devToLatin;
}

void TransliteratorTest::TestSanskritLatinRT(){
    const int MAX_LEN =16;
    const char* const source[MAX_LEN] = {
        "rmk\\u1E63\\u0113t",
        "\\u015Br\\u012Bmad",
        "bhagavadg\\u012Bt\\u0101",
        "adhy\\u0101ya",
        "arjuna",
        "vi\\u1E63\\u0101da",
        "y\\u014Dga",
        "dhr\\u0325tar\\u0101\\u1E63\\u1E6Dra",
        "uv\\u0101cr\\u0325",
        "dharmak\\u1E63\\u0113tr\\u0113",
        "kuruk\\u1E63\\u0113tr\\u0113",
        "samav\\u0113t\\u0101",
        "yuyutsava\\u1E25",
        "m\\u0101mak\\u0101\\u1E25",
    // "p\\u0101\\u1E47\\u1E0Dav\\u0101\\u015Bcaiva",
        "kimakurvata",
        "san\\u0304java",
    };
    const char* const expected[MAX_LEN] = {
        "\\u0930\\u094D\\u092E\\u094D\\u0915\\u094D\\u0937\\u0947\\u0924\\u094D",
        "\\u0936\\u094d\\u0930\\u0940\\u092e\\u0926\\u094d",
        "\\u092d\\u0917\\u0935\\u0926\\u094d\\u0917\\u0940\\u0924\\u093e",
        "\\u0905\\u0927\\u094d\\u092f\\u093e\\u092f",
        "\\u0905\\u0930\\u094d\\u091c\\u0941\\u0928",
        "\\u0935\\u093f\\u0937\\u093e\\u0926",
        "\\u092f\\u094b\\u0917",
        "\\u0927\\u0943\\u0924\\u0930\\u093e\\u0937\\u094d\\u091f\\u094d\\u0930",
        "\\u0909\\u0935\\u093E\\u091A\\u0943",
        "\\u0927\\u0930\\u094d\\u092e\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
        "\\u0915\\u0941\\u0930\\u0941\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
        "\\u0938\\u092e\\u0935\\u0947\\u0924\\u093e",
        "\\u092f\\u0941\\u092f\\u0941\\u0924\\u094d\\u0938\\u0935\\u0903",
        "\\u092e\\u093e\\u092e\\u0915\\u093e\\u0903",
    //"\\u092a\\u093e\\u0923\\u094d\\u0921\\u0935\\u093e\\u0936\\u094d\\u091a\\u0948\\u0935",
        "\\u0915\\u093f\\u092e\\u0915\\u0941\\u0930\\u094d\\u0935\\u0924",
        "\\u0938\\u0902\\u091c\\u0935",
    };
    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    UnicodeString message;
    Transliterator* latinToDev=Transliterator::createInstance("Latin-Devanagari", UTRANS_FORWARD, parseError, status);
    Transliterator* devToLatin=Transliterator::createInstance("Devanagari-Latin", UTRANS_FORWARD, parseError, status);
    if(U_FAILURE(status)){
        errln("FAIL: construction " +   UnicodeString(" Error: ") + u_errorName(status));
        errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
        return;
    }
    UnicodeString gotResult;
    for(int i= 0; i<MAX_LEN; i++){
        gotResult = source[i];
        expect(*latinToDev,CharsToUnicodeString(source[i]),CharsToUnicodeString(expected[i]));
        expect(*devToLatin,CharsToUnicodeString(expected[i]),CharsToUnicodeString(source[i]));
    }
    delete latinToDev;
    delete devToLatin;
}


void TransliteratorTest::TestCompoundLatinRT(){
    const char* const source[] = {
        "rmk\\u1E63\\u0113t",
        "\\u015Br\\u012Bmad",
        "bhagavadg\\u012Bt\\u0101",
        "adhy\\u0101ya",
        "arjuna",
        "vi\\u1E63\\u0101da",
        "y\\u014Dga",
        "dhr\\u0325tar\\u0101\\u1E63\\u1E6Dra",
        "uv\\u0101cr\\u0325",
        "dharmak\\u1E63\\u0113tr\\u0113",
        "kuruk\\u1E63\\u0113tr\\u0113",
        "samav\\u0113t\\u0101",
        "yuyutsava\\u1E25",
        "m\\u0101mak\\u0101\\u1E25",
     // "p\\u0101\\u1E47\\u1E0Dav\\u0101\\u015Bcaiva",
        "kimakurvata",
        "san\\u0304java"
    };
    const int MAX_LEN = sizeof(source)/sizeof(source[0]);
    const char* const expected[MAX_LEN] = {
        "\\u0930\\u094D\\u092E\\u094D\\u0915\\u094D\\u0937\\u0947\\u0924\\u094D",
        "\\u0936\\u094d\\u0930\\u0940\\u092e\\u0926\\u094d",
        "\\u092d\\u0917\\u0935\\u0926\\u094d\\u0917\\u0940\\u0924\\u093e",
        "\\u0905\\u0927\\u094d\\u092f\\u093e\\u092f",
        "\\u0905\\u0930\\u094d\\u091c\\u0941\\u0928",
        "\\u0935\\u093f\\u0937\\u093e\\u0926",
        "\\u092f\\u094b\\u0917",
        "\\u0927\\u0943\\u0924\\u0930\\u093e\\u0937\\u094d\\u091f\\u094d\\u0930",
        "\\u0909\\u0935\\u093E\\u091A\\u0943",
        "\\u0927\\u0930\\u094d\\u092e\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
        "\\u0915\\u0941\\u0930\\u0941\\u0915\\u094d\\u0937\\u0947\\u0924\\u094d\\u0930\\u0947",
        "\\u0938\\u092e\\u0935\\u0947\\u0924\\u093e",
        "\\u092f\\u0941\\u092f\\u0941\\u0924\\u094d\\u0938\\u0935\\u0903",
        "\\u092e\\u093e\\u092e\\u0915\\u093e\\u0903",
    //  "\\u092a\\u093e\\u0923\\u094d\\u0921\\u0935\\u093e\\u0936\\u094d\\u091a\\u0948\\u0935",
        "\\u0915\\u093f\\u092e\\u0915\\u0941\\u0930\\u094d\\u0935\\u0924",
        "\\u0938\\u0902\\u091c\\u0935"
    };
    if(MAX_LEN != sizeof(expected)/sizeof(expected[0])) {
        errln("error in TestCompoundLatinRT: source[] and expected[] have different lengths!");
        return;
    }

    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    UnicodeString message;
    Transliterator* devToLatinToDev  =Transliterator::createInstance("Devanagari-Latin;Latin-Devanagari", UTRANS_FORWARD, parseError, status);
    Transliterator* latinToDevToLatin=Transliterator::createInstance("Latin-Devanagari;Devanagari-Latin", UTRANS_FORWARD, parseError, status);
    Transliterator* devToTelToDev    =Transliterator::createInstance("Devanagari-Telugu;Telugu-Devanagari", UTRANS_FORWARD, parseError, status);
    Transliterator* latinToTelToLatin=Transliterator::createInstance("Latin-Telugu;Telugu-Latin", UTRANS_FORWARD, parseError, status);

    if(U_FAILURE(status)){
        errln("FAIL: construction " +   UnicodeString(" Error: ") + u_errorName(status));
        errln("PreContext: " + prettify(parseError.preContext) + " PostContext: " + prettify( parseError.postContext) );
        return;
    }
    UnicodeString gotResult;
    for(int i= 0; i<MAX_LEN; i++){
        gotResult = source[i];
        expect(*devToLatinToDev,CharsToUnicodeString(expected[i]),CharsToUnicodeString(expected[i]));
        expect(*latinToDevToLatin,CharsToUnicodeString(source[i]),CharsToUnicodeString(source[i]));
        expect(*latinToTelToLatin,CharsToUnicodeString(source[i]),CharsToUnicodeString(source[i]));

    }
    delete(latinToDevToLatin);
    delete(devToLatinToDev);  
    delete(devToTelToDev);    
    delete(latinToTelToLatin);
}

/**
 * Test Gurmukhi-Devanagari Tippi and Bindi
 */
void TransliteratorTest::TestGurmukhiDevanagari(){
    // the rule says:
    // (\u0902) (when preceded by vowel)      --->  (\u0A02)
    // (\u0902) (when preceded by consonant)  --->  (\u0A70)
    UErrorCode status = U_ZERO_ERROR;
    UnicodeSet vowel(UnicodeString("[\\u0905-\\u090A \\u090F\\u0910\\u0913\\u0914 \\u093e-\\u0942\\u0947\\u0948\\u094B\\u094C\\u094D]").unescape(), status);
    UnicodeSet non_vowel(UnicodeString("[\\u0915-\\u0928\\u092A-\\u0930]").unescape(), status);
    UParseError parseError;

    UnicodeSetIterator vIter(vowel);
    UnicodeSetIterator nvIter(non_vowel);
    Transliterator* trans = Transliterator::createInstance("Devanagari-Gurmukhi",UTRANS_FORWARD, parseError, status);
    if(U_FAILURE(status)) {
      errln("Error creating transliterator %s", u_errorName(status));
      delete trans;
      return;
    }
    UnicodeString src (" \\u0902");
    UnicodeString expected(" \\u0A02");
    src = src.unescape();
    expected= expected.unescape();

    while(vIter.next()){
        src.setCharAt(0,(UChar) vIter.getCodepoint());
        expected.setCharAt(0,(UChar) (vIter.getCodepoint()+0x0100));
        expect(*trans,src,expected);
    }
    
    expected.setCharAt(1,0x0A70);
    while(nvIter.next()){
        //src.setCharAt(0,(char) nvIter.codepoint);
        src.setCharAt(0,(UChar)nvIter.getCodepoint());
        expected.setCharAt(0,(UChar) (nvIter.getCodepoint()+0x0100));
        expect(*trans,src,expected);
    }
    delete trans;
}
/**
 * Test instantiation from a locale.
 */
void TransliteratorTest::TestLocaleInstantiation(void) {
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance("ru_RU-Latin", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln("FAIL: createInstance(ru_RU-Latin)");
        delete t;
        return;
    }
    expect(*t, CharsToUnicodeString("\\u0430"), "a");
    delete t;
    
    t = Transliterator::createInstance("en-el", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln("FAIL: createInstance(en-el)");
        delete t;
        return;
    }
    expect(*t, "a", CharsToUnicodeString("\\u03B1"));
    delete t;
}
        
/**
 * Test title case handling of accent (should ignore accents)
 */
void TransliteratorTest::TestTitleAccents(void) {
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createInstance("Title", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln("FAIL: createInstance(Title)");
        delete t;
        return;
    }
    expect(*t, CharsToUnicodeString("a\\u0300b can't abe"), CharsToUnicodeString("A\\u0300b Can't Abe"));
    delete t;
}

/**
 * Basic test of a locale resource based rule.
 */
void TransliteratorTest::TestLocaleResource() {
    const char* DATA[] = {
        // id                    from               to
        //"Latin-Greek/UNGEGN",    "b",               "\\u03bc\\u03c0",
        "Latin-el",              "b",               "\\u03bc\\u03c0",
        "Latin-Greek",           "b",               "\\u03B2",
        "Greek-Latin/UNGEGN",    "\\u03B2",         "v",
        "el-Latin",              "\\u03B2",         "v",
        "Greek-Latin",           "\\u03B2",         "b",
    };
    const int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
    for (int32_t i=0; i<DATA_length; i+=3) {
        UParseError pe;
        UErrorCode ec = U_ZERO_ERROR;
        Transliterator *t = Transliterator::createInstance(DATA[i], UTRANS_FORWARD, pe, ec);
        if (U_FAILURE(ec)) {
            errln((UnicodeString)"FAIL: createInstance(" + DATA[i] + ")");
            delete t;
            continue;
        }
        expect(*t, CharsToUnicodeString(DATA[i+1]),
               CharsToUnicodeString(DATA[i+2]));
        delete t;
    }
}

/**
 * Make sure parse errors reference the right line.
 */
void TransliteratorTest::TestParseError() {
    const char* rule =
        "a > b;\n"
        "# more stuff\n"
        "d << b;";
    UErrorCode ec = U_ZERO_ERROR;
    UParseError pe;
    Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
    delete t;
    if (U_FAILURE(ec)) {
        UnicodeString err(pe.preContext);
        err.append((UChar)124/*|*/).append(pe.postContext);
        if (err.indexOf("d << b") >= 0) {
            logln("Ok: " + err);
        } else {
            errln("FAIL: " + err);
        }
        return;
    }
    errln("FAIL: no syntax error");
}

/**
 * Make sure sets on output are disallowed.
 */
void TransliteratorTest::TestOutputSet() {
    UnicodeString rule = "$set = [a-cm-n]; b > $set;";
    UErrorCode ec = U_ZERO_ERROR;
    UParseError pe;
    Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
    delete t;
    if (U_FAILURE(ec)) {
        UnicodeString err(pe.preContext);
        err.append((UChar)124/*|*/).append(pe.postContext);
        logln("Ok: " + err);
        return;
    }
    errln("FAIL: No syntax error");
}        

/**
 * Test the use variable range pragma, making sure that use of
 * variable range characters is detected and flagged as an error.
 */
void TransliteratorTest::TestVariableRange() {
    UnicodeString rule = "use variable range 0x70 0x72; a > A; b > B; q > Q;";
    UErrorCode ec = U_ZERO_ERROR;
    UParseError pe;
    Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
    delete t;
    if (U_FAILURE(ec)) {
        UnicodeString err(pe.preContext);
        err.append((UChar)124/*|*/).append(pe.postContext);
        logln("Ok: " + err);
        return;
    }
    errln("FAIL: No syntax error");
}

/**
 * Test invalid post context error handling
 */
void TransliteratorTest::TestInvalidPostContext() {
    UnicodeString rule = "a}b{c>d;";
    UErrorCode ec = U_ZERO_ERROR;
    UParseError pe;
    Transliterator *t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD, pe, ec);
    delete t;
    if (U_FAILURE(ec)) {
        UnicodeString err(pe.preContext);
        err.append((UChar)124/*|*/).append(pe.postContext);
        if (err.indexOf("a}b{c") >= 0) {
            logln("Ok: " + err);
        } else {
            errln("FAIL: " + err);
        }
        return;
    }
    errln("FAIL: No syntax error");
}

/**
 * Test ID form variants
 */
void TransliteratorTest::TestIDForms() {
    const char* DATA[] = {
        "NFC", NULL, "NFD",
        "nfd", NULL, "NFC", // make sure case is ignored
        "Any-NFKD", NULL, "Any-NFKC",
        "Null", NULL, "Null",
        "-nfkc", "nfkc", "NFKD",
        "-nfkc/", "nfkc", "NFKD",
        "Latin-Greek/UNGEGN", NULL, "Greek-Latin/UNGEGN",
        "Greek/UNGEGN-Latin", "Greek-Latin/UNGEGN", "Latin-Greek/UNGEGN",
        "Bengali-Devanagari/", "Bengali-Devanagari", "Devanagari-Bengali",
        "Source-", NULL, NULL,
        "Source/Variant-", NULL, NULL,
        "Source-/Variant", NULL, NULL,
        "/Variant", NULL, NULL,
        "/Variant-", NULL, NULL,
        "-/Variant", NULL, NULL,
        "-/", NULL, NULL,
        "-", NULL, NULL,
        "/", NULL, NULL,
    };
    const int32_t DATA_length = sizeof(DATA)/sizeof(DATA[0]);
    
    for (int32_t i=0; i<DATA_length; i+=3) {
        const char* ID = DATA[i];
        const char* expID = DATA[i+1];
        const char* expInvID = DATA[i+2];
        UBool expValid = (expInvID != NULL);
        if (expID == NULL) {
            expID = ID;
        }
        UParseError pe;
        UErrorCode ec = U_ZERO_ERROR;
        Transliterator *t =
            Transliterator::createInstance(ID, UTRANS_FORWARD, pe, ec);
        if (U_FAILURE(ec)) {
            if (!expValid) {
                logln((UnicodeString)"Ok: getInstance(" + ID +") => " + u_errorName(ec));
            } else {
                errln((UnicodeString)"FAIL: Couldn't create " + ID);
            }
            delete t;
            continue;
        }
        Transliterator *u = t->createInverse(ec);
        if (U_FAILURE(ec)) {
            errln((UnicodeString)"FAIL: Couldn't create inverse of " + ID);
            delete t;
            delete u;
            continue;
        }
        if (t->getID() == expID &&
            u->getID() == expInvID) {
            logln((UnicodeString)"Ok: " + ID + ".getInverse() => " + expInvID);
        } else {
            errln((UnicodeString)"FAIL: getInstance(" + ID + ") => " +
                  t->getID() + " x getInverse() => " + u->getID() +
                  ", expected " + expInvID);
        }
        delete t;
        delete u;
    }
}

static const UChar SPACE[]   = {32,0};
static const UChar NEWLINE[] = {10,0};
static const UChar RETURN[]  = {13,0};
static const UChar EMPTY[]   = {0};

void TransliteratorTest::checkRules(const UnicodeString& label, Transliterator& t2,
                                    const UnicodeString& testRulesForward) {
    UnicodeString rules2; t2.toRules(rules2, TRUE);
    //rules2 = TestUtility.replaceAll(rules2, new UnicodeSet("[' '\n\r]"), "");
    rules2.findAndReplace(SPACE, EMPTY);
    rules2.findAndReplace(NEWLINE, EMPTY);
    rules2.findAndReplace(RETURN, EMPTY);

    UnicodeString testRules(testRulesForward); testRules.findAndReplace(SPACE, EMPTY);
    
    if (rules2 != testRules) {
        errln(label);
        logln((UnicodeString)"GENERATED RULES: " + rules2);
        logln((UnicodeString)"SHOULD BE:       " + testRulesForward);
    }
}

/**
 * Mark's toRules test.
 */
void TransliteratorTest::TestToRulesMark() {
    const char* testRules = 
        "::[[:Latin:][:Mark:]];"
        "::NFKD (NFC);"
        "::Lower (Lower);"
        "a <> \\u03B1;" // alpha
        "::NFKC (NFD);"
        "::Upper (Lower);"
        "::Lower ();"
        "::([[:Greek:][:Mark:]]);"
        ;
    const char* testRulesForward = 
        "::[[:Latin:][:Mark:]];"
        "::NFKD(NFC);"
        "::Lower(Lower);"
        "a > \\u03B1;"
        "::NFKC(NFD);"
        "::Upper (Lower);"
        "::Lower ();"
        ;
    const char* testRulesBackward = 
        "::[[:Greek:][:Mark:]];"
        "::Lower (Upper);"
        "::NFD(NFKC);"
        "\\u03B1 > a;"
        "::Lower(Lower);"
        "::NFC(NFKD);"
        ;
    UnicodeString source = CharsToUnicodeString("\\u00E1"); // a-acute
    UnicodeString target = CharsToUnicodeString("\\u03AC"); // alpha-acute
    
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t2 = Transliterator::createFromRules("source-target", testRules, UTRANS_FORWARD, pe, ec);
    Transliterator *t3 = Transliterator::createFromRules("target-source", testRules, UTRANS_REVERSE, pe, ec);

    if (U_FAILURE(ec)) {
        delete t2;
        delete t3;
        errln((UnicodeString)"FAIL: createFromRules => " + u_errorName(ec));
        return;
    }
    
    expect(*t2, source, target);
    expect(*t3, target, source);
    
    checkRules("Failed toRules FORWARD", *t2, testRulesForward);
    checkRules("Failed toRules BACKWARD", *t3, testRulesBackward);

    delete t2;
    delete t3;
}

/**
 * Test Escape and Unescape transliterators.
 */
void TransliteratorTest::TestEscape() {
    UParseError pe;
    UErrorCode ec;
    Transliterator *t;

    ec = U_ZERO_ERROR;
    t = Transliterator::createInstance("Hex-Any", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createInstance");
    } else {
        expect(*t,
               "\\x{40}\\U00000031&#x32;&#81;",
               "@12Q");
    }
    delete t;

    ec = U_ZERO_ERROR;
    t = Transliterator::createInstance("Any-Hex/C", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createInstance");
    } else {
        expect(*t,
               CharsToUnicodeString("A\\U0010BEEF\\uFEED"),
               "\\u0041\\U0010BEEF\\uFEED");
    }
    delete t;

    ec = U_ZERO_ERROR;
    t = Transliterator::createInstance("Any-Hex/Java", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createInstance");
    } else {
        expect(*t,
               CharsToUnicodeString("A\\U0010BEEF\\uFEED"),
               "\\u0041\\uDBEF\\uDEEF\\uFEED");
    }
    delete t;

    ec = U_ZERO_ERROR;
    t = Transliterator::createInstance("Any-Hex/Perl", UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createInstance");
    } else {
        expect(*t,
               CharsToUnicodeString("A\\U0010BEEF\\uFEED"),
               "\\x{41}\\x{10BEEF}\\x{FEED}");
    }
    delete t;
}


void TransliteratorTest::TestAnchorMasking(){
    UnicodeString rule ("^a > Q; a > q;");
    UErrorCode status= U_ZERO_ERROR;
    UParseError parseError;

    Transliterator* t = Transliterator::createFromRules("ID", rule, UTRANS_FORWARD,parseError,status);
    if(U_FAILURE(status)){
        errln(UnicodeString("FAIL: ") + "ID" +
              ".createFromRules() => bad rules" +
              /*", parse error " + parseError.code +*/
              ", line " + parseError.line +
              ", offset " + parseError.offset +
              ", context " + prettify(parseError.preContext, TRUE) +
              ", rules: " + prettify(rule, TRUE));
    }
    delete t;
}

/**
 * Make sure display names of variants look reasonable.
 */
void TransliteratorTest::TestDisplayName() {
#if UCONFIG_NO_FORMATTING
    logln("Skipping, UCONFIG_NO_FORMATTING is set\n");
    return;
#else
    static const char* DATA[] = {
        // ID, forward name, reverse name
        // Update the text as necessary -- the important thing is
        // not the text itself, but how various cases are handled.
        
        // Basic test
        "Any-Hex", "Any to Hex Escape", "Hex Escape to Any",
        
        // Variants
        "Any-Hex/Perl", "Any to Hex Escape/Perl", "Hex Escape to Any/Perl",
        
        // Target-only IDs
        "NFC", "Any to NFC", "Any to NFD",
    };

    int32_t DATA_length = sizeof(DATA) / sizeof(DATA[0]);
    
    Locale US("en", "US");
    
    for (int32_t i=0; i<DATA_length; i+=3) {
        UnicodeString name;
        Transliterator::getDisplayName(DATA[i], US, name);
        if (name != DATA[i+1]) {
            errln((UnicodeString)"FAIL: " + DATA[i] + ".getDisplayName() => " +
                  name + ", expected " + DATA[i+1]);
        } else {
            logln((UnicodeString)"Ok: " + DATA[i] + ".getDisplayName() => " + name);
        }
        UErrorCode ec = U_ZERO_ERROR;
        UParseError pe;
        Transliterator *t = Transliterator::createInstance(DATA[i], UTRANS_REVERSE, pe, ec);
        if (U_FAILURE(ec)) {
            delete t;
            errln("FAIL: createInstance failed");
            continue;
        }
        name = Transliterator::getDisplayName(t->getID(), US, name);
        if (name != DATA[i+2]) {
            errln((UnicodeString)"FAIL: " + t->getID() + ".getDisplayName() => " +
                  name + ", expected " + DATA[i+2]);
        } else {
            logln((UnicodeString)"Ok: " + t->getID() + ".getDisplayName() => " + name);
        }
        delete t;
    }
#endif
}

void TransliteratorTest::TestSpecialCases(void) {
    const UnicodeString registerRules[] = {
        "Any-Dev1", "x > X; y > Y;",
        "Any-Dev2", "XY > Z",
        "Greek-Latin/FAKE", 
            CharsToUnicodeString
            ("[^[:L:][:M:]] { \\u03bc\\u03c0 > b ; \\u03bc\\u03c0 } [^[:L:][:M:]] > b ; [^[:L:][:M:]] { [\\u039c\\u03bc][\\u03a0\\u03c0] > B ; [\\u039c\\u03bc][\\u03a0\\u03c0] } [^[:L:][:M:]] > B ;"),
        "" // END MARKER
    };

    const UnicodeString testCases[] = {
        // NORMALIZATION
        // should add more test cases
        "NFD" , CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
        "NFC" , CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
        "NFKD", CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",
        "NFKC", CharsToUnicodeString("a\\u0300 \\u00E0 \\u1100\\u1161 \\uFF76\\uFF9E\\u03D3"), "",

        // mp -> b BUG
        "Greek-Latin/UNGEGN", CharsToUnicodeString("(\\u03BC\\u03C0)"), "(b)",
        "Greek-Latin/FAKE", CharsToUnicodeString("(\\u03BC\\u03C0)"), "(b)",
    
        // check for devanagari bug
        "nfd;Dev1;Dev2;nfc", "xy", "Z",

        // ff, i, dotless-i, I, dotted-I, LJLjlj deseret deeDEE
        "Title", CharsToUnicodeString("ab'cD ffi\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, 
                 CharsToUnicodeString("Ab'cd Ffi\\u0131ii\\u0307 \\u01C8\\u01C9\\u01C9 ") + DESERET_DEE + DESERET_dee, 
                 
        //TODO: enable this test once Titlecase works right
        /*
        "Title", CharsToUnicodeString("\\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, 
                 CharsToUnicodeString("Ffi\\u0131ii \\u01C8\\u01C9\\u01C9 ") + DESERET_DEE + DESERET_dee, 
                 */
        "Upper", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, 
                 CharsToUnicodeString("AB'CD FFIII\\u0130 \\u01C7\\u01C7\\u01C7 ") + DESERET_DEE + DESERET_DEE,
        "Lower", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, 
                 CharsToUnicodeString("ab'cd \\uFB00i\\u0131ii\\u0307 \\u01C9\\u01C9\\u01C9 ") + DESERET_dee + DESERET_dee,
    
        "Upper", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, "",
        "Lower", CharsToUnicodeString("ab'cD \\uFB00i\\u0131I\\u0130 \\u01C7\\u01C8\\u01C9 ") + DESERET_dee + DESERET_DEE, "",

         // FORMS OF S
        "Greek-Latin/UNGEGN",  CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3"), 
                               CharsToUnicodeString("s ss s\\u0331s\\u0331") ,
        "Latin-Greek/UNGEGN",  CharsToUnicodeString("s ss s\\u0331s\\u0331"), 
                               CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3") ,
        "Greek-Latin",  CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3"), 
                        CharsToUnicodeString("s ss s\\u0331s\\u0331") ,
        "Latin-Greek",  CharsToUnicodeString("s ss s\\u0331s\\u0331"), 
                        CharsToUnicodeString("\\u03C3 \\u03C3\\u03C2 \\u03C2\\u03C3"),
        // Tatiana bug
        // Upper: TAT\\u02B9\\u00C2NA
        // Lower: tat\\u02B9\\u00E2na
        // Title: Tat\\u02B9\\u00E2na
        "Upper", CharsToUnicodeString("tat\\u02B9\\u00E2na"),
                 CharsToUnicodeString("TAT\\u02B9\\u00C2NA"),
        "Lower", CharsToUnicodeString("TAT\\u02B9\\u00C2NA"),
                 CharsToUnicodeString("tat\\u02B9\\u00E2na"),
        "Title", CharsToUnicodeString("tat\\u02B9\\u00E2na"),
                 CharsToUnicodeString("Tat\\u02B9\\u00E2na"),

        "" // END MARKER
    };

    UParseError pos;
    int32_t i;
    for (i = 0; registerRules[i].length()!=0; i+=2) {
        UErrorCode status = U_ZERO_ERROR;

        Transliterator *t = Transliterator::createFromRules(registerRules[0+i], 
            registerRules[i+1], UTRANS_FORWARD, pos, status);
        if (U_FAILURE(status)) {
            errln("Fails: Unable to create the transliterator from rules.");
        } else {
            Transliterator::registerInstance(t);
        }
    }
    for (i = 0; testCases[i].length()!=0; i+=3) {
        UErrorCode ec = U_ZERO_ERROR;
        UParseError pe;
        const UnicodeString& name = testCases[i];
        Transliterator *t = Transliterator::createInstance(name, UTRANS_FORWARD, pe, ec);
        if (U_FAILURE(ec)) {
            errln((UnicodeString)"FAIL: Couldn't create " + name);
            delete t;
            continue;
        }
        const UnicodeString& id = t->getID();
        const UnicodeString& source = testCases[i+1];
        UnicodeString target;

        // Automatic generation of targets, to make it simpler to add test cases (and more fail-safe)
        
        if (testCases[i+2].length() > 0) {
            target = testCases[i+2];
        } else if (0==id.caseCompare("NFD", U_FOLD_CASE_DEFAULT)) {
            Normalizer::normalize(source, UNORM_NFD, 0, target, ec);
        } else if (0==id.caseCompare("NFC", U_FOLD_CASE_DEFAULT)) {
            Normalizer::normalize(source, UNORM_NFC, 0, target, ec);
        } else if (0==id.caseCompare("NFKD", U_FOLD_CASE_DEFAULT)) {
            Normalizer::normalize(source, UNORM_NFKD, 0, target, ec);
        } else if (0==id.caseCompare("NFKC", U_FOLD_CASE_DEFAULT)) {
            Normalizer::normalize(source, UNORM_NFKC, 0, target, ec);
        } else if (0==id.caseCompare("Lower", U_FOLD_CASE_DEFAULT)) {
            target = source;
            target.toLower(Locale::getUS());
        } else if (0==id.caseCompare("Upper", U_FOLD_CASE_DEFAULT)) {
            target = source;
            target.toUpper(Locale::getUS());
        }
        if (U_FAILURE(ec)) {
            errln((UnicodeString)"FAIL: Internal error normalizing " + source);
            continue;
        }

        expect(*t, source, target);
        delete t;
    }
    for (i = 0; registerRules[i].length()!=0; i+=2) {
        Transliterator::unregister(registerRules[i]);
    }
}

char* Char32ToEscapedChars(UChar32 ch, char* buffer) {
    if (ch <= 0xFFFF) {
        sprintf(buffer, "\\u%04x", (int)ch);
    } else {
        sprintf(buffer, "\\U%08x", (int)ch);
    }
    return buffer;
}

void TransliteratorTest::TestSurrogateCasing (void) {
    // check that casing handles surrogates
    // titlecase is currently defective
    char buffer[20];
    UChar buffer2[20];
    UChar32 dee;
    UTF_GET_CHAR(DESERET_dee,0, 0, DESERET_dee.length(), dee);
    UnicodeString DEE(u_totitle(dee));
    if (DEE != DESERET_DEE) {
        err("Fails titlecase of surrogates");
        err(Char32ToEscapedChars(dee, buffer)); 
        err(", ");
        errln(Char32ToEscapedChars(DEE.char32At(0), buffer));
    }
        
    UnicodeString deeDEETest=DESERET_dee + DESERET_DEE;
    UnicodeString deedeeTest = DESERET_dee + DESERET_dee;
    UnicodeString DEEDEETest = DESERET_DEE + DESERET_DEE;
    UErrorCode status= U_ZERO_ERROR;

    u_strToUpper(buffer2, 20, deeDEETest.getBuffer(), deeDEETest.length(), NULL, &status);
    if (U_FAILURE(status) || (UnicodeString(buffer2)!= DEEDEETest)) {
        errln("Fails: Can't uppercase surrogates.");
    }
        
    status= U_ZERO_ERROR;
    u_strToLower(buffer2, 20, deeDEETest.getBuffer(), deeDEETest.length(), NULL, &status);
    if (U_FAILURE(status) || (UnicodeString(buffer2)!= deedeeTest)) {
        errln("Fails: Can't lowercase surrogates.");
    }
}

static void _trans(Transliterator& t, const UnicodeString& src,
                   UnicodeString& result) {
    result = src;
    t.transliterate(result);
}

static void _trans(const UnicodeString& id, const UnicodeString& src,
                   UnicodeString& result, UErrorCode ec) {
    UParseError pe;
    Transliterator *t = Transliterator::createInstance(id, UTRANS_FORWARD, pe, ec);
    if (U_SUCCESS(ec)) {
        _trans(*t, src, result);
    }
    delete t;
}

static UnicodeString _findMatch(const UnicodeString& source,
                                       const UnicodeString* pairs) {
    UnicodeString empty;
    for (int32_t i=0; pairs[i].length() > 0; i+=2) {
        if (0==source.caseCompare(pairs[i], U_FOLD_CASE_DEFAULT)) {
            return pairs[i+1];
        }
    }
    return empty;
}

// Check to see that incremental gets at least part way through a reasonable string.

void TransliteratorTest::TestIncrementalProgress(void) {
    UErrorCode ec = U_ZERO_ERROR;
    UnicodeString latinTest = "The Quick Brown Fox.";
    UnicodeString devaTest;
    _trans("Latin-Devanagari", latinTest, devaTest, ec);
    UnicodeString kataTest;
    _trans("Latin-Katakana", latinTest, kataTest, ec);
    if (U_FAILURE(ec)) {
        errln("FAIL: Internal error");
        return;
    }
    const UnicodeString tests[] = {
        "Any", latinTest,
        "Latin", latinTest,
        "Halfwidth", latinTest,
        "Devanagari", devaTest,
        "Katakana", kataTest,
        "" // END MARKER
    };

    UnicodeString test("The Quick Brown Fox Jumped Over The Lazy Dog.");
    int32_t i = 0, j=0, k=0;
    int32_t sources = Transliterator::countAvailableSources();
    for (i = 0; i < sources; i++) {
        UnicodeString source;
        Transliterator::getAvailableSource(i, source);
        UnicodeString test = _findMatch(source, tests);
        if (test.length() == 0) {
            logln((UnicodeString)"Skipping " + source + "-X");
            continue;
        }
        int32_t targets = Transliterator::countAvailableTargets(source);
        for (j = 0; j < targets; j++) {
            UnicodeString target;
            Transliterator::getAvailableTarget(j, source, target);
            int32_t variants = Transliterator::countAvailableVariants(source, target);
            for (k =0; k< variants; k++) {
                UnicodeString variant;
                UParseError err;
                UErrorCode status = U_ZERO_ERROR;

                Transliterator::getAvailableVariant(k, source, target, variant);
                UnicodeString id = source + "-" + target + "/" + variant;
                
                if(id.indexOf("Thai")>-1 && isICUVersionAtLeast(ICU_31)){
                    continue;
                }    
                Transliterator *t = Transliterator::createInstance(id, UTRANS_FORWARD, err, status);
                if (U_FAILURE(status)) {
                    errln((UnicodeString)"FAIL: Could not create " + id);
                    delete t;
                    continue;
                }
                status = U_ZERO_ERROR;
                CheckIncrementalAux(t, test);

                UnicodeString rev;
                _trans(*t, test, rev);
                Transliterator *inv = t->createInverse(status);
                if (U_FAILURE(status)) {
                    errln((UnicodeString)"FAIL: Could not create inverse of " + id);
                    delete t;
                    delete inv;
                    continue;
                }
                CheckIncrementalAux(inv, rev);
                delete t;
                delete inv;
            }
        }
    }
}

void TransliteratorTest::CheckIncrementalAux(const Transliterator* t, 
                                                      const UnicodeString& input) {
    UErrorCode ec = U_ZERO_ERROR;
    UTransPosition pos;
    UnicodeString test = input;

    pos.contextStart = 0;
    pos.contextLimit = input.length();
    pos.start = 0;
    pos.limit = input.length();

    t->transliterate(test, pos, ec);
    if (U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: transliterate() error " + u_errorName(ec));
        return;
    }
    UBool gotError = FALSE;

    // we have a few special cases. Any-Remove (pos.start = 0, but also = limit) and U+XXXXX?X?

    if (pos.start == 0 && pos.limit != 0 && t->getID() != "Hex-Any/Unicode") {
        errln((UnicodeString)"No Progress, " +
              t->getID() + ": " + formatInput(test, input, pos));
        gotError = TRUE;
    } else {
        logln((UnicodeString)"PASS Progress, " +
              t->getID() + ": " + formatInput(test, input, pos));
    }
    t->finishTransliteration(test, pos);
    if (pos.start != pos.limit) {
        errln((UnicodeString)"Incomplete, " +
              t->getID() + ": " + formatInput(test, input, pos));
        gotError = TRUE;
    }
}

void TransliteratorTest::TestFunction() {
    // Careful with spacing and ';' here:  Phrase this exactly
    // as toRules() is going to return it.  If toRules() changes
    // with regard to spacing or ';', then adjust this string.
    UnicodeString rule =
        "([:Lu:]) > $1 '(' &Lower( $1 ) '=' &Hex( &Any-Lower( $1 ) ) ')';";
    
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createFromRules("Test", rule, UTRANS_FORWARD, pe, ec);
    if (t == NULL) {
        errln("FAIL: createFromRules failed");
        return;
    }
    
    UnicodeString r;
    t->toRules(r, TRUE);
    if (r == rule) {
        logln((UnicodeString)"OK: toRules() => " + r);
    } else {
        errln((UnicodeString)"FAIL: toRules() => " + r +
              ", expected " + rule);
    }
    
    expect(*t, "The Quick Brown Fox",
           "T(t=\\u0074)he Q(q=\\u0071)uick B(b=\\u0062)rown F(f=\\u0066)ox");

    delete t;
}

void TransliteratorTest::TestInvalidBackRef(void) {
    UnicodeString rule =  ". > $1;";
    UnicodeString rule2 =CharsToUnicodeString("(.) <> &hex/unicode($1) &name($1); . > $1; [{}] >\\u0020;");
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator *t = Transliterator::createFromRules("Test", rule, UTRANS_FORWARD, pe, ec);
    Transliterator *t2 = Transliterator::createFromRules("Test2", rule2, UTRANS_FORWARD, pe, ec);

    if (t != NULL) {
        errln("FAIL: createFromRules should have returned NULL");
        delete t;
    }

    if (t2 != NULL) {
        errln("FAIL: createFromRules should have returned NULL");
        delete t2;
    }

    if (U_SUCCESS(ec)) {
        errln("FAIL: Ok: . > $1; => no error");
    } else {
        logln((UnicodeString)"Ok: . > $1; => " + u_errorName(ec));
    }
}

void TransliteratorTest::TestMulticharStringSet() {
    // Basic testing
    const char* rule =
        "       [{aa}]       > x;"
        "         a          > y;"
        "       [b{bc}]      > z;"
        "[{gd}] { e          > q;"
        "         e } [{fg}] > r;" ;
        
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;
    Transliterator* t = Transliterator::createFromRules("Test", rule, UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        delete t;
        errln("FAIL: createFromRules failed");
        return;
    }
        
    expect(*t, "a aa ab bc d gd de gde gdefg ddefg",
           "y x yz z d gd de gdq gdqfg ddrfg");
    delete t;

    // Overlapped string test.  Make sure that when multiple
    // strings can match that the longest one is matched.
    rule =
        "    [a {ab} {abc}]    > x;"
        "           b          > y;"
        "           c          > z;"
        " q [t {st} {rst}] { e > p;" ;
        
    t = Transliterator::createFromRules("Test", rule, UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        delete t;
        errln("FAIL: createFromRules failed");
        return;
    }
        
    expect(*t, "a ab abc qte qste qrste",
           "x x x qtp qstp qrstp");
    delete t;
}

// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
// BEGIN TestUserFunction support factory

Transliterator* _TUFF[4];
UnicodeString* _TUFID[4];

static Transliterator* U_EXPORT2 _TUFFactory(const UnicodeString& /*ID*/,
                                   Transliterator::Token context) {
    return _TUFF[context.integer]->clone();
}

static void _TUFReg(const UnicodeString& ID, Transliterator* t, int32_t n) {
    _TUFF[n] = t;
    _TUFID[n] = new UnicodeString(ID);
    Transliterator::registerFactory(ID, _TUFFactory, Transliterator::integerToken(n));
}

static void _TUFUnreg(int32_t n) {
    if (_TUFF[n] != NULL) {
        Transliterator::unregister(*_TUFID[n]);
        delete _TUFF[n];
        delete _TUFID[n];
    }
}

// END TestUserFunction support factory
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

/**
 * Test that user-registered transliterators can be used under function
 * syntax.
 */
void TransliteratorTest::TestUserFunction() {
 
    Transliterator* t;
    UParseError pe;
    UErrorCode ec = U_ZERO_ERROR;

    // Setup our factory
    int32_t i;
    for (i=0; i<4; ++i) {
        _TUFF[i] = NULL;
    }

    // There's no need to register inverses if we don't use them
    t = Transliterator::createFromRules("gif",
                                        "'\\'u(..)(..) > '<img src=\"http://www.unicode.org/gifs/24/' $1 '/U' $1$2 '.gif\">';",
                                        UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createFromRules gif " + u_errorName(ec));
        return;
    }
    _TUFReg("Any-gif", t, 0);

    t = Transliterator::createFromRules("RemoveCurly",
                                        "[\\{\\}] > ; '\\N' > ;",
                                        UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createFromRules RemoveCurly " + u_errorName(ec));
        goto FAIL;
    }
    expect(*t, "\\N{name}", "name");
    _TUFReg("Any-RemoveCurly", t, 1);

    logln("Trying &hex");
    t = Transliterator::createFromRules("hex2",
                                        "(.) > &hex($1);",
                                        UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln("FAIL: createFromRules");
        goto FAIL;
    }
    logln("Registering");
    _TUFReg("Any-hex2", t, 2);
    t = Transliterator::createInstance("Any-hex2", UTRANS_FORWARD, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createInstance Any-hex2 " + u_errorName(ec));
        goto FAIL;
    }
    expect(*t, "abc", "\\u0061\\u0062\\u0063");
    delete t;

    logln("Trying &gif");
    t = Transliterator::createFromRules("gif2",
                                        "(.) > &Gif(&Hex2($1));",
                                        UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createFromRules gif2 " + u_errorName(ec));
        goto FAIL;
    }
    logln("Registering");
    _TUFReg("Any-gif2", t, 3);
    t = Transliterator::createInstance("Any-gif2", UTRANS_FORWARD, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createInstance Any-gif2 " + u_errorName(ec));
        goto FAIL;
    }
    expect(*t, "ab", "<img src=\"http://www.unicode.org/gifs/24/00/U0061.gif\">"
           "<img src=\"http://www.unicode.org/gifs/24/00/U0062.gif\">");
    delete t;

    // Test that filters are allowed after &
    t = Transliterator::createFromRules("test",
                                        "(.) > &Hex($1) ' ' &RemoveCurly(&Name($1)) ' ';",
                                        UTRANS_FORWARD, pe, ec);
    if (t == NULL || U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: createFromRules test " + u_errorName(ec));
        goto FAIL;
    }
    expect(*t, "abc",
           "\\u0061 LATIN SMALL LETTER A \\u0062 LATIN SMALL LETTER B \\u0063 LATIN SMALL LETTER C ");
    delete t;

 FAIL:
    for (i=0; i<4; ++i) {
        _TUFUnreg(i);
    }
}

/**
 * Test the Any-X transliterators.
 */
void TransliteratorTest::TestAnyX(void) {
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* anyLatin =
        Transliterator::createInstance("Any-Latin", UTRANS_FORWARD, parseError, status);
    if (anyLatin==0) {
        errln("FAIL: createInstance returned NULL");
        delete anyLatin;
        return;
    }

    expect(*anyLatin,
           CharsToUnicodeString("greek:\\u03B1\\u03B2\\u03BA\\u0391\\u0392\\u039A hiragana:\\u3042\\u3076\\u304F cyrillic:\\u0430\\u0431\\u0446"),
           CharsToUnicodeString("greek:abkABK hiragana:abuku cyrillic:abc"));

    delete anyLatin;
}

/**
 * Test the source and target set API.  These are only implemented
 * for RBT and CompoundTransliterator at this time.
 */
void TransliteratorTest::TestSourceTargetSet() {
    UErrorCode ec = U_ZERO_ERROR;

    // Rules
    const char* r =
        "a > b; "
        "r [x{lu}] > q;";

    // Expected source
    UnicodeSet expSrc("[arx{lu}]", ec);

    // Expected target
    UnicodeSet expTrg("[bq]", ec);

    UParseError pe;
    Transliterator* t = Transliterator::createFromRules("test", r, UTRANS_FORWARD, pe, ec);

    if (U_FAILURE(ec)) {
        delete t;
        errln("FAIL: Couldn't set up test");
        return;
    }

    UnicodeSet src; t->getSourceSet(src);
    UnicodeSet trg; t->getTargetSet(trg);

    if (src == expSrc && trg == expTrg) {
        UnicodeString a, b;
        logln((UnicodeString)"Ok: " +
              r + " => source = " + src.toPattern(a, TRUE) +
              ", target = " + trg.toPattern(b, TRUE));
    } else {
        UnicodeString a, b, c, d;
        errln((UnicodeString)"FAIL: " +
              r + " => source = " + src.toPattern(a, TRUE) +
              ", expected " + expSrc.toPattern(b, TRUE) +
              "; target = " + trg.toPattern(c, TRUE) +
              ", expected " + expTrg.toPattern(d, TRUE));
    }

    delete t;
}

/**
 * Test handling of rule whitespace, for both RBT and UnicodeSet.
 */
void TransliteratorTest::TestRuleWhitespace() {
    // Rules
    const char* r = "a > \\u200E b;";
    
    UErrorCode ec = U_ZERO_ERROR;
    UParseError pe;
    Transliterator* t = Transliterator::createFromRules("test", CharsToUnicodeString(r), UTRANS_FORWARD, pe, ec);
    
    if (U_FAILURE(ec)) {
        errln("FAIL: Couldn't set up test");
    } else {
        expect(*t, "a", "b");
    }
    delete t;
    
    // UnicodeSet
    ec = U_ZERO_ERROR;
    UnicodeSet set(CharsToUnicodeString("[a \\u200E]"), ec);
    
    if (U_FAILURE(ec)) {
        errln("FAIL: Couldn't set up test");
    } else {
        if (set.contains(0x200E)) {
            errln("FAIL: U+200E not being ignored by UnicodeSet");
        }
    }
}
//======================================================================
// this method is in TestUScript.java
//======================================================================
void TransliteratorTest::TestAllCodepoints(){
    UScriptCode code= USCRIPT_INVALID_CODE;
    char id[256]={'\0'};
    char abbr[256]={'\0'};
    char newId[256]={'\0'};
    char newAbbrId[256]={'\0'};
    char oldId[256]={'\0'};
    char oldAbbrId[256]={'\0'};

    UErrorCode status =U_ZERO_ERROR;
    UParseError pe;
    
    for(uint32_t i = 0; i<=0x10ffff; i++){
        code =  uscript_getScript(i,&status);
        if(code == USCRIPT_INVALID_CODE){
            errln("uscript_getScript for codepoint \\U%08X failed.\n", i);
        }
        const char* myId = uscript_getName(code);
        if(!myId) {
          errln("Valid script code returned NULL name. Check your data!");
          return;
        }
        uprv_strcpy(id,myId);
        uprv_strcpy(abbr,uscript_getShortName(code));

        uprv_strcpy(newId,"[:");
        uprv_strcat(newId,id);
        uprv_strcat(newId,":];NFD");

        uprv_strcpy(newAbbrId,"[:");
        uprv_strcat(newAbbrId,abbr);
        uprv_strcat(newAbbrId,":];NFD");

        if(uprv_strcmp(newId,oldId)!=0){
            Transliterator* t = Transliterator::createInstance(newId,UTRANS_FORWARD,pe,status);
            if(t==NULL || U_FAILURE(status)){
                errln((UnicodeString)"FAIL: Could not create " + id);
            }
            delete t;
        }
        if(uprv_strcmp(newAbbrId,oldAbbrId)!=0){
            Transliterator* t = Transliterator::createInstance(newAbbrId,UTRANS_FORWARD,pe,status);
            if(t==NULL || U_FAILURE(status)){
                errln((UnicodeString)"FAIL: Could not create " + id);
            }
            delete t;
        }
        uprv_strcpy(oldId,newId);
        uprv_strcpy(oldAbbrId, newAbbrId);

    }

} 

#define TEST_TRANSLIT_ID(id, cls) { \
  UErrorCode ec = U_ZERO_ERROR; \
  Transliterator* t = Transliterator::createInstance(id, UTRANS_FORWARD, ec); \
  if (U_FAILURE(ec)) { \
    errln("FAIL: Couldn't create " id); \
  } else { \
    if (t->getDynamicClassID() != cls::getStaticClassID()) { \
      errln("FAIL: " #cls " dynamic and static class ID mismatch"); \
    } \
    /* *t = *t; */ /*can't do this: coverage test for assignment op*/ \
  } \
  delete t; \
}

#define TEST_TRANSLIT_RULE(rule, cls) { \
  UErrorCode ec = U_ZERO_ERROR; \
  UParseError pe; \
  Transliterator* t = Transliterator::createFromRules("_", rule, UTRANS_FORWARD, pe, ec); \
  if (U_FAILURE(ec)) { \
    errln("FAIL: Couldn't create " rule); \
  } else { \
    if (t->getDynamicClassID() != cls ::getStaticClassID()) { \
      errln("FAIL: " #cls " dynamic and static class ID mismatch"); \
    } \
    /* *t = *t; */ /*can't do this: coverage test for assignment op*/ \
  } \
  delete t; \
}

void TransliteratorTest::TestBoilerplate() {
    TEST_TRANSLIT_ID("Any-Latin", AnyTransliterator);
    TEST_TRANSLIT_ID("Any-Hex", EscapeTransliterator);
    TEST_TRANSLIT_ID("Hex-Any", UnescapeTransliterator);
    TEST_TRANSLIT_ID("Lower", LowercaseTransliterator);
    TEST_TRANSLIT_ID("Upper", UppercaseTransliterator);
    TEST_TRANSLIT_ID("Title", TitlecaseTransliterator);
    TEST_TRANSLIT_ID("Null", NullTransliterator);
    TEST_TRANSLIT_ID("Remove", RemoveTransliterator);
    TEST_TRANSLIT_ID("Any-Name", UnicodeNameTransliterator);
    TEST_TRANSLIT_ID("Name-Any", NameUnicodeTransliterator);
    TEST_TRANSLIT_ID("NFD", NormalizationTransliterator);
    TEST_TRANSLIT_ID("Latin-Greek", CompoundTransliterator);
    TEST_TRANSLIT_RULE("a>b;", RuleBasedTransliterator);
}

void TransliteratorTest::TestAlternateSyntax() {
    // U+2206 == &
    // U+2190 == <
    // U+2192 == >
    // U+2194 == <>
    expect(CharsToUnicodeString("a \\u2192 x; b \\u2190 y; c \\u2194 z"),
           "abc",
           "xbz");
    expect(CharsToUnicodeString("([:^ASCII:]) \\u2192 \\u2206Name($1);"),
           CharsToUnicodeString("<=\\u2190; >=\\u2192; <>=\\u2194; &=\\u2206"),
           "<=\\N{LEFTWARDS ARROW}; >=\\N{RIGHTWARDS ARROW}; <>=\\N{LEFT RIGHT ARROW}; &=\\N{INCREMENT}");
}

static const char* BEGIN_END_RULES[] = {
    // [0]
    "abc > xy;"
    "aba > z;",

    // [1]
/*
    "::BEGIN;"
    "abc > xy;"
    "::END;"
    "::BEGIN;"
    "aba > z;"
    "::END;",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [2]
/*
    "abc > xy;"
    "::BEGIN;"
    "aba > z;"
    "::END;",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [3]
/*
    "::BEGIN;"
    "abc > xy;"
    "::END;"
    "aba > z;",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [4]
    "abc > xy;"
    "::Null;"
    "aba > z;",

    // [5]
    "::Upper;"
    "ABC > xy;"
    "AB > x;"
    "C > z;"
    "::Upper;"
    "XYZ > p;"
    "XY > q;"
    "Z > r;"
    "::Upper;",

    // [6]
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';",

    // [7]
    "::Null;"
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';",

    // [8]
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';"
    "::Null;",

    // [9]
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "::Null;"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';",

    // [10]
/*
    "::BEGIN;"
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "::END;"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [11]
/*
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "::BEGIN;"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';"
    "::END;",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [12]
/*
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "$ab = [ab];"
    "::BEGIN;"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';"
    "::END;"
    "::BEGIN;"
    "$ab { ' ' } $ab > '-';"
    "c { ' ' > ;"
    "::END;"
    "::BEGIN;"
    "'a-a' > a\\%|a;"
    "::END;",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [13]
    "$ws = [[:Separator:][\\u0009-\\u000C]$];"
    "$delim = [\\-$ws];"
    "$ab = [ab];"
    "::Null;"
    "$ws $delim* > ' ';"
    "'-' $delim* > '-';"
    "::Null;"
    "$ab { ' ' } $ab > '-';"
    "c { ' ' > ;"
    "::Null;"
    "'a-a' > a\\%|a;",

    // [14]
/*
    "::[abc];"
    "::BEGIN;"
    "abc > xy;"
    "::END;"
    "::BEGIN;"
    "aba > yz;"
    "::END;"
    "::Upper;",
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [15]
    "::[abc];"
    "abc > xy;"
    "::Null;"
    "aba > yz;"
    "::Upper;",

    // [16]
/*
    "::[abc];"
    "::BEGIN;"
    "abc <> xy;"
    "::END;"
    "::BEGIN;"
    "aba <> yz;"
    "::END;"
    "::Upper(Lower);"
    "::([XYZ]);"
*/
    "", // test case commented out below, this is here to keep from messing up the indexes

    // [17]
    "::[abc];"
    "abc <> xy;"
    "::Null;"
    "aba <> yz;"
    "::Upper(Lower);"
    "::([XYZ]);"
};
static const int32_t BEGIN_END_RULES_length = (int32_t)(sizeof(BEGIN_END_RULES) / sizeof(BEGIN_END_RULES[0]));

/*
(This entire test is commented out below and will need some heavy revision when we re-add
the ::BEGIN/::END stuff)
static const char* BOGUS_BEGIN_END_RULES[] = {
    // [7]
    "::BEGIN;"
    "abc > xy;"
    "::BEGIN;"
    "aba > z;"
    "::END;"
    "::END;",

    // [8]
    "abc > xy;"
    " aba > z;"
    "::END;",

    // [9]
    "::BEGIN;"
    "::Upper;"
    "::END;"
};
static const int32_t BOGUS_BEGIN_END_RULES_length = (int32_t)(sizeof(BOGUS_BEGIN_END_RULES) / sizeof(BOGUS_BEGIN_END_RULES[0]));
*/

static const char* BEGIN_END_TEST_CASES[] = {
    // rules             input                   expected output
    BEGIN_END_RULES[0],  "abc ababc aba",        "xy zbc z",
//    BEGIN_END_RULES[1],  "abc ababc aba",        "xy abxy z",
//    BEGIN_END_RULES[2],  "abc ababc aba",        "xy abxy z",
//    BEGIN_END_RULES[3],  "abc ababc aba",        "xy abxy z",
    BEGIN_END_RULES[4],  "abc ababc aba",        "xy abxy z",
    BEGIN_END_RULES[5],  "abccabaacababcbc",     "PXAARXQBR",

    BEGIN_END_RULES[6],  "e   e - e---e-  e",    "e e e-e-e",
    BEGIN_END_RULES[7],  "e   e - e---e-  e",    "e e e-e-e",
    BEGIN_END_RULES[8],  "e   e - e---e-  e",    "e e e-e-e",
    BEGIN_END_RULES[9],  "e   e - e---e-  e",    "e e e-e-e",
//    BEGIN_END_RULES[10],  "e   e - e---e-  e",    "e e e-e-e",
//    BEGIN_END_RULES[11], "e   e - e---e-  e",    "e e e-e-e",
//    BEGIN_END_RULES[12], "e   e - e---e-  e",    "e e e-e-e",
//    BEGIN_END_RULES[12], "a    a    a    a",     "a%a%a%a",
//    BEGIN_END_RULES[12], "a a-b c b a",          "a%a-b cb-a",
    BEGIN_END_RULES[13], "e   e - e---e-  e",    "e e e-e-e",
    BEGIN_END_RULES[13], "a    a    a    a",     "a%a%a%a",
    BEGIN_END_RULES[13], "a a-b c b a",          "a%a-b cb-a",

//    BEGIN_END_RULES[14], "abc xy ababc xyz aba", "XY xy ABXY xyz YZ",
    BEGIN_END_RULES[15], "abc xy ababc xyz aba", "XY xy ABXY xyz YZ",
//    BEGIN_END_RULES[16], "abc xy ababc xyz aba", "XY xy ABXY xyz YZ",
    BEGIN_END_RULES[17], "abc xy ababc xyz aba", "XY xy ABXY xyz YZ"
};
static const int32_t BEGIN_END_TEST_CASES_length = (int32_t)(sizeof(BEGIN_END_TEST_CASES) / sizeof(BEGIN_END_TEST_CASES[0]));

void TransliteratorTest::TestBeginEnd() {
    // run through the list of test cases above
    int32_t i = 0;
    for (i = 0; i < BEGIN_END_TEST_CASES_length; i += 3) {
        expect((UnicodeString)"Test case #" + (i / 3),
               UnicodeString(BEGIN_END_TEST_CASES[i]),
               UnicodeString(BEGIN_END_TEST_CASES[i + 1]),
               UnicodeString(BEGIN_END_TEST_CASES[i + 2]));
    }

    // instantiate the one reversible rule set in the reverse direction and make sure it does the right thing
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* reversed  = Transliterator::createFromRules("Reversed", UnicodeString(BEGIN_END_RULES[17]),
            UTRANS_REVERSE, parseError, status);
    if (reversed == 0 || U_FAILURE(status)) {
        reportParseError(UnicodeString("FAIL: Couldn't create reversed transliterator"), parseError, status);
    } else {
        expect(*reversed, UnicodeString("xy XY XYZ yz YZ"), UnicodeString("xy abc xaba yz aba"));
    }
    delete reversed;

    // finally, run through the list of syntactically-ill-formed rule sets above and make sure
    // that all of them cause errors
/*
(commented out until we have the real ::BEGIN/::END stuff in place
    for (i = 0; i < BOGUS_BEGIN_END_RULES_length; i++) {
        UParseError parseError;
        UErrorCode status = U_ZERO_ERROR;
        Transliterator* t = Transliterator::createFromRules("foo", UnicodeString(BOGUS_BEGIN_END_RULES[i]),
                UTRANS_FORWARD, parseError, status);
        if (!U_FAILURE(status)) {
            delete t;
            errln((UnicodeString)"Should have gotten syntax error from " + BOGUS_BEGIN_END_RULES[i]);
        }
    }
*/
}

void TransliteratorTest::TestBeginEndToRules() {
    // run through the same list of test cases we used above, but this time, instead of just
    // instantiating a Transliterator from the rules and running the test against it, we instantiate
    // a Transliterator from the rules, do toRules() on it, instantiate a Transliterator from
    // the resulting set of rules, and make sure that the generated rule set is semantically equivalent
    // to (i.e., does the same thing as) the original rule set
    for (int32_t i = 0; i < BEGIN_END_TEST_CASES_length; i += 3) {
        UParseError parseError;
        UErrorCode status = U_ZERO_ERROR;
        Transliterator* t = Transliterator::createFromRules("--", UnicodeString(BEGIN_END_TEST_CASES[i]),
                UTRANS_FORWARD, parseError, status);
        if (U_FAILURE(status)) {
            reportParseError(UnicodeString("FAIL: Couldn't create transliterator"), parseError, status);
        } else {
            UnicodeString rules;
            t->toRules(rules, TRUE);
            Transliterator* t2 = Transliterator::createFromRules((UnicodeString)"Test case #" + (i / 3), rules,
                    UTRANS_FORWARD, parseError, status);
            if (U_FAILURE(status)) {
                reportParseError(UnicodeString("FAIL: Couldn't create transliterator from generated rules"),
                        parseError, status);
                delete t;
            } else {
                expect(*t2,
                       UnicodeString(BEGIN_END_TEST_CASES[i + 1]),
                       UnicodeString(BEGIN_END_TEST_CASES[i + 2]));
                delete t;
                delete t2;
            }
        }
    }

    // do the same thing for the reversible test case
    UParseError parseError;
    UErrorCode status = U_ZERO_ERROR;
    Transliterator* reversed = Transliterator::createFromRules("Reversed", UnicodeString(BEGIN_END_RULES[17]),
            UTRANS_REVERSE, parseError, status);
    if (U_FAILURE(status)) {
        reportParseError(UnicodeString("FAIL: Couldn't create reversed transliterator"), parseError, status);
    } else {
        UnicodeString rules;
        reversed->toRules(rules, FALSE);
        Transliterator* reversed2 = Transliterator::createFromRules("Reversed", rules, UTRANS_FORWARD,
                parseError, status);
        if (U_FAILURE(status)) {
            reportParseError(UnicodeString("FAIL: Couldn't create reversed transliterator from generated rules"),
                    parseError, status);
            delete reversed;
        } else {
            expect(*reversed2,
                   UnicodeString("xy XY XYZ yz YZ"),
                   UnicodeString("xy abc xaba yz aba"));
            delete reversed;
            delete reversed2;
        }
    }
}

//======================================================================
// Support methods
//======================================================================
void TransliteratorTest::expectT(const UnicodeString& id,
                                 const UnicodeString& source,
                                 const UnicodeString& expectedResult) {
    UErrorCode ec = U_ZERO_ERROR;
    UParseError pe;
    Transliterator *t = Transliterator::createInstance(id, UTRANS_FORWARD, pe, ec);
    if (U_FAILURE(ec)) {
        errln((UnicodeString)"FAIL: Could not create " + id);
        delete t;
        return;
    }
    expect(*t, source, expectedResult);
    delete t;
}

void TransliteratorTest::reportParseError(const UnicodeString& message,
                                          const UParseError& parseError,
                                          const UErrorCode& status) {
    errln(message +
          /*", parse error " + parseError.code +*/
          ", line " + parseError.line +
          ", offset " + parseError.offset +
          ", pre-context " + prettify(parseError.preContext, TRUE) +
          ", post-context " + prettify(parseError.postContext,TRUE) +
          ", Error: " + u_errorName(status));
}

void TransliteratorTest::expect(const UnicodeString& rules,
                                const UnicodeString& source,
                                const UnicodeString& expectedResult,
                                UTransPosition *pos) {
    expect("<ID>", rules, source, expectedResult, pos);
}

void TransliteratorTest::expect(const UnicodeString& id,
                                const UnicodeString& rules,
                                const UnicodeString& source,
                                const UnicodeString& expectedResult,
                                UTransPosition *pos) {
    UErrorCode status = U_ZERO_ERROR;
    UParseError parseError;
    Transliterator* t = Transliterator::createFromRules(id, rules, UTRANS_FORWARD, parseError, status);
    if (U_FAILURE(status)) {
        reportParseError(UnicodeString("Couldn't create transliterator from ") + rules, parseError, status);
    } else {
        expect(*t, source, expectedResult, pos);
    }
    delete t;
}

void TransliteratorTest::expect(const Transliterator& t,
                                const UnicodeString& source,
                                const UnicodeString& expectedResult,
                                const Transliterator& reverseTransliterator) {
    expect(t, source, expectedResult);
    expect(reverseTransliterator, expectedResult, source);
}

void TransliteratorTest::expect(const Transliterator& t,
                                const UnicodeString& source,
                                const UnicodeString& expectedResult,
                                UTransPosition *pos) {
    if (pos == 0) {
        UnicodeString result(source);
        t.transliterate(result);
        expectAux(t.getID() + ":String", source, result, expectedResult);
    }
    UTransPosition index={0, 0, 0, 0};
    if (pos != 0) {
        index = *pos;
    }

    UnicodeString rsource(source);
    if (pos == 0) {
        t.transliterate(rsource);
    } else {
        // Do it all at once -- below we do it incrementally
        t.finishTransliteration(rsource, *pos);
    }
    expectAux(t.getID() + ":Replaceable", source, rsource, expectedResult);

    // Test keyboard (incremental) transliteration -- this result
    // must be the same after we finalize (see below).
    UnicodeString log;
    rsource.remove();
    if (pos != 0) {
        rsource = source;
        formatInput(log, rsource, index);
        log.append(" -> ");
        UErrorCode status = U_ZERO_ERROR;
        t.transliterate(rsource, index, status);
        formatInput(log, rsource, index);
    } else {
        for (int32_t i=0; i<source.length(); ++i) {
            if (i != 0) {
                log.append(" + ");
            }
            log.append(source.charAt(i)).append(" -> ");
            UErrorCode status = U_ZERO_ERROR;
            t.transliterate(rsource, index, source.charAt(i), status);
            formatInput(log, rsource, index);
        }
    }
    
    // As a final step in keyboard transliteration, we must call
    // transliterate to finish off any pending partial matches that
    // were waiting for more input.
    t.finishTransliteration(rsource, index);
    log.append(" => ").append(rsource);

    expectAux(t.getID() + ":Keyboard", log,
              rsource == expectedResult,
              expectedResult);
}

    
/**
 * @param appendTo result is appended to this param.
 * @param input the string being transliterated
 * @param pos the index struct
 */
UnicodeString& TransliteratorTest::formatInput(UnicodeString &appendTo,
                                               const UnicodeString& input,
                                               const UTransPosition& pos) {
    // Output a string of the form aaa{bbb|ccc|ddd}eee, where
    // the {} indicate the context start and limit, and the ||
    // indicate the start and limit.
    if (0 <= pos.contextStart &&
        pos.contextStart <= pos.start &&
        pos.start <= pos.limit &&
        pos.limit <= pos.contextLimit &&
        pos.contextLimit <= input.length()) {

        UnicodeString a, b, c, d, e;
        input.extractBetween(0, pos.contextStart, a);
        input.extractBetween(pos.contextStart, pos.start, b);
        input.extractBetween(pos.start, pos.limit, c);
        input.extractBetween(pos.limit, pos.contextLimit, d);
        input.extractBetween(pos.contextLimit, input.length(), e);
        appendTo.append(a).append((UChar)123/*{*/).append(b).
            append((UChar)PIPE).append(c).append((UChar)PIPE).append(d).
            append((UChar)125/*}*/).append(e);
    } else {
        appendTo.append((UnicodeString)"INVALID UTransPosition {cs=" +
                        pos.contextStart + ", s=" + pos.start + ", l=" +
                        pos.limit + ", cl=" + pos.contextLimit + "} on " +
                        input);
    }
    return appendTo;
}

void TransliteratorTest::expectAux(const UnicodeString& tag,
                                   const UnicodeString& source,
                                   const UnicodeString& result,
                                   const UnicodeString& expectedResult) {
    expectAux(tag, source + " -> " + result,
              result == expectedResult,
              expectedResult);
}

void TransliteratorTest::expectAux(const UnicodeString& tag,
                                   const UnicodeString& summary, UBool pass,
                                   const UnicodeString& expectedResult) {
    if (pass) {
        logln(UnicodeString("(")+tag+") " + prettify(summary));
    } else {
        errln(UnicodeString("FAIL: (")+tag+") "
              + prettify(summary)
              + ", expected " + prettify(expectedResult));
    }
}

#endif /* #if !UCONFIG_NO_TRANSLITERATION */