/* ****************************************************************************** * * Copyright (C) 1999-2003, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: ubidiln.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999aug06 * created by: Markus W. Scherer */ /* set import/export definitions */ #ifndef U_COMMON_IMPLEMENTATION # define U_COMMON_IMPLEMENTATION #endif #include "cmemory.h" #include "unicode/utypes.h" #include "unicode/ustring.h" #include "unicode/uchar.h" #include "unicode/ubidi.h" #include "ubidiimp.h" /* * General remarks about the functions in this file: * * These functions deal with the aspects of potentially mixed-directional * text in a single paragraph or in a line of a single paragraph * which has already been processed according to * the Unicode 3.0 BiDi algorithm as defined in * http://www.unicode.org/unicode/reports/tr9/ , version 5, * also described in The Unicode Standard, Version 3.0 . * * This means that there is a UBiDi object with a levels * and a dirProps array. * paraLevel and direction are also set. * Only if the length of the text is zero, then levels==dirProps==NULL. * * The overall directionality of the paragraph * or line is used to bypass the reordering steps if possible. * Even purely RTL text does not need reordering there because * the ubidi_getLogical/VisualIndex() functions can compute the * index on the fly in such a case. * * The implementation of the access to same-level-runs and of the reordering * do attempt to provide better performance and less memory usage compared to * a direct implementation of especially rule (L2) with an array of * one (32-bit) integer per text character. * * Here, the levels array is scanned as soon as necessary, and a vector of * same-level-runs is created. Reordering then is done on this vector. * For each run of text positions that were resolved to the same level, * only 8 bytes are stored: the first text position of the run and the visual * position behind the run after reordering. * One sign bit is used to hold the directionality of the run. * This is inefficient if there are many very short runs. If the average run * length is <2, then this uses more memory. * * In a further attempt to save memory, the levels array is never changed * after all the resolution rules (Xn, Wn, Nn, In). * Many functions have to consider the field trailingWSStart: * if it is less than length, then there is an implicit trailing run * at the paraLevel, * which is not reflected in the levels array. * This allows a line UBiDi object to use the same levels array as * its paragraph parent object. * * When a UBiDi object is created for a line of a paragraph, then the * paragraph's levels and dirProps arrays are reused by way of setting * a pointer into them, not by copying. This again saves memory and forbids to * change the now shared levels for (L1). */ /* handle trailing WS (L1) -------------------------------------------------- */ /* * setTrailingWSStart() sets the start index for a trailing * run of WS in the line. This is necessary because we do not modify * the paragraph's levels array that we just point into. * Using trailingWSStart is another form of performing (L1). * * To make subsequent operations easier, we also include the run * before the WS if it is at the paraLevel - we merge the two here. */ static void setTrailingWSStart(UBiDi *pBiDi) { /* pBiDi->direction!=UBIDI_MIXED */ const DirProp *dirProps=pBiDi->dirProps; UBiDiLevel *levels=pBiDi->levels; int32_t start=pBiDi->length; UBiDiLevel paraLevel=pBiDi->paraLevel; /* go backwards across all WS, BN, explicit codes */ while(start>0 && DIRPROP_FLAG(dirProps[start-1])&MASK_WS) { --start; } /* if the WS run can be merged with the previous run then do so here */ while(start>0 && levels[start-1]==paraLevel) { --start; } pBiDi->trailingWSStart=start; } /* ubidi_setLine ------------------------------------------------------------ */ U_CAPI void U_EXPORT2 ubidi_setLine(const UBiDi *pParaBiDi, int32_t start, int32_t limit, UBiDi *pLineBiDi, UErrorCode *pErrorCode) { int32_t length; /* check the argument values */ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return; } else if(pParaBiDi==NULL || pLineBiDi==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return; } else if(start<0 || start>limit || limit>pParaBiDi->length) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return; } /* set the values in pLineBiDi from its pParaBiDi parent */ pLineBiDi->text=pParaBiDi->text+start; length=pLineBiDi->length=limit-start; pLineBiDi->paraLevel=pParaBiDi->paraLevel; pLineBiDi->runs=NULL; pLineBiDi->flags=0; if(length>0) { pLineBiDi->dirProps=pParaBiDi->dirProps+start; pLineBiDi->levels=pParaBiDi->levels+start; pLineBiDi->runCount=-1; if(pParaBiDi->direction!=UBIDI_MIXED) { /* the parent is already trivial */ pLineBiDi->direction=pParaBiDi->direction; /* * The parent's levels are all either * implicitly or explicitly ==paraLevel; * do the same here. */ if(pParaBiDi->trailingWSStart<=start) { pLineBiDi->trailingWSStart=0; } else if(pParaBiDi->trailingWSStarttrailingWSStart=pParaBiDi->trailingWSStart-start; } else { pLineBiDi->trailingWSStart=length; } } else { const UBiDiLevel *levels=pLineBiDi->levels; int32_t i, trailingWSStart; UBiDiLevel level; setTrailingWSStart(pLineBiDi); trailingWSStart=pLineBiDi->trailingWSStart; /* recalculate pLineBiDi->direction */ if(trailingWSStart==0) { /* all levels are at paraLevel */ pLineBiDi->direction=(UBiDiDirection)(pLineBiDi->paraLevel&1); } else { /* get the level of the first character */ level=(UBiDiLevel)(levels[0]&1); /* if there is anything of a different level, then the line is mixed */ if(trailingWSStartparaLevel&1)!=level) { /* the trailing WS is at paraLevel, which differs from levels[0] */ pLineBiDi->direction=UBIDI_MIXED; } else { /* see if levels[1..trailingWSStart-1] have the same direction as levels[0] and paraLevel */ i=1; for(;;) { if(i==trailingWSStart) { /* the direction values match those in level */ pLineBiDi->direction=(UBiDiDirection)level; break; } else if((levels[i]&1)!=level) { pLineBiDi->direction=UBIDI_MIXED; break; } ++i; } } } switch(pLineBiDi->direction) { case UBIDI_LTR: /* make sure paraLevel is even */ pLineBiDi->paraLevel=(UBiDiLevel)((pLineBiDi->paraLevel+1)&~1); /* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */ pLineBiDi->trailingWSStart=0; break; case UBIDI_RTL: /* make sure paraLevel is odd */ pLineBiDi->paraLevel|=1; /* all levels are implicitly at paraLevel (important for ubidi_getLevels()) */ pLineBiDi->trailingWSStart=0; break; default: break; } } } else { /* create an object for a zero-length line */ pLineBiDi->direction=pLineBiDi->paraLevel&1 ? UBIDI_RTL : UBIDI_LTR; pLineBiDi->trailingWSStart=pLineBiDi->runCount=0; pLineBiDi->dirProps=NULL; pLineBiDi->levels=NULL; } return; } U_CAPI UBiDiLevel U_EXPORT2 ubidi_getLevelAt(const UBiDi *pBiDi, int32_t charIndex) { /* return paraLevel if in the trailing WS run, otherwise the real level */ if(pBiDi==NULL || charIndex<0 || pBiDi->length<=charIndex) { return 0; } else if(pBiDi->direction!=UBIDI_MIXED || charIndex>=pBiDi->trailingWSStart) { return pBiDi->paraLevel; } else { return pBiDi->levels[charIndex]; } } U_CAPI const UBiDiLevel * U_EXPORT2 ubidi_getLevels(UBiDi *pBiDi, UErrorCode *pErrorCode) { int32_t start, length; if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return NULL; } else if(pBiDi==NULL || (length=pBiDi->length)<=0) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } if((start=pBiDi->trailingWSStart)==length) { /* the current levels array reflects the WS run */ return pBiDi->levels; } /* * After the previous if(), we know that the levels array * has an implicit trailing WS run and therefore does not fully * reflect itself all the levels. * This must be a UBiDi object for a line, and * we need to create a new levels array. */ if(getLevelsMemory(pBiDi, length)) { UBiDiLevel *levels=pBiDi->levelsMemory; if(start>0 && levels!=pBiDi->levels) { uprv_memcpy(levels, pBiDi->levels, start); } uprv_memset(levels+start, pBiDi->paraLevel, length-start); /* this new levels array is set for the line and reflects the WS run */ pBiDi->trailingWSStart=length; return pBiDi->levels=levels; } else { /* out of memory */ *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } } U_CAPI void U_EXPORT2 ubidi_getLogicalRun(const UBiDi *pBiDi, int32_t logicalStart, int32_t *pLogicalLimit, UBiDiLevel *pLevel) { int32_t length; if(pBiDi==NULL || logicalStart<0 || (length=pBiDi->length)<=logicalStart) { return; } if(pBiDi->direction!=UBIDI_MIXED || logicalStart>=pBiDi->trailingWSStart) { if(pLogicalLimit!=NULL) { *pLogicalLimit=length; } if(pLevel!=NULL) { *pLevel=pBiDi->paraLevel; } } else { UBiDiLevel *levels=pBiDi->levels; UBiDiLevel level=levels[logicalStart]; /* search for the end of the run */ length=pBiDi->trailingWSStart; while(++logicalStartrunCount<0 && !ubidi_getRuns(pBiDi))) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return -1; } else { return pBiDi->runCount; } } U_CAPI UBiDiDirection U_EXPORT2 ubidi_getVisualRun(UBiDi *pBiDi, int32_t runIndex, int32_t *pLogicalStart, int32_t *pLength) { if( pBiDi==NULL || runIndex<0 || (pBiDi->runCount==-1 && !ubidi_getRuns(pBiDi)) || runIndex>=pBiDi->runCount ) { return UBIDI_LTR; } else { int32_t start=pBiDi->runs[runIndex].logicalStart; if(pLogicalStart!=NULL) { *pLogicalStart=GET_INDEX(start); } if(pLength!=NULL) { if(runIndex>0) { *pLength=pBiDi->runs[runIndex].visualLimit- pBiDi->runs[runIndex-1].visualLimit; } else { *pLength=pBiDi->runs[0].visualLimit; } } return (UBiDiDirection)GET_ODD_BIT(start); } } /* in trivial cases there is only one trivial run; called by ubidi_getRuns() */ static void getSingleRun(UBiDi *pBiDi, UBiDiLevel level) { /* simple, single-run case */ pBiDi->runs=pBiDi->simpleRuns; pBiDi->runCount=1; /* fill and reorder the single run */ pBiDi->runs[0].logicalStart=MAKE_INDEX_ODD_PAIR(0, level); pBiDi->runs[0].visualLimit=pBiDi->length; } /* reorder the runs array (L2) ---------------------------------------------- */ /* * Reorder the same-level runs in the runs array. * Here, runCount>1 and maxLevel>=minLevel>=paraLevel. * All the visualStart fields=logical start before reordering. * The "odd" bits are not set yet. * * Reordering with this data structure lends itself to some handy shortcuts: * * Since each run is moved but not modified, and since at the initial maxLevel * each sequence of same-level runs consists of only one run each, we * don't need to do anything there and can predecrement maxLevel. * In many simple cases, the reordering is thus done entirely in the * index mapping. * Also, reordering occurs only down to the lowest odd level that occurs, * which is minLevel|1. However, if the lowest level itself is odd, then * in the last reordering the sequence of the runs at this level or higher * will be all runs, and we don't need the elaborate loop to search for them. * This is covered by ++minLevel instead of minLevel|=1 followed * by an extra reorder-all after the reorder-some loop. * About a trailing WS run: * Such a run would need special treatment because its level is not * reflected in levels[] if this is not a paragraph object. * Instead, all characters from trailingWSStart on are implicitly at * paraLevel. * However, for all maxLevel>paraLevel, this run will never be reordered * and does not need to be taken into account. maxLevel==paraLevel is only reordered * if minLevel==paraLevel is odd, which is done in the extra segment. * This means that for the main reordering loop we don't need to consider * this run and can --runCount. If it is later part of the all-runs * reordering, then runCount is adjusted accordingly. */ static void reorderLine(UBiDi *pBiDi, UBiDiLevel minLevel, UBiDiLevel maxLevel) { Run *runs; UBiDiLevel *levels; int32_t firstRun, endRun, limitRun, runCount, temp; /* nothing to do? */ if(maxLevel<=(minLevel|1)) { return; } /* * Reorder only down to the lowest odd level * and reorder at an odd minLevel in a separate, simpler loop. * See comments above for why minLevel is always incremented. */ ++minLevel; runs=pBiDi->runs; levels=pBiDi->levels; runCount=pBiDi->runCount; /* do not include the WS run at paraLevel<=old minLevel except in the simple loop */ if(pBiDi->trailingWSStartlength) { --runCount; } while(--maxLevel>=minLevel) { firstRun=0; /* loop for all sequences of runs */ for(;;) { /* look for a sequence of runs that are all at >=maxLevel */ /* look for the first run of such a sequence */ while(firstRun=runCount) { break; /* no more such runs */ } /* look for the limit run of such a sequence (the run behind it) */ for(limitRun=firstRun; ++limitRun=maxLevel;) {} /* Swap the entire sequence of runs from firstRun to limitRun-1. */ endRun=limitRun-1; while(firstRuntrailingWSStart==pBiDi->length) { --runCount; } /* Swap the entire sequence of all runs. (endRun==runCount) */ while(firstRun0 * and the runs are reordered. * Odd-level runs have visualStart on their visual right edge and * they progress visually to the left. */ U_CFUNC UBool ubidi_getRuns(UBiDi *pBiDi) { if(pBiDi->direction!=UBIDI_MIXED) { /* simple, single-run case - this covers length==0 */ getSingleRun(pBiDi, pBiDi->paraLevel); } else /* UBIDI_MIXED, length>0 */ { /* mixed directionality */ int32_t length=pBiDi->length, limit; /* * If there are WS characters at the end of the line * and the run preceding them has a level different from * paraLevel, then they will form their own run at paraLevel (L1). * Count them separately. * We need some special treatment for this in order to not * modify the levels array which a line UBiDi object shares * with its paragraph parent and its other line siblings. * In other words, for the trailing WS, it may be * levels[]!=paraLevel but we have to treat it like it were so. */ limit=pBiDi->trailingWSStart; if(limit==0) { /* there is only WS on this line */ getSingleRun(pBiDi, pBiDi->paraLevel); } else { UBiDiLevel *levels=pBiDi->levels; int32_t i, runCount; UBiDiLevel level=UBIDI_DEFAULT_LTR; /* initialize with no valid level */ /* count the runs, there is at least one non-WS run, and limit>0 */ runCount=0; for(i=0; i1 || limit1 */ if(getRunsMemory(pBiDi, runCount)) { runs=pBiDi->runsMemory; } else { return FALSE; } /* set the runs */ /* this could be optimized, e.g.: 464->444, 484->444, 575->555, 595->555 */ /* however, that would take longer and make other functions more complicated */ runIndex=0; /* search for the run limits and initialize visualLimit values with the run lengths */ i=0; do { /* prepare this run */ start=i; level=levels[i]; if(levelmaxLevel) { maxLevel=level; } /* look for the run limit */ while(++iparaLevelparaLevel; } } /* set the object fields */ pBiDi->runs=runs; pBiDi->runCount=runCount; reorderLine(pBiDi, minLevel, maxLevel); /* now add the direction flags and adjust the visualLimit's to be just that */ ADD_ODD_BIT_FROM_LEVEL(runs[0].logicalStart, levels[runs[0].logicalStart]); limit=runs[0].visualLimit; /* this loop will also handle the trailing WS run */ for(i=1; iparaLevel & 1) != 0)? 0 : runIndex; ADD_ODD_BIT_FROM_LEVEL(runs[trailingRun].logicalStart, pBiDi->paraLevel); } } } } return TRUE; } static UBool prepareReorder(const UBiDiLevel *levels, int32_t length, int32_t *indexMap, UBiDiLevel *pMinLevel, UBiDiLevel *pMaxLevel) { int32_t start; UBiDiLevel level, minLevel, maxLevel; if(levels==NULL || length<=0) { return FALSE; } /* determine minLevel and maxLevel */ minLevel=UBIDI_MAX_EXPLICIT_LEVEL+1; maxLevel=0; for(start=length; start>0;) { level=levels[--start]; if(level>UBIDI_MAX_EXPLICIT_LEVEL+1) { return FALSE; } if(levelmaxLevel) { maxLevel=level; } } *pMinLevel=minLevel; *pMaxLevel=maxLevel; /* initialize the index map */ for(start=length; start>0;) { --start; indexMap[start]=start; } return TRUE; } /* reorder a line based on a levels array (L2) ------------------------------ */ U_CAPI void U_EXPORT2 ubidi_reorderLogical(const UBiDiLevel *levels, int32_t length, int32_t *indexMap) { int32_t start, limit, sumOfSosEos; UBiDiLevel minLevel, maxLevel; if(indexMap==NULL || !prepareReorder(levels, length, indexMap, &minLevel, &maxLevel)) { return; } /* nothing to do? */ if(minLevel==maxLevel && (minLevel&1)==0) { return; } /* reorder only down to the lowest odd level */ minLevel|=1; /* loop maxLevel..minLevel */ do { start=0; /* loop for all sequences of levels to reorder at the current maxLevel */ for(;;) { /* look for a sequence of levels that are all at >=maxLevel */ /* look for the first index of such a sequence */ while(start=length) { break; /* no more such sequences */ } /* look for the limit of such a sequence (the index behind it) */ for(limit=start; ++limit=maxLevel;) {} /* * sos=start of sequence, eos=end of sequence * * The closed (inclusive) interval from sos to eos includes all the logical * and visual indexes within this sequence. They are logically and * visually contiguous and in the same range. * * For each run, the new visual index=sos+eos-old visual index; * we pre-add sos+eos into sumOfSosEos -> * new visual index=sumOfSosEos-old visual index; */ sumOfSosEos=start+limit-1; /* reorder each index in the sequence */ do { indexMap[start]=sumOfSosEos-indexMap[start]; } while(++start=minLevel); } U_CAPI void U_EXPORT2 ubidi_reorderVisual(const UBiDiLevel *levels, int32_t length, int32_t *indexMap) { int32_t start, end, limit, temp; UBiDiLevel minLevel, maxLevel; if(indexMap==NULL || !prepareReorder(levels, length, indexMap, &minLevel, &maxLevel)) { return; } /* nothing to do? */ if(minLevel==maxLevel && (minLevel&1)==0) { return; } /* reorder only down to the lowest odd level */ minLevel|=1; /* loop maxLevel..minLevel */ do { start=0; /* loop for all sequences of levels to reorder at the current maxLevel */ for(;;) { /* look for a sequence of levels that are all at >=maxLevel */ /* look for the first index of such a sequence */ while(start=length) { break; /* no more such runs */ } /* look for the limit of such a sequence (the index behind it) */ for(limit=start; ++limit=maxLevel;) {} /* * Swap the entire interval of indexes from start to limit-1. * We don't need to swap the levels for the purpose of this * algorithm: the sequence of levels that we look at does not * move anyway. */ end=limit-1; while(start=minLevel); } /* API functions for logical<->visual mapping ------------------------------- */ U_CAPI int32_t U_EXPORT2 ubidi_getVisualIndex(UBiDi *pBiDi, int32_t logicalIndex, UErrorCode *pErrorCode) { if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } else if(pBiDi==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } else if(logicalIndex<0 || pBiDi->length<=logicalIndex) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } else { /* we can do the trivial cases without the runs array */ switch(pBiDi->direction) { case UBIDI_LTR: return logicalIndex; case UBIDI_RTL: return pBiDi->length-logicalIndex-1; default: if(pBiDi->runCount<0 && !ubidi_getRuns(pBiDi)) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return 0; } else { Run *runs=pBiDi->runs; int32_t i, visualStart=0, offset, length; /* linear search for the run, search on the visual runs */ for(i=0;; ++i) { length=runs[i].visualLimit-visualStart; offset=logicalIndex-GET_INDEX(runs[i].logicalStart); if(offset>=0 && offsetlength<=visualIndex) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } else { /* we can do the trivial cases without the runs array */ switch(pBiDi->direction) { case UBIDI_LTR: return visualIndex; case UBIDI_RTL: return pBiDi->length-visualIndex-1; default: if(pBiDi->runCount<0 && !ubidi_getRuns(pBiDi)) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return 0; } else { Run *runs=pBiDi->runs; int32_t i, runCount=pBiDi->runCount, start; if(runCount<=10) { /* linear search for the run */ for(i=0; visualIndex>=runs[i].visualLimit; ++i) {} } else { /* binary search for the run */ int32_t begin=0, limit=runCount; /* the middle if() will guaranteed find the run, we don't need a loop limit */ for(;;) { i=(begin+limit)/2; if(visualIndex>=runs[i].visualLimit) { begin=i+1; } else if(i==0 || visualIndex>=runs[i-1].visualLimit) { break; } else { limit=i; } } } start=runs[i].logicalStart; if(IS_EVEN_RUN(start)) { /* LTR */ /* the offset in runs[i] is visualIndex-runs[i-1].visualLimit */ if(i>0) { visualIndex-=runs[i-1].visualLimit; } return GET_INDEX(start)+visualIndex; } else { /* RTL */ return GET_INDEX(start)+runs[i].visualLimit-visualIndex-1; } } } } } U_CAPI void U_EXPORT2 ubidi_getLogicalMap(UBiDi *pBiDi, int32_t *indexMap, UErrorCode *pErrorCode) { UBiDiLevel *levels; /* ubidi_getLevels() checks all of its and our arguments */ if((levels=(UBiDiLevel *)ubidi_getLevels(pBiDi, pErrorCode))==NULL) { /* no op */ } else if(indexMap==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { ubidi_reorderLogical(levels, pBiDi->length, indexMap); } } U_CAPI void U_EXPORT2 ubidi_getVisualMap(UBiDi *pBiDi, int32_t *indexMap, UErrorCode *pErrorCode) { /* ubidi_countRuns() checks all of its and our arguments */ if(ubidi_countRuns(pBiDi, pErrorCode)<=0) { /* no op */ } else if(indexMap==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { /* fill a visual-to-logical index map using the runs[] */ Run *runs=pBiDi->runs, *runsLimit=runs+pBiDi->runCount; int32_t logicalStart, visualStart, visualLimit; visualStart=0; for(; runslogicalStart; visualLimit=runs->visualLimit; if(IS_EVEN_RUN(logicalStart)) { do { /* LTR */ *indexMap++ = logicalStart++; } while(++visualStart0) { destMap[*--srcMap]=--length; } } }