/* ***************************************************************************************** * * * COPYRIGHT: * * (C) Copyright Taligent, Inc., 1997 * * (C) Copyright International Business Machines Corporation, 1997-1998 * * Licensed Material - Program-Property of IBM - All Rights Reserved. * * US Government Users Restricted Rights - Use, duplication, or disclosure * * restricted by GSA ADP Schedule Contract with IBM Corp. * * * ***************************************************************************************** */ /*=============================================================================== * * File cmpshrta.cpp * * Modification History: * * Date Name Description * 2/5/97 aliu Added CompactIntArray streamIn and streamOut methods. * 3/4/97 aliu Tuned performance of CompactIntArray constructor, * 05/07/97 helena Added isBogus() * based on performance data indicating that this_obj was slow. * 07/15/98 erm Synched with Java 1.2 CompactShortArray.java. * 07/30/98 erm Added changes from 07/29/98 code review. * 11/01/99 weiv Added getArray, getIndex and getCount based on Jitterbug 4 *=============================================================================== */ #include "ucmp16.h" #include "cmemory.h" #define arrayRegionMatches(source, sourceStart, target, targetStart, len) (icu_memcmp(&source[sourceStart], &target[targetStart], len * sizeof(int16_t)) != 0) /* internal constants*/ #define UCMP16_kMaxUnicode_int 65535 #define UCMP16_kUnicodeCount_int (UCMP16_kMaxUnicode_int + 1) #define UCMP16_kBlockShift_int 7 #define UCMP16_kBlockCount_int (1 << UCMP16_kBlockShift_int) #define UCMP16_kBlockBytes_int (UCMP16_kBlockCount_int * sizeof(int16_t)) #define UCMP16_kIndexShift_int (16 - UCMP16_kBlockShift_int) #define UCMP16_kIndexCount_int (1 << UCMP16_kIndexShift_int) #define UCMP16_kBlockMask_int (UCMP16_kBlockCount_int - 1) const int32_t UCMP16_kMaxUnicode = UCMP16_kMaxUnicode_int; const int32_t UCMP16_kUnicodeCount = UCMP16_kUnicodeCount_int; const int32_t UCMP16_kBlockShift = UCMP16_kBlockShift_int; const int32_t UCMP16_kBlockCount = UCMP16_kBlockCount_int; const int32_t UCMP16_kBlockBytes = UCMP16_kBlockBytes_int; const int32_t UCMP16_kIndexShift = UCMP16_kIndexShift_int; const int32_t UCMP16_kIndexCount = UCMP16_kIndexCount_int; const uint32_t UCMP16_kBlockMask = UCMP16_kBlockMask_int; /** * Sets the array to the invalid memory state. */ static CompactShortArray* setToBogus(CompactShortArray* array); static void touchBlock(CompactShortArray* this_obj, int32_t i, int16_t value); static bool_t blockTouched(const CompactShortArray* this_obj, int32_t i); /* debug flags*/ /*=======================================================*/ int32_t ucmp16_getkUnicodeCount() {return UCMP16_kUnicodeCount;} int32_t ucmp16_getkBlockCount() {return UCMP16_kBlockCount;} CompactShortArray* ucmp16_open(int16_t defaultValue) { int32_t i; CompactShortArray* this_obj = (CompactShortArray*) icu_malloc(sizeof(CompactShortArray)); if (this_obj == NULL) return NULL; this_obj->fStructSize = sizeof(CompactShortArray); this_obj->fCount = UCMP16_kUnicodeCount; this_obj->fCompact = FALSE; this_obj->fBogus = FALSE; this_obj->fArray = NULL; this_obj->fAlias = FALSE; this_obj->fIndex = NULL; this_obj->fHashes = NULL; this_obj->fDefaultValue = defaultValue; this_obj->fArray = (int16_t*)icu_malloc(UCMP16_kUnicodeCount * sizeof(int16_t)); if (this_obj->fArray == NULL) { this_obj->fBogus = TRUE; return NULL; } this_obj->fIndex = (uint16_t*)icu_malloc(UCMP16_kIndexCount * sizeof(uint16_t)); if (this_obj->fIndex == NULL) { icu_free(this_obj->fArray); this_obj->fArray = NULL; this_obj->fBogus = TRUE; return NULL; } this_obj->kBlockShift = UCMP16_kBlockShift; this_obj->kBlockMask = UCMP16_kBlockMask; for (i = 0; i < UCMP16_kUnicodeCount; i += 1) { this_obj->fArray[i] = defaultValue; } this_obj->fHashes =(int32_t*)icu_malloc(UCMP16_kIndexCount * sizeof(int32_t)); if (this_obj->fHashes == NULL) { icu_free(this_obj->fArray); icu_free(this_obj->fIndex); this_obj->fBogus = TRUE; return NULL; } for (i = 0; i < UCMP16_kIndexCount; i += 1) { this_obj->fIndex[i] = (uint16_t)(i << UCMP16_kBlockShift); this_obj->fHashes[i] = 0; } return this_obj; } CompactShortArray* ucmp16_openAdopt(uint16_t *indexArray, int16_t *newValues, int32_t count, int16_t defaultValue) { CompactShortArray* this_obj = (CompactShortArray*) icu_malloc(sizeof(CompactShortArray)); if (this_obj == NULL) return NULL; this_obj->fHashes = NULL; this_obj->fCount = count; this_obj->fDefaultValue = defaultValue; this_obj->fBogus = FALSE; this_obj->fArray = newValues; this_obj->fIndex = indexArray; this_obj->fCompact = count < UCMP16_kUnicodeCount; this_obj->fStructSize = sizeof(CompactShortArray); this_obj->kBlockShift = UCMP16_kBlockShift; this_obj->kBlockMask = UCMP16_kBlockMask; this_obj->fAlias = FALSE; return this_obj; } CompactShortArray* ucmp16_openAdoptWithBlockShift(uint16_t *indexArray, int16_t *newValues, int32_t count, int16_t defaultValue, int32_t blockShift) { CompactShortArray* this_obj = ucmp16_openAdopt(indexArray, newValues, count, defaultValue); if (this_obj == NULL) return NULL; this_obj->kBlockShift = blockShift; this_obj->kBlockMask = (uint32_t) (((uint32_t)1 << (uint32_t)blockShift) - (uint32_t)1); return this_obj; } CompactShortArray* ucmp16_openAlias(uint16_t *indexArray, int16_t *newValues, int32_t count, int16_t defaultValue) { CompactShortArray* this_obj = (CompactShortArray*) icu_malloc(sizeof(CompactShortArray)); if (this_obj == NULL) return NULL; this_obj->fHashes = NULL; this_obj->fCount = count; this_obj->fDefaultValue = defaultValue; this_obj->fBogus = FALSE; this_obj->fArray = newValues; this_obj->fIndex = indexArray; this_obj->fCompact = count < UCMP16_kUnicodeCount; this_obj->fStructSize = sizeof(CompactShortArray); this_obj->kBlockShift = UCMP16_kBlockShift; this_obj->kBlockMask = UCMP16_kBlockMask; this_obj->fAlias = TRUE; return this_obj; } /*=======================================================*/ void ucmp16_close(CompactShortArray* this_obj) { if(this_obj != NULL) { if(!this_obj->fAlias) { if(this_obj->fArray != NULL) { icu_free(this_obj->fArray); } if(this_obj->fIndex != NULL) { icu_free(this_obj->fIndex); } } if(this_obj->fHashes != NULL) { icu_free(this_obj->fHashes); } icu_free(this_obj); } } CompactShortArray* setToBogus(CompactShortArray* this_obj) { if(this_obj != NULL) { if(!this_obj->fAlias) { icu_free(this_obj->fArray); this_obj->fArray = NULL; icu_free(this_obj->fIndex); this_obj->fIndex = NULL; } icu_free(this_obj->fHashes); this_obj->fHashes = NULL; this_obj->fCount = 0; this_obj->fCompact = FALSE; this_obj->fBogus = TRUE; } return this_obj; } void ucmp16_expand(CompactShortArray* this_obj) { if (this_obj->fCompact) { int32_t i; int16_t *tempArray = (int16_t*)icu_malloc(UCMP16_kUnicodeCount * sizeof(int16_t)); if (tempArray == NULL) { this_obj->fBogus = TRUE; return; } for (i = 0; i < UCMP16_kUnicodeCount; i += 1) { tempArray[i] = ucmp16_get(this_obj, (UChar)i); /* HSYS : How expand?*/ } for (i = 0; i < (1 << (16 - this_obj->kBlockShift)); i += 1) { this_obj->fIndex[i] = (uint16_t)(i<kBlockShift); } icu_free(this_obj->fArray); this_obj->fArray = tempArray; this_obj->fCompact = FALSE; } } void ucmp16_set(CompactShortArray* this_obj, UChar c, int16_t value) { if (this_obj->fCompact) { ucmp16_expand(this_obj); if (this_obj->fBogus) return; } this_obj->fArray[(int32_t)c] = value; if (value != this_obj->fDefaultValue) { touchBlock(this_obj, c >> this_obj->kBlockShift, value); } } void ucmp16_setRange(CompactShortArray* this_obj, UChar start, UChar end, int16_t value) { int32_t i; if (this_obj->fCompact) { ucmp16_expand(this_obj); if (this_obj->fBogus) return; } if (value != this_obj->fDefaultValue) { for (i = start; i <= end; i += 1) { this_obj->fArray[i] = value; touchBlock(this_obj, i >> this_obj->kBlockShift, value); } } else { for (i = start; i <= end; i += 1) this_obj->fArray[i] = value; } } /*=======================================================*/ void ucmp16_compact(CompactShortArray* this_obj) { if (!this_obj->fCompact) { int32_t limitCompacted = 0; int32_t i, iBlockStart; int16_t iUntouched = -1; for (i = 0, iBlockStart = 0; i < (1 << (16 - this_obj->kBlockShift)); i += 1, iBlockStart += (1 << this_obj->kBlockShift)) { bool_t touched = blockTouched(this_obj, i); this_obj->fIndex[i] = 0xFFFF; if (!touched && iUntouched != -1) { /* If no values in this_obj block were set, we can just set its * index to be the same as some other block with no values * set, assuming we've seen one yet. */ this_obj->fIndex[i] = iUntouched; } else { int32_t j, jBlockStart; for (j = 0, jBlockStart = 0; j < limitCompacted; j += 1, jBlockStart += (1 << this_obj->kBlockShift)) { if (this_obj->fHashes[i] == this_obj->fHashes[j] && arrayRegionMatches(this_obj->fArray, iBlockStart, this_obj->fArray, jBlockStart, (1 << this_obj->kBlockShift))) { this_obj->fIndex[i] = (int16_t)jBlockStart; } } /* TODO: verify this_obj is correct*/ if (this_obj->fIndex[i] == 0xFFFF) { /* we didn't match, so copy & update*/ icu_memcpy(&(this_obj->fArray[jBlockStart]), &(this_obj->fArray[iBlockStart]), (1 << this_obj->kBlockShift)*sizeof(int16_t)); this_obj->fIndex[i] = (int16_t)jBlockStart; this_obj->fHashes[j] = this_obj->fHashes[i]; limitCompacted += 1; if (!touched) { /* If this_obj is the first untouched block we've seen,*/ /* remember its index.*/ iUntouched = (int16_t)jBlockStart; } } } } /* we are done compacting, so now make the array shorter*/ { int32_t newSize = limitCompacted * (1 << this_obj->kBlockShift); int16_t *result = (int16_t*) icu_malloc(sizeof(int16_t) * newSize); icu_memcpy(result, this_obj->fArray, newSize * sizeof(int16_t)); icu_free(this_obj->fArray); this_obj->fArray = result; this_obj->fCount = newSize; icu_free(this_obj->fHashes); this_obj->fHashes = NULL; this_obj->fCompact = TRUE; } } } /** * Query whether a specified block was "touched", i.e. had a value set. * Untouched blocks can be skipped when compacting the array */ int16_t ucmp16_getDefaultValue(const CompactShortArray* this_obj) { return this_obj->fDefaultValue; } void touchBlock(CompactShortArray* this_obj, int32_t i, int16_t value) { this_obj->fHashes[i] = (this_obj->fHashes[i] + (value << 1)) | 1; } bool_t blockTouched(const CompactShortArray* this_obj, int32_t i) { return (this_obj->fHashes[i] != 0); } uint32_t ucmp16_getCount(const CompactShortArray* this_obj) { return this_obj->fCount; } const int16_t* ucmp16_getArray(const CompactShortArray* this_obj) { return this_obj->fArray; } const uint16_t* ucmp16_getIndex(const CompactShortArray* this_obj) { return this_obj->fIndex; } /* We use sizeof(*array), etc so that this code can be as portable as possible between the ucmpX_ family. Check lines marked 'SIZE'. */ U_CAPI CompactShortArray * U_EXPORT2 ucmp16_cloneFromData(const uint8_t **source, UErrorCode *status) { CompactShortArray *array; const CompactShortArray *oldArray; if(U_FAILURE(*status)) return NULL; oldArray= (const CompactShortArray*)*source; if(oldArray->fStructSize != sizeof(*oldArray)) { *status = U_INVALID_TABLE_FORMAT; /* ? */ return NULL; } array = (CompactShortArray*)malloc(sizeof(*array)); icu_memcpy(array,*source, sizeof(*array)); *source += array->fStructSize; array->fArray = (int16_t*)*source; /* SIZE */ *source += (sizeof(int16_t)*array->fCount); /* SIZE */ array->fIndex = (uint16_t*)*source; *source += (sizeof(uint16_t)*UCMP16_kIndexCount); /* SIZE*/ array->fAlias = TRUE; /* eat up padding */ while((*source-((uint8_t*)oldArray))%4) (*source)++; return array; }