/* ******************************************************************************* * * Copyright (C) 2005-2010, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: utext.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2005apr12 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #include "unicode/ustring.h" #include "unicode/unistr.h" #include "unicode/chariter.h" #include "unicode/utext.h" #include "ustr_imp.h" #include "cmemory.h" #include "cstring.h" #include "uassert.h" #include "putilimp.h" U_NAMESPACE_USE #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) static UBool utext_access(UText *ut, int64_t index, UBool forward) { return ut->pFuncs->access(ut, index, forward); } U_CAPI UBool U_EXPORT2 utext_moveIndex32(UText *ut, int32_t delta) { UChar32 c; if (delta > 0) { do { if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) { return FALSE; } c = ut->chunkContents[ut->chunkOffset]; if (U16_IS_SURROGATE(c)) { c = utext_next32(ut); if (c == U_SENTINEL) { return FALSE; } } else { ut->chunkOffset++; } } while(--delta>0); } else if (delta<0) { do { if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) { return FALSE; } c = ut->chunkContents[ut->chunkOffset-1]; if (U16_IS_SURROGATE(c)) { c = utext_previous32(ut); if (c == U_SENTINEL) { return FALSE; } } else { ut->chunkOffset--; } } while(++delta<0); } return TRUE; } U_CAPI int64_t U_EXPORT2 utext_nativeLength(UText *ut) { return ut->pFuncs->nativeLength(ut); } U_CAPI UBool U_EXPORT2 utext_isLengthExpensive(const UText *ut) { UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; return r; } U_CAPI int64_t U_EXPORT2 utext_getNativeIndex(const UText *ut) { if(ut->chunkOffset <= ut->nativeIndexingLimit) { return ut->chunkNativeStart+ut->chunkOffset; } else { return ut->pFuncs->mapOffsetToNative(ut); } } U_CAPI void U_EXPORT2 utext_setNativeIndex(UText *ut, int64_t index) { if(indexchunkNativeStart || index>=ut->chunkNativeLimit) { // The desired position is outside of the current chunk. // Access the new position. Assume a forward iteration from here, // which will also be optimimum for a single random access. // Reverse iterations may suffer slightly. ut->pFuncs->access(ut, index, TRUE); } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { // utf-16 indexing. ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); } else { ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); } // The convention is that the index must always be on a code point boundary. // Adjust the index position if it is in the middle of a surrogate pair. if (ut->chunkOffsetchunkLength) { UChar c= ut->chunkContents[ut->chunkOffset]; if (UTF16_IS_TRAIL(c)) { if (ut->chunkOffset==0) { ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); } if (ut->chunkOffset>0) { UChar lead = ut->chunkContents[ut->chunkOffset-1]; if (UTF16_IS_LEAD(lead)) { ut->chunkOffset--; } } } } } U_CAPI int64_t U_EXPORT2 utext_getPreviousNativeIndex(UText *ut) { // // Fast-path the common case. // Common means current position is not at the beginning of a chunk // and the preceding character is not supplementary. // int32_t i = ut->chunkOffset - 1; int64_t result; if (i >= 0) { UChar c = ut->chunkContents[i]; if (U16_IS_TRAIL(c) == FALSE) { if (i <= ut->nativeIndexingLimit) { result = ut->chunkNativeStart + i; } else { ut->chunkOffset = i; result = ut->pFuncs->mapOffsetToNative(ut); ut->chunkOffset++; } return result; } } // If at the start of text, simply return 0. if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { return 0; } // Harder, less common cases. We are at a chunk boundary, or on a surrogate. // Keep it simple, use other functions to handle the edges. // utext_previous32(ut); result = UTEXT_GETNATIVEINDEX(ut); utext_next32(ut); return result; } // // utext_current32. Get the UChar32 at the current position. // UText iteration position is always on a code point boundary, // never on the trail half of a surrogate pair. // U_CAPI UChar32 U_EXPORT2 utext_current32(UText *ut) { UChar32 c; if (ut->chunkOffset==ut->chunkLength) { // Current position is just off the end of the chunk. if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { // Off the end of the text. return U_SENTINEL; } } c = ut->chunkContents[ut->chunkOffset]; if (U16_IS_LEAD(c) == FALSE) { // Normal, non-supplementary case. return c; } // // Possible supplementary char. // UChar32 trail = 0; UChar32 supplementaryC = c; if ((ut->chunkOffset+1) < ut->chunkLength) { // The trail surrogate is in the same chunk. trail = ut->chunkContents[ut->chunkOffset+1]; } else { // The trail surrogate is in a different chunk. // Because we must maintain the iteration position, we need to switch forward // into the new chunk, get the trail surrogate, then revert the chunk back to the // original one. // An edge case to be careful of: the entire text may end with an unpaired // leading surrogate. The attempt to access the trail will fail, but // the original position before the unpaired lead still needs to be restored. int64_t nativePosition = ut->chunkNativeLimit; int32_t originalOffset = ut->chunkOffset; if (ut->pFuncs->access(ut, nativePosition, TRUE)) { trail = ut->chunkContents[ut->chunkOffset]; } UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk U_ASSERT(r==TRUE); ut->chunkOffset = originalOffset; if(!r) { return U_SENTINEL; } } if (U16_IS_TRAIL(trail)) { supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); } return supplementaryC; } U_CAPI UChar32 U_EXPORT2 utext_char32At(UText *ut, int64_t nativeIndex) { UChar32 c = U_SENTINEL; // Fast path the common case. if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); c = ut->chunkContents[ut->chunkOffset]; if (U16_IS_SURROGATE(c) == FALSE) { return c; } } utext_setNativeIndex(ut, nativeIndex); if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffsetchunkLength) { c = ut->chunkContents[ut->chunkOffset]; if (U16_IS_SURROGATE(c)) { // For surrogates, let current32() deal with the complications // of supplementaries that may span chunk boundaries. c = utext_current32(ut); } } return c; } U_CAPI UChar32 U_EXPORT2 utext_next32(UText *ut) { UChar32 c; if (ut->chunkOffset >= ut->chunkLength) { if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { return U_SENTINEL; } } c = ut->chunkContents[ut->chunkOffset++]; if (U16_IS_LEAD(c) == FALSE) { // Normal case, not supplementary. // (A trail surrogate seen here is just returned as is, as a surrogate value. // It cannot be part of a pair.) return c; } if (ut->chunkOffset >= ut->chunkLength) { if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { // c is an unpaired lead surrogate at the end of the text. // return it as it is. return c; } } UChar32 trail = ut->chunkContents[ut->chunkOffset]; if (U16_IS_TRAIL(trail) == FALSE) { // c was an unpaired lead surrogate, not at the end of the text. // return it as it is (unpaired). Iteration position is on the // following character, possibly in the next chunk, where the // trail surrogate would have been if it had existed. return c; } UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); ut->chunkOffset++; // move iteration position over the trail surrogate. return supplementary; } U_CAPI UChar32 U_EXPORT2 utext_previous32(UText *ut) { UChar32 c; if (ut->chunkOffset <= 0) { if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { return U_SENTINEL; } } ut->chunkOffset--; c = ut->chunkContents[ut->chunkOffset]; if (U16_IS_TRAIL(c) == FALSE) { // Normal case, not supplementary. // (A lead surrogate seen here is just returned as is, as a surrogate value. // It cannot be part of a pair.) return c; } if (ut->chunkOffset <= 0) { if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { // c is an unpaired trail surrogate at the start of the text. // return it as it is. return c; } } UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; if (U16_IS_LEAD(lead) == FALSE) { // c was an unpaired trail surrogate, not at the end of the text. // return it as it is (unpaired). Iteration position is at c return c; } UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); ut->chunkOffset--; // move iteration position over the lead surrogate. return supplementary; } U_CAPI UChar32 U_EXPORT2 utext_next32From(UText *ut, int64_t index) { UChar32 c = U_SENTINEL; if(indexchunkNativeStart || index>=ut->chunkNativeLimit) { // Desired position is outside of the current chunk. if(!ut->pFuncs->access(ut, index, TRUE)) { // no chunk available here return U_SENTINEL; } } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { // Desired position is in chunk, with direct 1:1 native to UTF16 indexing ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); } else { // Desired position is in chunk, with non-UTF16 indexing. ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); } c = ut->chunkContents[ut->chunkOffset++]; if (U16_IS_SURROGATE(c)) { // Surrogates. Many edge cases. Use other functions that already // deal with the problems. utext_setNativeIndex(ut, index); c = utext_next32(ut); } return c; } U_CAPI UChar32 U_EXPORT2 utext_previous32From(UText *ut, int64_t index) { // // Return the character preceding the specified index. // Leave the iteration position at the start of the character that was returned. // UChar32 cPrev; // The character preceding cCurr, which is what we will return. // Address the chunk containg the position preceding the incoming index // A tricky edge case: // We try to test the requested native index against the chunkNativeStart to determine // whether the character preceding the one at the index is in the current chunk. // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the // requested index is on something other than the first position of the first char. // if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { // Requested native index is outside of the current chunk. if(!ut->pFuncs->access(ut, index, FALSE)) { // no chunk available here return U_SENTINEL; } } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { // Direct UTF-16 indexing. ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); } else { ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { // no chunk available here return U_SENTINEL; } } // // Simple case with no surrogates. // ut->chunkOffset--; cPrev = ut->chunkContents[ut->chunkOffset]; if (U16_IS_SURROGATE(cPrev)) { // Possible supplementary. Many edge cases. // Let other functions do the heavy lifting. utext_setNativeIndex(ut, index); cPrev = utext_previous32(ut); } return cPrev; } U_CAPI int32_t U_EXPORT2 utext_extract(UText *ut, int64_t start, int64_t limit, UChar *dest, int32_t destCapacity, UErrorCode *status) { return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); } U_CAPI UBool U_EXPORT2 utext_equals(const UText *a, const UText *b) { if (a==NULL || b==NULL || a->magic != UTEXT_MAGIC || b->magic != UTEXT_MAGIC) { // Null or invalid arguments don't compare equal to anything. return FALSE; } if (a->pFuncs != b->pFuncs) { // Different types of text providers. return FALSE; } if (a->context != b->context) { // Different sources (different strings) return FALSE; } if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { // Different current position in the string. return FALSE; } return TRUE; } U_CAPI int32_t U_EXPORT2 utext_compare(UText *s1, int32_t length1, UText *s2, int32_t length2) { UChar32 c1 = 0, c2 = 0; if(length1<0 && length2<0) { /* strcmp style, go until end of string */ for(;;) { c1 = UTEXT_NEXT32(s1); c2 = UTEXT_NEXT32(s2); if(c1 != c2) { break; } else if(c1 == U_SENTINEL) { return 0; } } } else { if(length1 < 0) { length1 = INT32_MIN; } else if (length2 < 0) { length2 = INT32_MIN; } /* memcmp/UnicodeString style, both length-specified */ while((length1 > 0 || length1 == INT32_MIN) && (length2 > 0 || length2 == INT32_MIN)) { c1 = UTEXT_NEXT32(s1); c2 = UTEXT_NEXT32(s2); if(c1 != c2) { break; } else if(c1 == U_SENTINEL) { return 0; } if (length1 != INT32_MIN) { length1 -= 1; } if (length2 != INT32_MIN) { length2 -= 1; } } if(length1 <= 0 && length1 != INT32_MIN) { if(length2 <= 0) { return 0; } else { return -1; } } else if(length2 <= 0 && length2 != INT32_MIN) { if (length1 <= 0) { return 0; } else { return 1; } } } return (int32_t)c1-(int32_t)c2; } U_CAPI int32_t U_EXPORT2 utext_compareNativeLimit(UText *s1, int64_t limit1, UText *s2, int64_t limit2) { UChar32 c1, c2; if(limit1<0 && limit2<0) { /* strcmp style, go until end of string */ for(;;) { c1 = UTEXT_NEXT32(s1); c2 = UTEXT_NEXT32(s2); if(c1 != c2) { return (int32_t)c1-(int32_t)c2; } else if(c1 == U_SENTINEL) { return 0; } } } else { /* memcmp/UnicodeString style, both length-specified */ int64_t index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); int64_t index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); while((limit1 < 0 || index1 < limit1) && (limit2 < 0 || index2 < limit2)) { c1 = UTEXT_NEXT32(s1); c2 = UTEXT_NEXT32(s2); if(c1 != c2) { return (int32_t)c1-(int32_t)c2; } else if(c1 == U_SENTINEL) { return 0; } if (limit1 >= 0) { index1 = UTEXT_GETNATIVEINDEX(s1); } if (limit2 >= 0) { index2 = UTEXT_GETNATIVEINDEX(s2); } } if(limit1 >= 0 && index1 >= limit1) { if(index2 >= limit2) { return 0; } else { return -1; } } else { if(index1 >= limit1) { return 0; } else { return 1; } } } } U_CAPI int32_t U_EXPORT2 utext_caseCompare(UText *s1, int32_t length1, UText *s2, int32_t length2, uint32_t options, UErrorCode *pErrorCode) { const UCaseProps *csp; /* case folding variables */ const UChar *p; int32_t length; /* case folding buffers, only use current-level start/limit */ UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; /* current code points */ UChar32 c1, c2; uint8_t cLength1, cLength2; /* argument checking */ if(pErrorCode==0 || U_FAILURE(*pErrorCode)) { return 0; } if(s1==NULL || s2==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } csp=ucase_getSingleton(pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } /* for variable-length strings */ if(length1 < 0) { length1 = INT32_MIN; } if (length2 < 0) { length2 = INT32_MIN; } /* initialize */ foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; /* comparison loop */ while((foldOffset1 < foldLength1 || length1 > 0 || length1 == INT32_MIN) && (foldOffset2 < foldLength2 || length2 > 0 || length2 == INT32_MIN)) { if(foldOffset1 < foldLength1) { U16_NEXT_UNSAFE(fold1, foldOffset1, c1); cLength1 = 0; } else { c1 = UTEXT_NEXT32(s1); if (c1 != U_SENTINEL) { cLength1 = U16_LENGTH(c1); length = ucase_toFullFolding(csp, c1, &p, options); if(length >= 0) { if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings u_memcpy(fold1, p, length); foldOffset1 = 0; foldLength1 = length; U16_NEXT_UNSAFE(fold1, foldOffset1, c1); } else { c1 = length; } } } if(length1 != INT32_MIN) { length1 -= 1; } } if(foldOffset2 < foldLength2) { U16_NEXT_UNSAFE(fold2, foldOffset2, c2); cLength2 = 0; } else { c2 = UTEXT_NEXT32(s2); if (c2 != U_SENTINEL) { cLength2 = U16_LENGTH(c2); length = ucase_toFullFolding(csp, c2, &p, options); if(length >= 0) { if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings u_memcpy(fold2, p, length); foldOffset2 = 0; foldLength2 = length; U16_NEXT_UNSAFE(fold2, foldOffset2, c2); } else { c2 = length; } } } else if(c1 == U_SENTINEL) { return 0; // end of both strings at once } if(length2 != INT32_MIN) { length2 -= 1; } } if(c1 != c2) { return (int32_t)c1-(int32_t)c2; } } /* By now at least one of the strings is out of characters */ length1 += foldLength1 - foldOffset1; length2 += foldLength2 - foldOffset2; if(length1 <= 0 && length1 != INT32_MIN) { if(length2 <= 0) { return 0; } else { return -1; } } else { if (length1 <= 0) { return 0; } else { return 1; } } } U_CAPI int32_t U_EXPORT2 utext_caseCompareNativeLimit(UText *s1, int64_t limit1, UText *s2, int64_t limit2, uint32_t options, UErrorCode *pErrorCode) { const UCaseProps *csp; /* case folding variables */ const UChar *p; int32_t length; /* case folding buffers, only use current-level start/limit */ UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; /* current code points */ UChar32 c1, c2; /* native indexes into s1 and s2 */ int64_t index1, index2; /* argument checking */ if(pErrorCode==0 || U_FAILURE(*pErrorCode)) { return 0; } if(s1==NULL || s2==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } csp=ucase_getSingleton(pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } /* initialize */ index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; /* comparison loop */ while((foldOffset1 < foldLength1 || limit1 < 0 || index1 < limit1) && (foldOffset2 < foldLength2 || limit2 < 0 || index2 < limit2)) { if(foldOffset1 < foldLength1) { U16_NEXT_UNSAFE(fold1, foldOffset1, c1); } else { c1 = UTEXT_NEXT32(s1); if (c1 != U_SENTINEL) { length = ucase_toFullFolding(csp, c1, &p, options); if(length >= 0) { if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings u_memcpy(fold1, p, length); foldOffset1 = 0; foldLength1 = length; U16_NEXT_UNSAFE(fold1, foldOffset1, c1); } else { c1 = length; } } } if (limit1 >= 0) { index1 = UTEXT_GETNATIVEINDEX(s1); } } if(foldOffset2 < foldLength2) { U16_NEXT_UNSAFE(fold2, foldOffset2, c2); } else { c2 = UTEXT_NEXT32(s2); if (c2 != U_SENTINEL) { length = ucase_toFullFolding(csp, c2, &p, options); if(length >= 0) { if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings u_memcpy(fold2, p, length); foldOffset2 = 0; foldLength2 = length; U16_NEXT_UNSAFE(fold2, foldOffset2, c2); } else { c2 = length; } } } else if(c1 == U_SENTINEL) { return 0; } if (limit2 >= 0) { index2 = UTEXT_GETNATIVEINDEX(s2); } } if(c1 != c2) { return (int32_t)c1-(int32_t)c2; } } /* By now at least one of the strings is out of characters */ index1 -= foldLength1 - foldOffset1; index2 -= foldLength2 - foldOffset2; if(limit1 >= 0 && index1 >= limit1) { if(index2 >= limit2) { return 0; } else { return -1; } } else { if(index1 >= limit1) { return 0; } else { return 1; } } } U_CAPI UBool U_EXPORT2 utext_isWritable(const UText *ut) { UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; return b; } U_CAPI void U_EXPORT2 utext_freeze(UText *ut) { // Zero out the WRITABLE flag. ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); } U_CAPI UBool U_EXPORT2 utext_hasMetaData(const UText *ut) { UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; return b; } U_CAPI int32_t U_EXPORT2 utext_replace(UText *ut, int64_t nativeStart, int64_t nativeLimit, const UChar *replacementText, int32_t replacementLength, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { *status = U_NO_WRITE_PERMISSION; return 0; } int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); return i; } U_CAPI void U_EXPORT2 utext_copy(UText *ut, int64_t nativeStart, int64_t nativeLimit, int64_t destIndex, UBool move, UErrorCode *status) { if (U_FAILURE(*status)) { return; } if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { *status = U_NO_WRITE_PERMISSION; return; } ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); } U_CAPI UText * U_EXPORT2 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { UText *result; result = src->pFuncs->clone(dest, src, deep, status); if (readOnly) { utext_freeze(result); } return result; } //------------------------------------------------------------------------------ // // UText common functions implementation // //------------------------------------------------------------------------------ // // UText.flags bit definitions // enum { UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. // 0 if caller provided storage for the UText. UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate // heap block. // 0 if there is no separate allocation. Either no extra // storage was requested, or it is appended to the end // of the main UText storage. UTEXT_OPEN = 4 // 1 if this UText is currently open // 0 if this UText is not open. }; // // Extended form of a UText. The purpose is to aid in computing the total size required // when a provider asks for a UText to be allocated with extra storage. struct ExtendedUText { UText ut; UAlignedMemory extension; }; static const UText emptyText = UTEXT_INITIALIZER; U_CAPI UText * U_EXPORT2 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { if (U_FAILURE(*status)) { return ut; } if (ut == NULL) { // We need to heap-allocate storage for the new UText int32_t spaceRequired = sizeof(UText); if (extraSpace > 0) { spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory); } ut = (UText *)uprv_malloc(spaceRequired); if (ut == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } else { *ut = emptyText; ut->flags |= UTEXT_HEAP_ALLOCATED; if (spaceRequired>0) { ut->extraSize = extraSpace; ut->pExtra = &((ExtendedUText *)ut)->extension; } } } else { // We have been supplied with an already existing UText. // Verify that it really appears to be a UText. if (ut->magic != UTEXT_MAGIC) { *status = U_ILLEGAL_ARGUMENT_ERROR; return ut; } // If the ut is already open and there's a provider supplied close // function, call it. if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { ut->pFuncs->close(ut); } ut->flags &= ~UTEXT_OPEN; // If extra space was requested by our caller, check whether // sufficient already exists, and allocate new if needed. if (extraSpace > ut->extraSize) { // Need more space. If there is existing separately allocated space, // delete it first, then allocate new space. if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { uprv_free(ut->pExtra); ut->extraSize = 0; } ut->pExtra = uprv_malloc(extraSpace); if (ut->pExtra == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { ut->extraSize = extraSpace; ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; } } } if (U_SUCCESS(*status)) { ut->flags |= UTEXT_OPEN; // Initialize all remaining fields of the UText. // ut->context = NULL; ut->chunkContents = NULL; ut->p = NULL; ut->q = NULL; ut->r = NULL; ut->a = 0; ut->b = 0; ut->c = 0; ut->chunkOffset = 0; ut->chunkLength = 0; ut->chunkNativeStart = 0; ut->chunkNativeLimit = 0; ut->nativeIndexingLimit = 0; ut->providerProperties = 0; ut->privA = 0; ut->privB = 0; ut->privC = 0; ut->privP = NULL; if (ut->pExtra!=NULL && ut->extraSize>0) uprv_memset(ut->pExtra, 0, ut->extraSize); } return ut; } U_CAPI UText * U_EXPORT2 utext_close(UText *ut) { if (ut==NULL || ut->magic != UTEXT_MAGIC || (ut->flags & UTEXT_OPEN) == 0) { // The supplied ut is not an open UText. // Do nothing. return ut; } // If the provider gave us a close function, call it now. // This will clean up anything allocated specifically by the provider. if (ut->pFuncs->close != NULL) { ut->pFuncs->close(ut); } ut->flags &= ~UTEXT_OPEN; // If we (the framework) allocated the UText or subsidiary storage, // delete it. if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { uprv_free(ut->pExtra); ut->pExtra = NULL; ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; ut->extraSize = 0; } // Zero out function table of the closed UText. This is a defensive move, // inteded to cause applications that inadvertantly use a closed // utext to crash with null pointer errors. ut->pFuncs = NULL; if (ut->flags & UTEXT_HEAP_ALLOCATED) { // This UText was allocated by UText setup. We need to free it. // Clear magic, so we can detect if the user messes up and immediately // tries to reopen another UText using the deleted storage. ut->magic = 0; uprv_free(ut); ut = NULL; } return ut; } // // invalidateChunk Reset a chunk to have no contents, so that the next call // to access will cause new data to load. // This is needed when copy/move/replace operate directly on the // backing text, potentially putting it out of sync with the // contents in the chunk. // static void invalidateChunk(UText *ut) { ut->chunkLength = 0; ut->chunkNativeLimit = 0; ut->chunkNativeStart = 0; ut->chunkOffset = 0; ut->nativeIndexingLimit = 0; } // // pinIndex Do range pinning on a native index parameter. // 64 bit pinning is done in place. // 32 bit truncated result is returned as a convenience for // use in providers that don't need 64 bits. static int32_t pinIndex(int64_t &index, int64_t limit) { if (index<0) { index = 0; } else if (index > limit) { index = limit; } return (int32_t)index; } U_CDECL_BEGIN // // Pointer relocation function, // a utility used by shallow clone. // Adjust a pointer that refers to something within one UText (the source) // to refer to the same relative offset within a another UText (the target) // static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { // convert all pointers to (char *) so that byte address arithmetic will work. char *dptr = (char *)*destPtr; char *dUText = (char *)dest; char *sUText = (char *)src; if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { // target ptr was to something within the src UText's pExtra storage. // relocate it into the target UText's pExtra region. *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { // target ptr was pointing to somewhere within the source UText itself. // Move it to the same offset within the target UText. *destPtr = dUText + (dptr-sUText); } } // // Clone. This is a generic copy-the-utext-by-value clone function that can be // used as-is with some utext types, and as a helper by other clones. // static UText * U_CALLCONV shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { if (U_FAILURE(*status)) { return NULL; } int32_t srcExtraSize = src->extraSize; // // Use the generic text_setup to allocate storage if required. // dest = utext_setup(dest, srcExtraSize, status); if (U_FAILURE(*status)) { return dest; } // // flags (how the UText was allocated) and the pointer to the // extra storage must retain the values in the cloned utext that // were set up by utext_setup. Save them separately before // copying the whole struct. // void *destExtra = dest->pExtra; int32_t flags = dest->flags; // // Copy the whole UText struct by value. // Any "Extra" storage is copied also. // int sizeToCopy = src->sizeOfStruct; if (sizeToCopy > dest->sizeOfStruct) { sizeToCopy = dest->sizeOfStruct; } uprv_memcpy(dest, src, sizeToCopy); dest->pExtra = destExtra; dest->flags = flags; if (srcExtraSize > 0) { uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); } // // Relocate any pointers in the target that refer to the UText itself // to point to the cloned copy rather than the original source. // adjustPointer(dest, &dest->context, src); adjustPointer(dest, &dest->p, src); adjustPointer(dest, &dest->q, src); adjustPointer(dest, &dest->r, src); adjustPointer(dest, (const void **)&dest->chunkContents, src); return dest; } U_CDECL_END //------------------------------------------------------------------------------ // // UText implementation for UTF-8 char * strings (read-only) // Limitation: string length must be <= 0x7fffffff in length. // (length must for in an int32_t variable) // // Use of UText data members: // context pointer to UTF-8 string // utext.b is the input string length (bytes). // utext.c Length scanned so far in string // (for optimizing finding length of zero terminated strings.) // utext.p pointer to the current buffer // utext.q pointer to the other buffer. // //------------------------------------------------------------------------------ // Chunk size. // Must be less than 85, because of byte mapping from UChar indexes to native indexes. // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes // to two UChars.) // enum { UTF8_TEXT_CHUNK_SIZE=32 }; // // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. // Each contains the UChar chunk buffer, the to and from native maps, and // header info. // // because backwards iteration fills the buffers starting at the end and // working towards the front, the filled part of the buffers may not begin // at the start of the available storage for the buffers. // // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for // the last character added being a supplementary, and thus requiring a surrogate // pair. Doing this is simpler than checking for the edge case. // struct UTF8Buf { int32_t bufNativeStart; // Native index of first char in UChar buf int32_t bufNativeLimit; // Native index following last char in buf. int32_t bufStartIdx; // First filled position in buf. int32_t bufLimitIdx; // Limit of filled range in buf. int32_t bufNILimit; // Limit of native indexing part of buf int32_t toUCharsMapStart; // Native index corresponding to // mapToUChars[0]. // Set to bufNativeStart when filling forwards. // Set to computed value when filling backwards. UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the // the chunk size, to allow for surrogate at the end. // Length must be identical to mapToNative array, below, // because of the way indexing works when the array is // filled backwards during a reverse iteration. Thus, // the additional extra size. uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to // native offset from bufNativeStart. // Requires two extra slots, // one for a supplementary starting in the last normal position, // and one for an entry for the buffer limit position. uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to // correspoding offset in filled part of buf. int32_t align; }; U_CDECL_BEGIN // // utf8TextLength // // Get the length of the string. If we don't already know it, // we'll need to scan for the trailing nul. // static int64_t U_CALLCONV utf8TextLength(UText *ut) { if (ut->b < 0) { // Zero terminated string, and we haven't scanned to the end yet. // Scan it now. const char *r = (const char *)ut->context + ut->c; while (*r != 0) { r++; } if ((r - (const char *)ut->context) < 0x7fffffff) { ut->b = (int32_t)(r - (const char *)ut->context); } else { // Actual string was bigger (more than 2 gig) than we // can handle. Clip it to 2 GB. ut->b = 0x7fffffff; } ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } return ut->b; } static UBool U_CALLCONV utf8TextAccess(UText *ut, int64_t index, UBool forward) { // // Apologies to those who are allergic to goto statements. // Consider each goto to a labelled block to be the equivalent of // call the named block as if it were a function(); // return; // const uint8_t *s8=(const uint8_t *)ut->context; UTF8Buf *u8b = NULL; int32_t length = ut->b; // Length of original utf-8 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. int32_t mapIndex = 0; if (index<0) { ix=0; } else if (index > 0x7fffffff) { // Strings with 64 bit lengths not supported by this UTF-8 provider. ix = 0x7fffffff; } // Pin requested index to the string length. if (ix>length) { if (length>=0) { ix=length; } else if (ix>=ut->c) { // Zero terminated string, and requested index is beyond // the region that has already been scanned. // Scan up to either the end of the string or to the // requested position, whichever comes first. while (ut->cc]!=0) { ut->c++; } // TODO: support for null terminated string length > 32 bits. if (s8[ut->c] == 0) { // We just found the actual length of the string. // Trim the requested index back to that. ix = ut->c; ut->b = ut->c; length = ut->c; ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } } } // // Dispatch to the appropriate action for a forward iteration request. // if (forward) { if (ix==ut->chunkNativeLimit) { // Check for normal sequential iteration cases first. if (ix==length) { // Just reached end of string // Don't swap buffers, but do set the // current buffer position. ut->chunkOffset = ut->chunkLength; return FALSE; } else { // End of current buffer. // check whether other buffer already has what we need. UTF8Buf *altB = (UTF8Buf *)ut->q; if (ix>=altB->bufNativeStart && ixbufNativeLimit) { goto swapBuffers; } } } // A random access. Desired index could be in either or niether buf. // For optimizing the order of testing, first check for the index // being in the other buffer. This will be the case for uses that // move back and forth over a fairly limited range { u8b = (UTF8Buf *)ut->q; // the alternate buffer if (ix>=u8b->bufNativeStart && ixbufNativeLimit) { // Requested index is in the other buffer. goto swapBuffers; } if (ix == length) { // Requested index is end-of-string. // (this is the case of randomly seeking to the end. // The case of iterating off the end is handled earlier.) if (ix == ut->chunkNativeLimit) { // Current buffer extends up to the end of the string. // Leave it as the current buffer. ut->chunkOffset = ut->chunkLength; return FALSE; } if (ix == u8b->bufNativeLimit) { // Alternate buffer extends to the end of string. // Swap it in as the current buffer. goto swapBuffersAndFail; } // Neither existing buffer extends to the end of the string. goto makeStubBuffer; } if (ixchunkNativeStart || ix>=ut->chunkNativeLimit) { // Requested index is in neither buffer. goto fillForward; } // Requested index is in this buffer. u8b = (UTF8Buf *)ut->p; // the current buffer mapIndex = ix - u8b->toUCharsMapStart; ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; return TRUE; } } // // Dispatch to the appropriate action for a // Backwards Diretion iteration request. // if (ix==ut->chunkNativeStart) { // Check for normal sequential iteration cases first. if (ix==0) { // Just reached the start of string // Don't swap buffers, but do set the // current buffer position. ut->chunkOffset = 0; return FALSE; } else { // Start of current buffer. // check whether other buffer already has what we need. UTF8Buf *altB = (UTF8Buf *)ut->q; if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { goto swapBuffers; } } } // A random access. Desired index could be in either or niether buf. // For optimizing the order of testing, // Most likely case: in the other buffer. // Second most likely: in neither buffer. // Unlikely, but must work: in the current buffer. u8b = (UTF8Buf *)ut->q; // the alternate buffer if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { // Requested index is in the other buffer. goto swapBuffers; } // Requested index is start-of-string. // (this is the case of randomly seeking to the start. // The case of iterating off the start is handled earlier.) if (ix==0) { if (u8b->bufNativeStart==0) { // Alternate buffer contains the data for the start string. // Make it be the current buffer. goto swapBuffersAndFail; } else { // Request for data before the start of string, // neither buffer is usable. // set up a zero-length buffer. goto makeStubBuffer; } } if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { // Requested index is in neither buffer. goto fillReverse; } // Requested index is in this buffer. // Set the utf16 buffer index. u8b = (UTF8Buf *)ut->p; mapIndex = ix - u8b->toUCharsMapStart; ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; if (ut->chunkOffset==0) { // This occurs when the first character in the text is // a multi-byte UTF-8 char, and the requested index is to // one of the trailing bytes. Because there is no preceding , // character, this access fails. We can't pick up on the // situation sooner because the requested index is not zero. return FALSE; } else { return TRUE; } swapBuffers: // The alternate buffer (ut->q) has the string data that was requested. // Swap the primary and alternate buffers, and set the // chunk index into the new primary buffer. { u8b = (UTF8Buf *)ut->q; ut->q = ut->p; ut->p = u8b; ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; ut->chunkNativeStart = u8b->bufNativeStart; ut->chunkNativeLimit = u8b->bufNativeLimit; ut->nativeIndexingLimit = u8b->bufNILimit; // Index into the (now current) chunk // Use the map to set the chunk index. It's more trouble than it's worth // to check whether native indexing can be used. U_ASSERT(ix>=u8b->bufNativeStart); U_ASSERT(ix<=u8b->bufNativeLimit); mapIndex = ix - u8b->toUCharsMapStart; U_ASSERT(mapIndex>=0); U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; return TRUE; } swapBuffersAndFail: // We got a request for either the start or end of the string, // with iteration continuing in the out-of-bounds direction. // The alternate buffer already contains the data up to the // start/end. // Swap the buffers, then return failure, indicating that we couldn't // make things correct for continuing the iteration in the requested // direction. The position & buffer are correct should the // user decide to iterate in the opposite direction. u8b = (UTF8Buf *)ut->q; ut->q = ut->p; ut->p = u8b; ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; ut->chunkNativeStart = u8b->bufNativeStart; ut->chunkNativeLimit = u8b->bufNativeLimit; ut->nativeIndexingLimit = u8b->bufNILimit; // Index into the (now current) chunk // For this function (swapBuffersAndFail), the requested index // will always be at either the start or end of the chunk. if (ix==u8b->bufNativeLimit) { ut->chunkOffset = ut->chunkLength; } else { ut->chunkOffset = 0; U_ASSERT(ix == u8b->bufNativeStart); } return FALSE; makeStubBuffer: // The user has done a seek/access past the start or end // of the string. Rather than loading data that is likely // to never be used, just set up a zero-length buffer at // the position. u8b = (UTF8Buf *)ut->q; u8b->bufNativeStart = ix; u8b->bufNativeLimit = ix; u8b->bufStartIdx = 0; u8b->bufLimitIdx = 0; u8b->bufNILimit = 0; u8b->toUCharsMapStart = ix; u8b->mapToNative[0] = 0; u8b->mapToUChars[0] = 0; goto swapBuffersAndFail; fillForward: { // Move the incoming index to a code point boundary. U8_SET_CP_START(s8, 0, ix); // Swap the UText buffers. // We want to fill what was previously the alternate buffer, // and make what was the current buffer be the new alternate. UTF8Buf *u8b = (UTF8Buf *)ut->q; ut->q = ut->p; ut->p = u8b; int32_t strLen = ut->b; UBool nulTerminated = FALSE; if (strLen < 0) { strLen = 0x7fffffff; nulTerminated = TRUE; } UChar *buf = u8b->buf; uint8_t *mapToNative = u8b->mapToNative; uint8_t *mapToUChars = u8b->mapToUChars; int32_t destIx = 0; int32_t srcIx = ix; UBool seenNonAscii = FALSE; UChar32 c = 0; // Fill the chunk buffer and mapping arrays. while (destIx0 && c<0x80) { // Special case ASCII range for speed. // zero is excluded to simplify bounds checking. buf[destIx] = (UChar)c; mapToNative[destIx] = (uint8_t)(srcIx - ix); mapToUChars[srcIx-ix] = (uint8_t)destIx; srcIx++; destIx++; } else { // General case, handle everything. if (seenNonAscii == FALSE) { seenNonAscii = TRUE; u8b->bufNILimit = destIx; } int32_t cIx = srcIx; int32_t dIx = destIx; int32_t dIxSaved = destIx; U8_NEXT(s8, srcIx, strLen, c); if (c==0 && nulTerminated) { srcIx--; break; } if (c<0) { // Illegal UTF-8. Replace with sub character. c = 0x0fffd; } U16_APPEND_UNSAFE(buf, destIx, c); do { mapToNative[dIx++] = (uint8_t)(cIx - ix); } while (dIx < destIx); do { mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; } while (cIx < srcIx); } if (srcIx>=strLen) { break; } } // store Native <--> Chunk Map entries for the end of the buffer. // There is no actual character here, but the index position is valid. mapToNative[destIx] = (uint8_t)(srcIx - ix); mapToUChars[srcIx - ix] = (uint8_t)destIx; // fill in Buffer descriptor u8b->bufNativeStart = ix; u8b->bufNativeLimit = srcIx; u8b->bufStartIdx = 0; u8b->bufLimitIdx = destIx; if (seenNonAscii == FALSE) { u8b->bufNILimit = destIx; } u8b->toUCharsMapStart = u8b->bufNativeStart; // Set UText chunk to refer to this buffer. ut->chunkContents = buf; ut->chunkOffset = 0; ut->chunkLength = u8b->bufLimitIdx; ut->chunkNativeStart = u8b->bufNativeStart; ut->chunkNativeLimit = u8b->bufNativeLimit; ut->nativeIndexingLimit = u8b->bufNILimit; // For zero terminated strings, keep track of the maximum point // scanned so far. if (nulTerminated && srcIx>ut->c) { ut->c = srcIx; if (c==0) { // We scanned to the end. // Remember the actual length. ut->b = srcIx; ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } } return TRUE; } fillReverse: { // Move the incoming index to a code point boundary. // Can only do this if the incoming index is somewhere in the interior of the string. // If index is at the end, there is no character there to look at. if (ix != ut->b) { U8_SET_CP_START(s8, 0, ix); } // Swap the UText buffers. // We want to fill what was previously the alternate buffer, // and make what was the current buffer be the new alternate. UTF8Buf *u8b = (UTF8Buf *)ut->q; ut->q = ut->p; ut->p = u8b; UChar *buf = u8b->buf; uint8_t *mapToNative = u8b->mapToNative; uint8_t *mapToUChars = u8b->mapToUChars; int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1); int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region // at end of buffer to leave room // for a surrogate pair at the // buffer start. int32_t srcIx = ix; int32_t bufNILimit = destIx; UChar32 c; // Map to/from Native Indexes, fill in for the position at the end of // the buffer. // mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; // Fill the chunk buffer // Work backwards, filling from the end of the buffer towards the front. // while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { srcIx--; destIx--; // Get last byte of the UTF-8 character c = s8[srcIx]; if (c<0x80) { // Special case ASCII range for speed. buf[destIx] = (UChar)c; mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); } else { // General case, handle everything non-ASCII. int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char // Get the full character from the UTF8 string. // use code derived from tbe macros in utf.8 // Leaves srcIx pointing at the first byte of the UTF-8 char. // if (c<=0xbf) { c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -1); // leaves srcIx at first byte of the multi-byte char. } else { c=0x0fffd; } // Store the character in UTF-16 buffer. if (c<0x10000) { buf[destIx] = (UChar)c; mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); } else { buf[destIx] = U16_TRAIL(c); mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); buf[--destIx] = U16_LEAD(c); mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); } // Fill in the map from native indexes to UChars buf index. do { mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; } while (sIx >= srcIx); // Set native indexing limit to be the current position. // We are processing a non-ascii, non-native-indexing char now; // the limit will be here if the rest of the chars to be // added to this buffer are ascii. bufNILimit = destIx; } } u8b->bufNativeStart = srcIx; u8b->bufNativeLimit = ix; u8b->bufStartIdx = destIx; u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; u8b->bufNILimit = bufNILimit - u8b->bufStartIdx; u8b->toUCharsMapStart = toUCharsMapStart; ut->chunkContents = &buf[u8b->bufStartIdx]; ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; ut->chunkOffset = ut->chunkLength; ut->chunkNativeStart = u8b->bufNativeStart; ut->chunkNativeLimit = u8b->bufNativeLimit; ut->nativeIndexingLimit = u8b->bufNILimit; return TRUE; } } // // This is a slightly modified copy of u_strFromUTF8, // Inserts a Replacement Char rather than failing on invalid UTF-8 // Removes unnecessary features. // static UChar* utext_strFromUTF8(UChar *dest, int32_t destCapacity, int32_t *pDestLength, const char* src, int32_t srcLength, // required. NUL terminated not supported. UErrorCode *pErrorCode ) { UChar *pDest = dest; UChar *pDestLimit = dest+destCapacity; UChar32 ch=0; int32_t index = 0; int32_t reqLength = 0; uint8_t* pSrc = (uint8_t*) src; while((index < srcLength)&&(pDest0)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } int32_t length = ut->b; int32_t start32 = pinIndex(start, length); int32_t limit32 = pinIndex(limit, length); if(start32>limit32) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } // adjust the incoming indexes to land on code point boundaries if needed. // adjust by no more than three, because that is the largest number of trail bytes // in a well formed UTF8 character. const uint8_t *buf = (const uint8_t *)ut->context; int i; if (start32 < ut->chunkNativeLimit) { for (i=0; i<3; i++) { if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { break; } start32--; } } if (limit32 < ut->chunkNativeLimit) { for (i=0; i<3; i++) { if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { break; } limit32--; } } // Do the actual extract. int32_t destLength=0; utext_strFromUTF8(dest, destCapacity, &destLength, (const char *)ut->context+start32, limit32-start32, pErrorCode); utf8TextAccess(ut, limit32, TRUE); return destLength; } // // utf8TextMapOffsetToNative // // Map a chunk (UTF-16) offset to a native index. static int64_t U_CALLCONV utf8TextMapOffsetToNative(const UText *ut) { // UTF8Buf *u8b = (UTF8Buf *)ut->p; U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); return nativeOffset; } // // Map a native index to the corrsponding chunk offset // static int32_t U_CALLCONV utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { U_ASSERT(index64 <= 0x7fffffff); int32_t index = (int32_t)index64; UTF8Buf *u8b = (UTF8Buf *)ut->p; U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); U_ASSERT(index<=ut->chunkNativeLimit); int32_t mapIndex = index - u8b->toUCharsMapStart; int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; U_ASSERT(offset>=0 && offset<=ut->chunkLength); return offset; } static UText * U_CALLCONV utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { // First do a generic shallow clone. Does everything needed for the UText struct itself. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the string. // The copied storage is owned by the newly created clone. // // TODO: There is an isssue with using utext_nativeLength(). // That function is non-const in cases where the input was NUL terminated // and the length has not yet been determined. // This function (clone()) is const. // There potentially a thread safety issue lurking here. // if (deep && U_SUCCESS(*status)) { int32_t len = (int32_t)utext_nativeLength((UText *)src); char *copyStr = (char *)uprv_malloc(len+1); if (copyStr == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { uprv_memcpy(copyStr, src->context, len+1); dest->context = copyStr; dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); } } return dest; } static void U_CALLCONV utf8TextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is to delete the UTF8 string if the UText // owns it. This occurs if the UText was created by cloning. if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { char *s = (char *)ut->context; uprv_free(s); ut->context = NULL; } } U_CDECL_END static const struct UTextFuncs utf8Funcs = { sizeof(UTextFuncs), 0, 0, 0, // Reserved alignment padding utf8TextClone, utf8TextLength, utf8TextAccess, utf8TextExtract, NULL, /* replace*/ NULL, /* copy */ utf8TextMapOffsetToNative, utf8TextMapIndexToUTF16, utf8TextClose, NULL, // spare 1 NULL, // spare 2 NULL // spare 3 }; static const char gEmptyString[] = {0}; U_CAPI UText * U_EXPORT2 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { if(U_FAILURE(*status)) { return NULL; } if(s==NULL && length==0) { s = gEmptyString; } if(s==NULL || length<-1 || length>INT32_MAX) { *status=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); if (U_FAILURE(*status)) { return ut; } ut->pFuncs = &utf8Funcs; ut->context = s; ut->b = (int32_t)length; ut->c = (int32_t)length; if (ut->c < 0) { ut->c = 0; ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } ut->p = ut->pExtra; ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); return ut; } //------------------------------------------------------------------------------ // // UText implementation wrapper for Replaceable (read/write) // // Use of UText data members: // context pointer to Replaceable. // p pointer to Replaceable if it is owned by the UText. // //------------------------------------------------------------------------------ // minimum chunk size for this implementation: 3 // to allow for possible trimming for code point boundaries enum { REP_TEXT_CHUNK_SIZE=10 }; struct ReplExtra { /* * Chunk UChars. * +1 to simplify filling with surrogate pair at the end. */ UChar s[REP_TEXT_CHUNK_SIZE+1]; }; U_CDECL_BEGIN static UText * U_CALLCONV repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { // First do a generic shallow clone. Does everything needed for the UText struct itself. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the Replaceable. // The copied Replaceable storage is owned by the newly created UText clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // it. // if (deep && U_SUCCESS(*status)) { const Replaceable *replSrc = (const Replaceable *)src->context; dest->context = replSrc->clone(); dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); // with deep clone, the copy is writable, even when the source is not. dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); } return dest; } static void U_CALLCONV repTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the Replaceable if the UText // owns it. This occurs if the UText was created by cloning. if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { Replaceable *rep = (Replaceable *)ut->context; delete rep; ut->context = NULL; } } static int64_t U_CALLCONV repTextLength(UText *ut) { const Replaceable *replSrc = (const Replaceable *)ut->context; int32_t len = replSrc->length(); return len; } static UBool U_CALLCONV repTextAccess(UText *ut, int64_t index, UBool forward) { const Replaceable *rep=(const Replaceable *)ut->context; int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) // clip the requested index to the limits of the text. int32_t index32 = pinIndex(index, length); U_ASSERT(index<=INT32_MAX); /* * Compute start/limit boundaries around index, for a segment of text * to be extracted. * To allow for the possibility that our user gave an index to the trailing * half of a surrogate pair, we must request one extra preceding UChar when * going in the forward direction. This will ensure that the buffer has the * entire code point at the specified index. */ if(forward) { if (index32>=ut->chunkNativeStart && index32chunkNativeLimit) { // Buffer already contains the requested position. ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); return TRUE; } if (index32>=length && ut->chunkNativeLimit==length) { // Request for end of string, and buffer already extends up to it. // Can't get the data, but don't change the buffer. ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; return FALSE; } ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; // Going forward, so we want to have the buffer with stuff at and beyond // the requested index. The -1 gets us one code point before the // requested index also, to handle the case of the index being on // a trail surrogate of a surrogate pair. if(ut->chunkNativeLimit > length) { ut->chunkNativeLimit = length; } // unless buffer ran off end, start is index-1. ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; if(ut->chunkNativeStart < 0) { ut->chunkNativeStart = 0; } } else { // Reverse iteration. Fill buffer with data preceding the requested index. if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { // Requested position already in buffer. ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; return TRUE; } if (index32==0 && ut->chunkNativeStart==0) { // Request for start, buffer already begins at start. // No data, but keep the buffer as is. ut->chunkOffset = 0; return FALSE; } // Figure out the bounds of the chunk to extract for reverse iteration. // Need to worry about chunk not splitting surrogate pairs, and while still // containing the data we need. // Fix by requesting a chunk that includes an extra UChar at the end. // If this turns out to be a lead surrogate, we can lop it off and still have // the data we wanted. ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; if (ut->chunkNativeStart < 0) { ut->chunkNativeStart = 0; } ut->chunkNativeLimit = index32 + 1; if (ut->chunkNativeLimit > length) { ut->chunkNativeLimit = length; } } // Extract the new chunk of text from the Replaceable source. ReplExtra *ex = (ReplExtra *)ut->pExtra; // UnicodeString with its buffer a writable alias to the chunk buffer UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); ut->chunkContents = ex->s; ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); // Surrogate pairs from the input text must not span chunk boundaries. // If end of chunk could be the start of a surrogate, trim it off. if (ut->chunkNativeLimit < length && U16_IS_LEAD(ex->s[ut->chunkLength-1])) { ut->chunkLength--; ut->chunkNativeLimit--; if (ut->chunkOffset > ut->chunkLength) { ut->chunkOffset = ut->chunkLength; } } // if the first UChar in the chunk could be the trailing half of a surrogate pair, // trim it off. if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { ++(ut->chunkContents); ++(ut->chunkNativeStart); --(ut->chunkLength); --(ut->chunkOffset); } // adjust the index/chunkOffset to a code point boundary U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); // Use fast indexing for get/setNativeIndex() ut->nativeIndexingLimit = ut->chunkLength; return TRUE; } static int32_t U_CALLCONV repTextExtract(UText *ut, int64_t start, int64_t limit, UChar *dest, int32_t destCapacity, UErrorCode *status) { const Replaceable *rep=(const Replaceable *)ut->context; int32_t length=rep->length(); if(U_FAILURE(*status)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0)) { *status=U_ILLEGAL_ARGUMENT_ERROR; } if(start>limit) { *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } int32_t start32 = pinIndex(start, length); int32_t limit32 = pinIndex(limit, length); // adjust start, limit if they point to trail half of surrogates if (start32charAt(start32)) && U_IS_SUPPLEMENTARY(rep->char32At(start32))){ start32--; } if (limit32charAt(limit32)) && U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ limit32--; } length=limit32-start32; if(length>destCapacity) { limit32 = start32 + destCapacity; } UnicodeString buffer(dest, 0, destCapacity); // writable alias rep->extractBetween(start32, limit32, buffer); repTextAccess(ut, limit32, TRUE); return u_terminateUChars(dest, destCapacity, length, status); } static int32_t U_CALLCONV repTextReplace(UText *ut, int64_t start, int64_t limit, const UChar *src, int32_t length, UErrorCode *status) { Replaceable *rep=(Replaceable *)ut->context; int32_t oldLength; if(U_FAILURE(*status)) { return 0; } if(src==NULL && length!=0) { *status=U_ILLEGAL_ARGUMENT_ERROR; return 0; } oldLength=rep->length(); // will subtract from new length if(start>limit ) { *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } int32_t start32 = pinIndex(start, oldLength); int32_t limit32 = pinIndex(limit, oldLength); // Snap start & limit to code point boundaries. if (start32charAt(start32)) && start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) { start32--; } if (limit32charAt(limit32-1)) && U16_IS_TRAIL(rep->charAt(limit32))) { limit32++; } // Do the actual replace operation using methods of the Replaceable class UnicodeString replStr((UBool)(length<0), src, length); // read-only alias rep->handleReplaceBetween(start32, limit32, replStr); int32_t newLength = rep->length(); int32_t lengthDelta = newLength - oldLength; // Is the UText chunk buffer OK? if (ut->chunkNativeLimit > start32) { // this replace operation may have impacted the current chunk. // invalidate it, which will force a reload on the next access. invalidateChunk(ut); } // set the iteration position to the end of the newly inserted replacement text. int32_t newIndexPos = limit32 + lengthDelta; repTextAccess(ut, newIndexPos, TRUE); return lengthDelta; } static void U_CALLCONV repTextCopy(UText *ut, int64_t start, int64_t limit, int64_t destIndex, UBool move, UErrorCode *status) { Replaceable *rep=(Replaceable *)ut->context; int32_t length=rep->length(); if(U_FAILURE(*status)) { return; } if (start>limit || (startcopy(start32, limit32, destIndex32); if(destIndex32handleReplaceBetween(start32, limit32, UnicodeString()); } else { // copy rep->copy(start32, limit32, destIndex32); } // If the change to the text touched the region in the chunk buffer, // invalidate the buffer. int32_t firstAffectedIndex = destIndex32; if (move && start32chunkNativeLimit) { // changes may have affected range covered by the chunk invalidateChunk(ut); } // Put iteration position at the newly inserted (moved) block, int32_t nativeIterIndex = destIndex32 + limit32 - start32; if (move && destIndex32>start32) { // moved a block of text towards the end of the string. nativeIterIndex = destIndex32; } // Set position, reload chunk if needed. repTextAccess(ut, nativeIterIndex, TRUE); } static const struct UTextFuncs repFuncs = { sizeof(UTextFuncs), 0, 0, 0, // Reserved alignment padding repTextClone, repTextLength, repTextAccess, repTextExtract, repTextReplace, repTextCopy, NULL, // MapOffsetToNative, NULL, // MapIndexToUTF16, repTextClose, NULL, // spare 1 NULL, // spare 2 NULL // spare 3 }; U_CAPI UText * U_EXPORT2 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) { if(U_FAILURE(*status)) { return NULL; } if(rep==NULL) { *status=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } ut = utext_setup(ut, sizeof(ReplExtra), status); ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); if(rep->hasMetaData()) { ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); } ut->pFuncs = &repFuncs; ut->context = rep; return ut; } U_CDECL_END //------------------------------------------------------------------------------ // // UText implementation for UnicodeString (read/write) and // for const UnicodeString (read only) // (same implementation, only the flags are different) // // Use of UText data members: // context pointer to UnicodeString // p pointer to UnicodeString IF this UText owns the string // and it must be deleted on close(). NULL otherwise. // //------------------------------------------------------------------------------ U_CDECL_BEGIN static UText * U_CALLCONV unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { // First do a generic shallow clone. Does everything needed for the UText struct itself. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the UnicodeSring. // The copied UnicodeString storage is owned by the newly created UText clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // the UText. // if (deep && U_SUCCESS(*status)) { const UnicodeString *srcString = (const UnicodeString *)src->context; dest->context = new UnicodeString(*srcString); dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); // with deep clone, the copy is writable, even when the source is not. dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); } return dest; } static void U_CALLCONV unistrTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the UnicodeString if the UText // owns it. This occurs if the UText was created by cloning. if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { UnicodeString *str = (UnicodeString *)ut->context; delete str; ut->context = NULL; } } static int64_t U_CALLCONV unistrTextLength(UText *t) { return ((const UnicodeString *)t->context)->length(); } static UBool U_CALLCONV unistrTextAccess(UText *ut, int64_t index, UBool forward) { int32_t length = ut->chunkLength; ut->chunkOffset = pinIndex(index, length); // Check whether request is at the start or end UBool retVal = (forward && index0); return retVal; } static int32_t U_CALLCONV unistrTextExtract(UText *t, int64_t start, int64_t limit, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) { const UnicodeString *us=(const UnicodeString *)t->context; int32_t length=us->length(); if(U_FAILURE(*pErrorCode)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } if(start<0 || start>limit) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } int32_t start32 = startgetChar32Start((int32_t)start) : length; int32_t limit32 = limitgetChar32Start((int32_t)limit) : length; length=limit32-start32; if (destCapacity>0 && dest!=NULL) { int32_t trimmedLength = length; if(trimmedLength>destCapacity) { trimmedLength=destCapacity; } us->extract(start32, trimmedLength, dest); t->chunkOffset = start32+trimmedLength; } else { t->chunkOffset = start32; } u_terminateUChars(dest, destCapacity, length, pErrorCode); return length; } static int32_t U_CALLCONV unistrTextReplace(UText *ut, int64_t start, int64_t limit, const UChar *src, int32_t length, UErrorCode *pErrorCode) { UnicodeString *us=(UnicodeString *)ut->context; int32_t oldLength; if(U_FAILURE(*pErrorCode)) { return 0; } if(src==NULL && length!=0) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } if(start>limit) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } oldLength=us->length(); int32_t start32 = pinIndex(start, oldLength); int32_t limit32 = pinIndex(limit, oldLength); if (start32 < oldLength) { start32 = us->getChar32Start(start32); } if (limit32 < oldLength) { limit32 = us->getChar32Start(limit32); } // replace us->replace(start32, limit32-start32, src, length); int32_t newLength = us->length(); // Update the chunk description. ut->chunkContents = us->getBuffer(); ut->chunkLength = newLength; ut->chunkNativeLimit = newLength; ut->nativeIndexingLimit = newLength; // Set iteration position to the point just following the newly inserted text. int32_t lengthDelta = newLength - oldLength; ut->chunkOffset = limit32 + lengthDelta; return lengthDelta; } static void U_CALLCONV unistrTextCopy(UText *ut, int64_t start, int64_t limit, int64_t destIndex, UBool move, UErrorCode *pErrorCode) { UnicodeString *us=(UnicodeString *)ut->context; int32_t length=us->length(); if(U_FAILURE(*pErrorCode)) { return; } int32_t start32 = pinIndex(start, length); int32_t limit32 = pinIndex(limit, length); int32_t destIndex32 = pinIndex(destIndex, length); if( start32>limit32 || (start32copy(start32, limit32, destIndex32); if(destIndex32replace(start32, segLength, NULL, 0); } else { // copy us->copy(start32, limit32, destIndex32); } // update chunk description, set iteration position. ut->chunkContents = us->getBuffer(); if (move==FALSE) { // copy operation, string length grows ut->chunkLength += limit32-start32; ut->chunkNativeLimit = ut->chunkLength; ut->nativeIndexingLimit = ut->chunkLength; } // Iteration position to end of the newly inserted text. ut->chunkOffset = destIndex32+limit32-start32; if (move && destIndex32>start32) { ut->chunkOffset = destIndex32; } } static const struct UTextFuncs unistrFuncs = { sizeof(UTextFuncs), 0, 0, 0, // Reserved alignment padding unistrTextClone, unistrTextLength, unistrTextAccess, unistrTextExtract, unistrTextReplace, unistrTextCopy, NULL, // MapOffsetToNative, NULL, // MapIndexToUTF16, unistrTextClose, NULL, // spare 1 NULL, // spare 2 NULL // spare 3 }; U_CDECL_END U_CAPI UText * U_EXPORT2 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { // TODO: use openConstUnicodeString, then add in the differences. // ut = utext_setup(ut, 0, status); if (U_SUCCESS(*status)) { ut->pFuncs = &unistrFuncs; ut->context = s; ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS)| I32_FLAG(UTEXT_PROVIDER_WRITABLE); ut->chunkContents = s->getBuffer(); ut->chunkLength = s->length(); ut->chunkNativeStart = 0; ut->chunkNativeLimit = ut->chunkLength; ut->nativeIndexingLimit = ut->chunkLength; } return ut; } U_CAPI UText * U_EXPORT2 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { ut = utext_setup(ut, 0, status); // note: use the standard (writable) function table for UnicodeString. // The flag settings disable writing, so having the functions in // the table is harmless. if (U_SUCCESS(*status)) { ut->pFuncs = &unistrFuncs; ut->context = s; ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); ut->chunkContents = s->getBuffer(); ut->chunkLength = s->length(); ut->chunkNativeStart = 0; ut->chunkNativeLimit = ut->chunkLength; ut->nativeIndexingLimit = ut->chunkLength; } return ut; } //------------------------------------------------------------------------------ // // UText implementation for const UChar * strings // // Use of UText data members: // context pointer to UnicodeString // a length. -1 if not yet known. // // TODO: support 64 bit lengths. // //------------------------------------------------------------------------------ U_CDECL_BEGIN static UText * U_CALLCONV ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { // First do a generic shallow clone. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the string. // The copied storage is owned by the newly created clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // it. // if (deep && U_SUCCESS(*status)) { U_ASSERT(utext_nativeLength(dest) < INT32_MAX); int32_t len = (int32_t)utext_nativeLength(dest); // The cloned string IS going to be NUL terminated, whether or not the original was. const UChar *srcStr = (const UChar *)src->context; UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); if (copyStr == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { int64_t i; for (i=0; icontext = copyStr; dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); } } return dest; } static void U_CALLCONV ucstrTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the string if the UText // owns it. This occurs if the UText was created by cloning. if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { UChar *s = (UChar *)ut->context; uprv_free(s); ut->context = NULL; } } static int64_t U_CALLCONV ucstrTextLength(UText *ut) { if (ut->a < 0) { // null terminated, we don't yet know the length. Scan for it. // Access is not convenient for doing this // because the current interation postion can't be changed. const UChar *str = (const UChar *)ut->context; for (;;) { if (str[ut->chunkNativeLimit] == 0) { break; } ut->chunkNativeLimit++; } ut->a = ut->chunkNativeLimit; ut->chunkLength = (int32_t)ut->chunkNativeLimit; ut->nativeIndexingLimit = ut->chunkLength; ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } return ut->a; } static UBool U_CALLCONV ucstrTextAccess(UText *ut, int64_t index, UBool forward) { const UChar *str = (const UChar *)ut->context; // pin the requested index to the bounds of the string, // and set current iteration position. if (index<0) { index = 0; } else if (index < ut->chunkNativeLimit) { // The request data is within the chunk as it is known so far. // Put index on a code point boundary. U16_SET_CP_START(str, 0, index); } else if (ut->a >= 0) { // We know the length of this string, and the user is requesting something // at or beyond the length. Pin the requested index to the length. index = ut->a; } else { // Null terminated string, length not yet known, and the requested index // is beyond where we have scanned so far. // Scan to 32 UChars beyond the requested index. The strategy here is // to avoid fully scanning a long string when the caller only wants to // see a few characters at its beginning. int32_t scanLimit = (int32_t)index + 32; if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression scanLimit = INT32_MAX; } int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; for (; chunkLimita = chunkLimit; ut->chunkLength = chunkLimit; ut->nativeIndexingLimit = chunkLimit; if (index >= chunkLimit) { index = chunkLimit; } else { U16_SET_CP_START(str, 0, index); } ut->chunkNativeLimit = chunkLimit; ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); goto breakout; } } // We scanned through the next batch of UChars without finding the end. U16_SET_CP_START(str, 0, index); if (chunkLimit == INT32_MAX) { // Scanned to the limit of a 32 bit length. // Forceably trim the overlength string back so length fits in int32 // TODO: add support for 64 bit strings. ut->a = chunkLimit; ut->chunkLength = chunkLimit; ut->nativeIndexingLimit = chunkLimit; if (index > chunkLimit) { index = chunkLimit; } ut->chunkNativeLimit = chunkLimit; ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } else { // The endpoint of a chunk must not be left in the middle of a surrogate pair. // If the current end is on a lead surrogate, back the end up by one. // It doesn't matter if the end char happens to be an unpaired surrogate, // and it's simpler not to worry about it. if (U16_IS_LEAD(str[chunkLimit-1])) { --chunkLimit; } // Null-terminated chunk with end still unknown. // Update the chunk length to reflect what has been scanned thus far. // That the full length is still unknown is (still) flagged by // ut->a being < 0. ut->chunkNativeLimit = chunkLimit; ut->nativeIndexingLimit = chunkLimit; ut->chunkLength = chunkLimit; } } breakout: U_ASSERT(index<=INT32_MAX); ut->chunkOffset = (int32_t)index; // Check whether request is at the start or end UBool retVal = (forward && indexchunkNativeLimit) || (!forward && index>0); return retVal; } static int32_t U_CALLCONV ucstrTextExtract(UText *ut, int64_t start, int64_t limit, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } const UChar *s=(const UChar *)ut->context; int32_t si, di; int32_t start32; int32_t limit32; // Access the start. Does two things we need: // Pins 'start' to the length of the string, if it came in out-of-bounds. // Snaps 'start' to the beginning of a code point. ucstrTextAccess(ut, start, TRUE); U_ASSERT(start <= INT32_MAX); start32 = (int32_t)start; int32_t strLength=(int32_t)ut->a; if (strLength >= 0) { limit32 = pinIndex(limit, strLength); } else { limit32 = pinIndex(limit, INT32_MAX); } di = 0; for (si=start32; sia = si; // set string length for this UText ut->chunkNativeLimit = si; ut->chunkLength = si; ut->nativeIndexingLimit = si; strLength = si; break; } if (di=0) { // We have filled the destination buffer, and the string length is known. // Cut the loop short. There is no need to scan string termination. di = limit32 - start32; si = limit32; break; } } di++; } // If the limit index points to a lead surrogate of a pair, // add the corresponding trail surrogate to the destination. if (si>0 && U16_IS_LEAD(s[si-1]) && ((sichunkOffset = uprv_min(strLength, start32 + destCapacity); // Add a terminating NUL if space in the buffer permits, // and set the error status as required. u_terminateUChars(dest, destCapacity, di, pErrorCode); return di; } static const struct UTextFuncs ucstrFuncs = { sizeof(UTextFuncs), 0, 0, 0, // Reserved alignment padding ucstrTextClone, ucstrTextLength, ucstrTextAccess, ucstrTextExtract, NULL, // Replace NULL, // Copy NULL, // MapOffsetToNative, NULL, // MapIndexToUTF16, ucstrTextClose, NULL, // spare 1 NULL, // spare 2 NULL, // spare 3 }; U_CDECL_END static const UChar gEmptyUString[] = {0}; U_CAPI UText * U_EXPORT2 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } if(s==NULL && length==0) { s = gEmptyUString; } if (s==NULL || length < -1 || length>INT32_MAX) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } ut = utext_setup(ut, 0, status); if (U_SUCCESS(*status)) { ut->pFuncs = &ucstrFuncs; ut->context = s; ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); if (length==-1) { ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } ut->a = length; ut->chunkContents = s; ut->chunkNativeStart = 0; ut->chunkNativeLimit = length>=0? length : 0; ut->chunkLength = (int32_t)ut->chunkNativeLimit; ut->chunkOffset = 0; ut->nativeIndexingLimit = ut->chunkLength; } return ut; } //------------------------------------------------------------------------------ // // UText implementation for text from ICU CharacterIterators // // Use of UText data members: // context pointer to the CharacterIterator // a length of the full text. // p pointer to buffer 1 // b start index of local buffer 1 contents // q pointer to buffer 2 // c start index of local buffer 2 contents // r pointer to the character iterator if the UText owns it. // Null otherwise. // //------------------------------------------------------------------------------ #define CIBufSize 16 U_CDECL_BEGIN static void U_CALLCONV charIterTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the CharacterIterator if the UText // owns it. This occurs if the UText was created by cloning. CharacterIterator *ci = (CharacterIterator *)ut->r; delete ci; ut->r = NULL; } static int64_t U_CALLCONV charIterTextLength(UText *ut) { return (int32_t)ut->a; } static UBool U_CALLCONV charIterTextAccess(UText *ut, int64_t index, UBool forward) { CharacterIterator *ci = (CharacterIterator *)ut->context; int32_t clippedIndex = (int32_t)index; if (clippedIndex<0) { clippedIndex=0; } else if (clippedIndex>=ut->a) { clippedIndex=(int32_t)ut->a; } int32_t neededIndex = clippedIndex; if (!forward && neededIndex>0) { // reverse iteration, want the position just before what was asked for. neededIndex--; } else if (forward && neededIndex==ut->a && neededIndex>0) { // Forward iteration, don't ask for something past the end of the text. neededIndex--; } // Find the native index of the start of the buffer containing what we want. neededIndex -= neededIndex % CIBufSize; UChar *buf = NULL; UBool needChunkSetup = TRUE; int i; if (ut->chunkNativeStart == neededIndex) { // The buffer we want is already the current chunk. needChunkSetup = FALSE; } else if (ut->b == neededIndex) { // The first buffer (buffer p) has what we need. buf = (UChar *)ut->p; } else if (ut->c == neededIndex) { // The second buffer (buffer q) has what we need. buf = (UChar *)ut->q; } else { // Neither buffer already has what we need. // Load new data from the character iterator. // Use the buf that is not the current buffer. buf = (UChar *)ut->p; if (ut->p == ut->chunkContents) { buf = (UChar *)ut->q; } ci->setIndex(neededIndex); for (i=0; inextPostInc(); if (i+neededIndex > ut->a) { break; } } } // We have a buffer with the data we need. // Set it up as the current chunk, if it wasn't already. if (needChunkSetup) { ut->chunkContents = buf; ut->chunkLength = CIBufSize; ut->chunkNativeStart = neededIndex; ut->chunkNativeLimit = neededIndex + CIBufSize; if (ut->chunkNativeLimit > ut->a) { ut->chunkNativeLimit = ut->a; ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); } ut->nativeIndexingLimit = ut->chunkLength; U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); } ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; UBool success = (forward? ut->chunkOffsetchunkLength : ut->chunkOffset>0); return success; } static UText * U_CALLCONV charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { if (U_FAILURE(*status)) { return NULL; } if (deep) { // There is no CharacterIterator API for cloning the underlying text storage. *status = U_UNSUPPORTED_ERROR; return NULL; } else { CharacterIterator *srcCI =(CharacterIterator *)src->context; srcCI = srcCI->clone(); dest = utext_openCharacterIterator(dest, srcCI, status); // cast off const on getNativeIndex. // For CharacterIterator based UTexts, this is safe, the operation is const. int64_t ix = utext_getNativeIndex((UText *)src); utext_setNativeIndex(dest, ix); dest->r = srcCI; // flags that this UText owns the CharacterIterator } return dest; } static int32_t U_CALLCONV charIterTextExtract(UText *ut, int64_t start, int64_t limit, UChar *dest, int32_t destCapacity, UErrorCode *status) { if(U_FAILURE(*status)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { *status=U_ILLEGAL_ARGUMENT_ERROR; return 0; } int32_t length = (int32_t)ut->a; int32_t start32 = pinIndex(start, length); int32_t limit32 = pinIndex(limit, length); int32_t desti = 0; int32_t srci; int32_t copyLimit; CharacterIterator *ci = (CharacterIterator *)ut->context; ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. srci = ci->getIndex(); copyLimit = srci; while (srcinext32PostInc(); int32_t len = U16_LENGTH(c); if (desti+len <= destCapacity) { U16_APPEND_UNSAFE(dest, desti, c); copyLimit = srci+len; } else { desti += len; *status = U_BUFFER_OVERFLOW_ERROR; } srci += len; } charIterTextAccess(ut, copyLimit, TRUE); u_terminateUChars(dest, destCapacity, desti, status); return desti; } static const struct UTextFuncs charIterFuncs = { sizeof(UTextFuncs), 0, 0, 0, // Reserved alignment padding charIterTextClone, charIterTextLength, charIterTextAccess, charIterTextExtract, NULL, // Replace NULL, // Copy NULL, // MapOffsetToNative, NULL, // MapIndexToUTF16, charIterTextClose, NULL, // spare 1 NULL, // spare 2 NULL // spare 3 }; U_CDECL_END U_CAPI UText * U_EXPORT2 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } if (ci->startIndex() > 0) { // No support for CharacterIterators that do not start indexing from zero. *status = U_UNSUPPORTED_ERROR; return NULL; } // Extra space in UText for 2 buffers of CIBufSize UChars each. int32_t extraSpace = 2 * CIBufSize * sizeof(UChar); ut = utext_setup(ut, extraSpace, status); if (U_SUCCESS(*status)) { ut->pFuncs = &charIterFuncs; ut->context = ci; ut->providerProperties = 0; ut->a = ci->endIndex(); // Length of text ut->p = ut->pExtra; // First buffer ut->b = -1; // Native index of first buffer contents ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer ut->c = -1; // Native index of second buffer contents // Initialize current chunk contents to be empty. // First access will fault something in. // Note: The initial nativeStart and chunkOffset must sum to zero // so that getNativeIndex() will correctly compute to zero // if no call to Access() has ever been made. They can't be both // zero without Access() thinking that the chunk is valid. ut->chunkContents = (UChar *)ut->p; ut->chunkNativeStart = -1; ut->chunkOffset = 1; ut->chunkNativeLimit = 0; ut->chunkLength = 0; ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing } return ut; }