/* *************************************************************************** * Copyright (C) 2008-2012, International Business Machines Corporation * and others. All Rights Reserved. *************************************************************************** * file name: uspoof.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2008Feb13 * created by: Andy Heninger * * Unicode Spoof Detection */ #include "unicode/utypes.h" #include "unicode/uspoof.h" #include "unicode/unorm.h" #include "unicode/ustring.h" #include "unicode/utf16.h" #include "cmemory.h" #include "uspoof_impl.h" #include "uassert.h" #if !UCONFIG_NO_NORMALIZATION U_NAMESPACE_USE U_CAPI USpoofChecker * U_EXPORT2 uspoof_open(UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } SpoofImpl *si = new SpoofImpl(SpoofData::getDefault(*status), *status); if (U_FAILURE(*status)) { delete si; si = NULL; } return (USpoofChecker *)si; } U_CAPI USpoofChecker * U_EXPORT2 uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } SpoofData *sd = new SpoofData(data, length, *status); SpoofImpl *si = new SpoofImpl(sd, *status); if (U_FAILURE(*status)) { delete sd; delete si; return NULL; } if (sd == NULL || si == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; delete sd; delete si; return NULL; } if (pActualLength != NULL) { *pActualLength = sd->fRawData->fLength; } return reinterpret_cast(si); } U_CAPI USpoofChecker * U_EXPORT2 uspoof_clone(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *src = SpoofImpl::validateThis(sc, *status); if (src == NULL) { return NULL; } SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor if (U_FAILURE(*status)) { delete result; result = NULL; } return (USpoofChecker *)result; } U_CAPI void U_EXPORT2 uspoof_close(USpoofChecker *sc) { UErrorCode status = U_ZERO_ERROR; SpoofImpl *This = SpoofImpl::validateThis(sc, status); delete This; } U_CAPI void U_EXPORT2 uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return; } // Verify that the requested checks are all ones (bits) that // are acceptable, known values. if (checks & ~USPOOF_ALL_CHECKS) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } This->fChecks = checks; } U_CAPI int32_t U_EXPORT2 uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return 0; } return This->fChecks; } U_CAPI void U_EXPORT2 uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return; } This->setAllowedLocales(localesList, *status); } U_CAPI const char * U_EXPORT2 uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return NULL; } return This->getAllowedLocales(*status); } U_CAPI const USet * U_EXPORT2 uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) { const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status); return reinterpret_cast(result); } U_CAPI const UnicodeSet * U_EXPORT2 uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return NULL; } return This->fAllowedCharsSet; } U_CAPI void U_EXPORT2 uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) { const UnicodeSet *set = reinterpret_cast(chars); uspoof_setAllowedUnicodeSet(sc, set, status); } U_CAPI void U_EXPORT2 uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return; } if (chars->isBogus()) { *status = U_ILLEGAL_ARGUMENT_ERROR; return; } UnicodeSet *clonedSet = static_cast(chars->clone()); if (clonedSet == NULL || clonedSet->isBogus()) { *status = U_MEMORY_ALLOCATION_ERROR; return; } clonedSet->freeze(); delete This->fAllowedCharsSet; This->fAllowedCharsSet = clonedSet; This->fChecks |= USPOOF_CHAR_LIMIT; } U_CAPI int32_t U_EXPORT2 uspoof_check(const USpoofChecker *sc, const UChar *text, int32_t length, int32_t *position, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { return 0; } if (length < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if (length == -1) { // It's not worth the bother to handle nul terminated strings everywhere. // Just get the length and be done with it. length = u_strlen(text); } int32_t result = 0; int32_t failPos = 0x7fffffff; // TODO: do we have a #define for max int32? // A count of the number of non-Common or inherited scripts. // Needed for both the SINGLE_SCRIPT and the WHOLE/MIXED_SCIRPT_CONFUSABLE tests. // Share the computation when possible. scriptCount == -1 means that we haven't // done it yet. int32_t scriptCount = -1; if ((This->fChecks) & USPOOF_SINGLE_SCRIPT) { scriptCount = This->scriptScan(text, length, failPos, *status); // printf("scriptCount (clipped to 2) = %d\n", scriptCount); if ( scriptCount >= 2) { // Note: scriptCount == 2 covers all cases of the number of scripts >= 2 result |= USPOOF_SINGLE_SCRIPT; } } if (This->fChecks & USPOOF_CHAR_LIMIT) { int32_t i; UChar32 c; for (i=0; ifAllowedCharsSet->contains(c)) { result |= USPOOF_CHAR_LIMIT; if (i < failPos) { failPos = i; } break; } } } if (This->fChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_INVISIBLE)) { // These are the checks that need to be done on NFD input NFDBuffer normalizedInput(text, length, *status); const UChar *nfdText = normalizedInput.getBuffer(); int32_t nfdLength = normalizedInput.getLength(); if (This->fChecks & USPOOF_INVISIBLE) { // scan for more than one occurence of the same non-spacing mark // in a sequence of non-spacing marks. int32_t i; UChar32 c; UChar32 firstNonspacingMark = 0; UBool haveMultipleMarks = FALSE; UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence. for (i=0; i length) { failPos = length; } break; } marksSeenSoFar.add(c); } } if (This->fChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE)) { // The basic test is the same for both whole and mixed script confusables. // Compute the set of scripts that every input character has a confusable in. // For this computation an input character is always considered to be // confusable with itself in its own script. // If the number of such scripts is two or more, and the input consisted of // characters all from a single script, we have a whole script confusable. // (The two scripts will be the original script and the one that is confusable) // If the number of such scripts >= one, and the original input contained characters from // more than one script, we have a mixed script confusable. (We can transform // some of the characters, and end up with a visually similar string all in // one script.) if (scriptCount == -1) { int32_t t; scriptCount = This->scriptScan(text, length, t, *status); } ScriptSet scripts; This->wholeScriptCheck(nfdText, nfdLength, &scripts, *status); int32_t confusableScriptCount = scripts.countMembers(); //printf("confusableScriptCount = %d\n", confusableScriptCount); if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) && confusableScriptCount >= 2 && scriptCount == 1) { result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; } if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) && confusableScriptCount >= 1 && scriptCount > 1) { result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; } } } if (position != NULL && failPos != 0x7fffffff) { *position = failPos; } return result; } U_CAPI int32_t U_EXPORT2 uspoof_checkUTF8(const USpoofChecker *sc, const char *text, int32_t length, int32_t *position, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } UChar stackBuf[USPOOF_STACK_BUFFER_SIZE]; UChar* text16 = stackBuf; int32_t len16; u_strFromUTF8(text16, USPOOF_STACK_BUFFER_SIZE, &len16, text, length, status); if (U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) { return 0; } if (*status == U_BUFFER_OVERFLOW_ERROR) { text16 = static_cast(uprv_malloc(len16 * sizeof(UChar) + 2)); if (text16 == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } *status = U_ZERO_ERROR; u_strFromUTF8(text16, len16+1, NULL, text, length, status); } int32_t position16 = -1; int32_t result = uspoof_check(sc, text16, len16, &position16, status); if (U_FAILURE(*status)) { return 0; } if (position16 > 0) { // Translate a UTF-16 based error position back to a UTF-8 offset. // u_strToUTF8() in preflight mode is an easy way to do it. U_ASSERT(position16 <= len16); u_strToUTF8(NULL, 0, position, text16, position16, status); if (position > 0) { // position is the required buffer length from u_strToUTF8, which includes // space for a terminating NULL, which we don't want, hence the -1. *position -= 1; } *status = U_ZERO_ERROR; // u_strToUTF8, above sets BUFFER_OVERFLOW_ERROR. } if (text16 != stackBuf) { uprv_free(text16); } return result; } /* A convenience wrapper around the public uspoof_getSkeleton that handles * allocating a larger buffer than provided if the original is too small. */ static UChar *getSkeleton(const USpoofChecker *sc, uint32_t type, const UChar *s, int32_t inputLength, UChar *dest, int32_t destCapacity, int32_t *outputLength, UErrorCode *status) { int32_t requiredCapacity = 0; UChar *buf = dest; if (U_FAILURE(*status)) { return NULL; } requiredCapacity = uspoof_getSkeleton(sc, type, s, inputLength, dest, destCapacity, status); if (*status == U_BUFFER_OVERFLOW_ERROR) { buf = static_cast(uprv_malloc(requiredCapacity * sizeof(UChar))); if (buf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } *status = U_ZERO_ERROR; uspoof_getSkeleton(sc, type, s, inputLength, buf, requiredCapacity, status); } *outputLength = requiredCapacity; return buf; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusable(const USpoofChecker *sc, const UChar *s1, int32_t length1, const UChar *s2, int32_t length2, UErrorCode *status) { const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } // // See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable, // and for definitions of the types (single, whole, mixed-script) of confusables. // We only care about a few of the check flags. Ignore the others. // If no tests relavant to this function have been specified, return an error. // TODO: is this really the right thing to do? It's probably an error on the caller's part, // but logically we would just return 0 (no error). if ((This->fChecks & (USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_WHOLE_SCRIPT_CONFUSABLE)) == 0) { *status = U_INVALID_STATE_ERROR; return 0; } int32_t flagsForSkeleton = This->fChecks & USPOOF_ANY_CASE; UChar s1SkeletonBuf[USPOOF_STACK_BUFFER_SIZE]; UChar *s1Skeleton; int32_t s1SkeletonLength = 0; UChar s2SkeletonBuf[USPOOF_STACK_BUFFER_SIZE]; UChar *s2Skeleton; int32_t s2SkeletonLength = 0; int32_t result = 0; int32_t t; int32_t s1ScriptCount = This->scriptScan(s1, length1, t, *status); int32_t s2ScriptCount = This->scriptScan(s2, length2, t, *status); if (This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) { // Do the Single Script compare. if (s1ScriptCount <= 1 && s2ScriptCount <= 1) { flagsForSkeleton |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; s1Skeleton = getSkeleton(sc, flagsForSkeleton, s1, length1, s1SkeletonBuf, sizeof(s1SkeletonBuf)/sizeof(UChar), &s1SkeletonLength, status); s2Skeleton = getSkeleton(sc, flagsForSkeleton, s2, length2, s2SkeletonBuf, sizeof(s2SkeletonBuf)/sizeof(UChar), &s2SkeletonLength, status); if (s1SkeletonLength == s2SkeletonLength && u_strncmp(s1Skeleton, s2Skeleton, s1SkeletonLength) == 0) { result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE; } if (s1Skeleton != s1SkeletonBuf) { uprv_free(s1Skeleton); } if (s2Skeleton != s2SkeletonBuf) { uprv_free(s2Skeleton); } } } if (result & USPOOF_SINGLE_SCRIPT_CONFUSABLE) { // If the two inputs are single script confusable they cannot also be // mixed or whole script confusable, according to the UAX39 definitions. // So we can skip those tests. return result; } // Optimization for whole script confusables test: two identifiers are whole script confusable if // each is of a single script and they are mixed script confusable. UBool possiblyWholeScriptConfusables = s1ScriptCount <= 1 && s2ScriptCount <= 1 && (This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE); // // Mixed Script Check // if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) || possiblyWholeScriptConfusables ) { // For getSkeleton(), resetting the USPOOF_SINGLE_SCRIPT_CONFUSABLE flag will get us // the mixed script table skeleton, which is what we want. // The Any Case / Lower Case bit in the skelton flags was set at the top of the function. flagsForSkeleton &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE; s1Skeleton = getSkeleton(sc, flagsForSkeleton, s1, length1, s1SkeletonBuf, sizeof(s1SkeletonBuf)/sizeof(UChar), &s1SkeletonLength, status); s2Skeleton = getSkeleton(sc, flagsForSkeleton, s2, length2, s2SkeletonBuf, sizeof(s2SkeletonBuf)/sizeof(UChar), &s2SkeletonLength, status); if (s1SkeletonLength == s2SkeletonLength && u_strncmp(s1Skeleton, s2Skeleton, s1SkeletonLength) == 0) { result |= USPOOF_MIXED_SCRIPT_CONFUSABLE; if (possiblyWholeScriptConfusables) { result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE; } } if (s1Skeleton != s1SkeletonBuf) { uprv_free(s1Skeleton); } if (s2Skeleton != s2SkeletonBuf) { uprv_free(s2Skeleton); } } return result; } // Convenience function for converting a UTF-8 input to a UChar * string, including // reallocating a buffer when required. Parameters and their interpretation mostly // match u_strFromUTF8. static UChar * convertFromUTF8(UChar *outBuf, int32_t outBufCapacity, int32_t *outputLength, const char *in, int32_t inLength, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } UChar *dest = outBuf; u_strFromUTF8(dest, outBufCapacity, outputLength, in, inLength, status); if (*status == U_BUFFER_OVERFLOW_ERROR) { dest = static_cast(uprv_malloc(*outputLength * sizeof(UChar))); if (dest == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } *status = U_ZERO_ERROR; u_strFromUTF8(dest, *outputLength, NULL, in, inLength, status); } return dest; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusableUTF8(const USpoofChecker *sc, const char *s1, int32_t length1, const char *s2, int32_t length2, UErrorCode *status) { SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } UChar s1Buf[USPOOF_STACK_BUFFER_SIZE]; int32_t lengthS1U; UChar *s1U = convertFromUTF8(s1Buf, USPOOF_STACK_BUFFER_SIZE, &lengthS1U, s1, length1, status); UChar s2Buf[USPOOF_STACK_BUFFER_SIZE]; int32_t lengthS2U; UChar *s2U = convertFromUTF8(s2Buf, USPOOF_STACK_BUFFER_SIZE, &lengthS2U, s2, length2, status); int32_t results = uspoof_areConfusable(sc, s1U, lengthS1U, s2U, lengthS2U, status); if (s1U != s1Buf) { uprv_free(s1U); } if (s2U != s2Buf) { uprv_free(s2U); } return results; } U_CAPI int32_t U_EXPORT2 uspoof_areConfusableUnicodeString(const USpoofChecker *sc, const icu::UnicodeString &s1, const icu::UnicodeString &s2, UErrorCode *status) { const UChar *u1 = s1.getBuffer(); int32_t length1 = s1.length(); const UChar *u2 = s2.getBuffer(); int32_t length2 = s2.length(); int32_t results = uspoof_areConfusable(sc, u1, length1, u2, length2, status); return results; } U_CAPI int32_t U_EXPORT2 uspoof_checkUnicodeString(const USpoofChecker *sc, const icu::UnicodeString &text, int32_t *position, UErrorCode *status) { int32_t result = uspoof_check(sc, text.getBuffer(), text.length(), position, status); return result; } U_CAPI int32_t U_EXPORT2 uspoof_getSkeleton(const USpoofChecker *sc, uint32_t type, const UChar *s, int32_t length, UChar *dest, int32_t destCapacity, UErrorCode *status) { // TODO: this function could be sped up a bit // Skip the input normalization when not needed, work from callers data. // Put the initial skeleton straight into the caller's destination buffer. // It probably won't need normalization. // But these would make the structure more complicated. const SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (U_FAILURE(*status)) { return 0; } if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL) || (type & ~(USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE)) != 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } int32_t tableMask = 0; switch (type) { case 0: tableMask = USPOOF_ML_TABLE_FLAG; break; case USPOOF_SINGLE_SCRIPT_CONFUSABLE: tableMask = USPOOF_SL_TABLE_FLAG; break; case USPOOF_ANY_CASE: tableMask = USPOOF_MA_TABLE_FLAG; break; case USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE: tableMask = USPOOF_SA_TABLE_FLAG; break; default: *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } // NFD transform of the user supplied input UChar nfdStackBuf[USPOOF_STACK_BUFFER_SIZE]; UChar *nfdInput = nfdStackBuf; int32_t normalizedLen = unorm_normalize( s, length, UNORM_NFD, 0, nfdInput, USPOOF_STACK_BUFFER_SIZE, status); if (*status == U_BUFFER_OVERFLOW_ERROR) { nfdInput = (UChar *)uprv_malloc((normalizedLen+1)*sizeof(UChar)); if (nfdInput == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } *status = U_ZERO_ERROR; normalizedLen = unorm_normalize(s, length, UNORM_NFD, 0, nfdInput, normalizedLen+1, status); } if (U_FAILURE(*status)) { if (nfdInput != nfdStackBuf) { uprv_free(nfdInput); } return 0; } // buffer to hold the Unicode defined skeleton mappings for a single code point UChar buf[USPOOF_MAX_SKELETON_EXPANSION]; // Apply the skeleton mapping to the NFD normalized input string // Accumulate the skeleton, possibly unnormalized, in a UnicodeString. int32_t inputIndex = 0; UnicodeString skelStr; while (inputIndex < normalizedLen) { UChar32 c; U16_NEXT(nfdInput, inputIndex, normalizedLen, c); int32_t replaceLen = This->confusableLookup(c, tableMask, buf); skelStr.append(buf, replaceLen); } if (nfdInput != nfdStackBuf) { uprv_free(nfdInput); } const UChar *result = skelStr.getBuffer(); int32_t resultLen = skelStr.length(); UChar *normedResult = NULL; // Check the skeleton for NFD, normalize it if needed. // Unnormalized results should be very rare. if (!unorm_isNormalized(result, resultLen, UNORM_NFD, status)) { normalizedLen = unorm_normalize(result, resultLen, UNORM_NFD, 0, NULL, 0, status); normedResult = static_cast(uprv_malloc((normalizedLen+1)*sizeof(UChar))); if (normedResult == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } *status = U_ZERO_ERROR; unorm_normalize(result, resultLen, UNORM_NFD, 0, normedResult, normalizedLen+1, status); result = normedResult; resultLen = normalizedLen; } // Copy the skeleton to the caller's buffer if (U_SUCCESS(*status)) { if (destCapacity == 0 || resultLen > destCapacity) { *status = resultLen>destCapacity ? U_BUFFER_OVERFLOW_ERROR : U_STRING_NOT_TERMINATED_WARNING; } else { u_memcpy(dest, result, resultLen); if (destCapacity > resultLen) { dest[resultLen] = 0; } else { *status = U_STRING_NOT_TERMINATED_WARNING; } } } uprv_free(normedResult); return resultLen; } U_I18N_API UnicodeString & U_EXPORT2 uspoof_getSkeletonUnicodeString(const USpoofChecker *sc, uint32_t type, const UnicodeString &s, UnicodeString &dest, UErrorCode *status) { if (U_FAILURE(*status)) { return dest; } dest.remove(); const UChar *str = s.getBuffer(); int32_t strLen = s.length(); UChar smallBuf[USPOOF_STACK_BUFFER_SIZE]; UChar *buf = smallBuf; int32_t outputSize = uspoof_getSkeleton(sc, type, str, strLen, smallBuf, USPOOF_STACK_BUFFER_SIZE, status); if (*status == U_BUFFER_OVERFLOW_ERROR) { buf = static_cast(uprv_malloc((outputSize+1)*sizeof(UChar))); if (buf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return dest; } *status = U_ZERO_ERROR; uspoof_getSkeleton(sc, type, str, strLen, buf, outputSize+1, status); } if (U_SUCCESS(*status)) { dest.setTo(buf, outputSize); } if (buf != smallBuf) { uprv_free(buf); } return dest; } U_CAPI int32_t U_EXPORT2 uspoof_getSkeletonUTF8(const USpoofChecker *sc, uint32_t type, const char *s, int32_t length, char *dest, int32_t destCapacity, UErrorCode *status) { // Lacking a UTF-8 normalization API, just converting the input to // UTF-16 seems as good an approach as any. In typical use, input will // be an identifier, which is to say not too long for stack buffers. if (U_FAILURE(*status)) { return 0; } // Buffers for the UChar form of the input and skeleton strings. UChar smallInBuf[USPOOF_STACK_BUFFER_SIZE]; UChar *inBuf = smallInBuf; UChar smallOutBuf[USPOOF_STACK_BUFFER_SIZE]; UChar *outBuf = smallOutBuf; int32_t lengthInUChars = 0; int32_t skelLengthInUChars = 0; int32_t skelLengthInUTF8 = 0; u_strFromUTF8(inBuf, USPOOF_STACK_BUFFER_SIZE, &lengthInUChars, s, length, status); if (*status == U_BUFFER_OVERFLOW_ERROR) { inBuf = static_cast(uprv_malloc((lengthInUChars+1)*sizeof(UChar))); if (inBuf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; goto cleanup; } *status = U_ZERO_ERROR; u_strFromUTF8(inBuf, lengthInUChars+1, &lengthInUChars, s, length, status); } skelLengthInUChars = uspoof_getSkeleton(sc, type, inBuf, lengthInUChars, outBuf, USPOOF_STACK_BUFFER_SIZE, status); if (*status == U_BUFFER_OVERFLOW_ERROR) { outBuf = static_cast(uprv_malloc((skelLengthInUChars+1)*sizeof(UChar))); if (outBuf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; goto cleanup; } *status = U_ZERO_ERROR; skelLengthInUChars = uspoof_getSkeleton(sc, type, inBuf, lengthInUChars, outBuf, skelLengthInUChars+1, status); } u_strToUTF8(dest, destCapacity, &skelLengthInUTF8, outBuf, skelLengthInUChars, status); cleanup: if (inBuf != smallInBuf) { uprv_free(inBuf); } if (outBuf != smallOutBuf) { uprv_free(outBuf); } return skelLengthInUTF8; } U_CAPI int32_t U_EXPORT2 uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) { SpoofImpl *This = SpoofImpl::validateThis(sc, *status); if (This == NULL) { U_ASSERT(U_FAILURE(*status)); return 0; } int32_t dataSize = This->fSpoofData->fRawData->fLength; if (capacity < dataSize) { *status = U_BUFFER_OVERFLOW_ERROR; return dataSize; } uprv_memcpy(buf, This->fSpoofData->fRawData, dataSize); return dataSize; } #endif