/* ********************************************************************** * Copyright (C) 1999, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "rbt_pars.h" #include "unicode/rbt.h" #include "rbt_rule.h" #include "unirange.h" #include "rbt_data.h" #include "unicode/uniset.h" #include "cstring.h" #include "unicode/parsepos.h" #include "symtable.h" #include "unicode/parseerr.h" #include "hash.h" // Operators #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op #define OPERATORS UNICODE_STRING("=><", 3) // Other special characters #define QUOTE ((UChar)0x0027) /*'*/ #define ESCAPE ((UChar)0x005C) /*\*/ #define END_OF_RULE ((UChar)0x003B) /*;*/ #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ #define CONTEXT_POST ((UChar)0x007D) /*}*/ #define SET_OPEN ((UChar)0x005B) /*[*/ #define SET_CLOSE ((UChar)0x005D) /*]*/ #define CURSOR_POS ((UChar)0x007C) /*|*/ #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ const UnicodeString TransliterationRuleParser::gOPERATORS = OPERATORS; //---------------------------------------------------------------------- // BEGIN ParseData //---------------------------------------------------------------------- /** * This class implements the SymbolTable interface. It is used * during parsing to give UnicodeSet access to variables that * have been defined so far. Note that it uses setVariablesVector, * _not_ data.setVariables. */ class ParseData : public SymbolTable { public: const TransliterationRuleData* data; // alias const UVector* setVariablesVector; // alias ParseData(const TransliterationRuleData* data = 0, const UVector* setVariablesVector = 0); virtual const UnicodeString* lookup(const UnicodeString& s) const; virtual const UnicodeSet* lookupSet(UChar ch) const; virtual UnicodeString parseReference(const UnicodeString& text, ParsePosition& pos, int32_t limit) const; }; ParseData::ParseData(const TransliterationRuleData* d, const UVector* sets) : data(d), setVariablesVector(sets) {} /** * Implement SymbolTable API. */ const UnicodeString* ParseData::lookup(const UnicodeString& name) const { return (const UnicodeString*) data->variableNames->get(name); } /** * Implement SymbolTable API. */ const UnicodeSet* ParseData::lookupSet(UChar ch) const { // Note that we cannot use data.lookupSet() because the // set array has not been constructed yet. const UnicodeSet* set = NULL; int32_t i = ch - data->setVariablesBase; if (i >= 0 && i < setVariablesVector->size()) { int32_t i = ch - data->setVariablesBase; set = (i < setVariablesVector->size()) ? (UnicodeSet*) setVariablesVector->elementAt(i) : 0; } return set; } /** * Implement SymbolTable API. Parse out a symbol reference * name. */ UnicodeString ParseData::parseReference(const UnicodeString& text, ParsePosition& pos, int32_t limit) const { int32_t start = pos.getIndex(); int32_t i = start; UnicodeString result; while (i < limit) { UChar c = text.charAt(i); if ((i==start && !Unicode::isUnicodeIdentifierStart(c)) || !Unicode::isUnicodeIdentifierPart(c)) { break; } ++i; } if (i == start) { // No valid name chars return result; // Indicate failure with empty string //if (start > 0) { // --start; //} //limit = ruleEnd(text, start, limit); //throw new IllegalArgumentException("Illegal variable reference " + // text.substring(start, limit)); } pos.setIndex(i); text.extractBetween(start, i, result); return result; } //---------------------------------------------------------------------- // BEGIN RuleHalf //---------------------------------------------------------------------- /** * A class representing one side of a rule. This class knows how to * parse half of a rule. It is tightly coupled to the method * RuleBasedTransliterator.Parser.parseRule(). */ class RuleHalf { public: UnicodeString text; int32_t cursor; // position of cursor in text int32_t ante; // position of ante context marker '{' in text int32_t post; // position of post context marker '}' in text // Record the position of the segment substrings and references. A // given side should have segments or segment references, but not // both. UVector* segments; // ref substring start,limits int32_t maxRef; // index of largest ref (1..9) // Record the offset to the cursor either to the left or to the // right of the key. This is indicated by characters on the output // side that allow the cursor to be positioned arbitrarily within // the matching text. For example, abc{def} > | @@@ xyz; changes // def to xyz and moves the cursor to before abc. Offset characters // must be at the start or end, and they cannot move the cursor past // the ante- or postcontext text. Placeholders are only valid in // output text. int32_t cursorOffset; // only nonzero on output side TransliterationRuleParser& parser; static const UnicodeString gOperators; //-------------------------------------------------- // Methods RuleHalf(TransliterationRuleParser& parser); ~RuleHalf(); /** * Parse one side of a rule, stopping at either the limit, * the END_OF_RULE character, or an operator. Return * the pos of the terminating character (or limit). */ int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, TransliterationRuleParser& parser); /** * Remove context. */ void removeContext(); /** * Create and return an int[] array of segments. */ int32_t* createSegments() const; int syntaxError(int32_t code, const UnicodeString& rule, int32_t start) { return parser.syntaxError(code, rule, start); } }; const UnicodeString RuleHalf::gOperators = OPERATORS; RuleHalf::RuleHalf(TransliterationRuleParser& p) : parser(p) { cursor = -1; ante = -1; post = -1; segments = NULL; maxRef = -1; cursorOffset = 0; } RuleHalf::~RuleHalf() { delete segments; } /** * Parse one side of a rule, stopping at either the limit, * the END_OF_RULE character, or an operator. Return * the pos of the terminating character (or limit). */ int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, TransliterationRuleParser& parser) { int32_t start = pos; UnicodeString& buf = text; ParsePosition pp; int32_t cursorOffsetPos = 0; // Position of first CURSOR_OFFSET on _right_ UnicodeString scratch; bool_t done = FALSE; while (pos < limit && !done) { UChar c = rule.charAt(pos++); if (Unicode::isWhitespace(c)) { // Ignore whitespace. Note that this is not Unicode // spaces, but Java spaces -- a subset, representing // whitespace likely to be seen in code. continue; } // Handle escapes if (c == ESCAPE) { if (pos == limit) { return syntaxError(RuleBasedTransliterator::TRAILING_BACKSLASH, rule, start); } // UNLIKE THE JAVA version, we parse \uXXXX escapes. We // do not do this in Java because the compiler has already // done it when the ResourceBundle file was compiled. // Parse \uXXXX escapes c = rule.charAt(pos++); if (c == 0x0075/*u*/) { if ((pos+4) > limit) { return syntaxError(RuleBasedTransliterator::MALFORMED_UNICODE_ESCAPE, rule, start); } c = (UChar)0x0000; for (int32_t plim=pos+4; pos= 0) { --pos; // Backup to point to operator break; } switch (c) { case SEGMENT_OPEN: case SEGMENT_CLOSE: // Handle segment definitions "(" and ")" // Parse "(", ")" if (segments == NULL) { segments = new UVector(); } if ((c == SEGMENT_OPEN) != (segments->size() % 2 == 0)) { return syntaxError(RuleBasedTransliterator::MISMATCHED_SEGMENT_DELIMITERS, rule, start); } segments->addElement((void*) buf.length()); break; case END_OF_RULE: --pos; // Backup to point to END_OF_RULE done = TRUE; break; case SymbolTable::SYMBOL_REF: // Handle variable references and segment references "$1" .. "$9" { // A variable reference must be followed immediately // by a Unicode identifier start and zero or more // Unicode identifier part characters, or by a digit // 1..9 if it is a segment reference. if (pos == limit) { return syntaxError(RuleBasedTransliterator::MALFORMED_SYMBOL_REFERENCE, rule, start); } // Parse "$1" "$2" .. "$9" c = rule.charAt(pos); int32_t r = Unicode::digit(c, 10); if (r >= 1 && r <= 9) { if (r > maxRef) { maxRef = r; } buf.append(parser.data->getSegmentStandin(r)); ++pos; } else { pp.setIndex(pos); UnicodeString name = parser.parseData-> parseReference(rule, pp, limit); if (name.length() == 0) { return syntaxError(RuleBasedTransliterator::MALFORMED_VARIABLE_REFERENCE, rule, start); } pos = pp.getIndex(); // If this is a variable definition statement, // then the LHS variable will be undefined. In // that case appendVariableDef() will append the // special placeholder char variableLimit-1. //buf.append(parser.getVariableDef(name)); parser.appendVariableDef(name, buf); } } break; case CONTEXT_ANTE: if (ante >= 0) { return syntaxError(RuleBasedTransliterator::MULTIPLE_ANTE_CONTEXTS, rule, start); } ante = buf.length(); break; case CONTEXT_POST: if (post >= 0) { return syntaxError(RuleBasedTransliterator::MULTIPLE_POST_CONTEXTS, rule, start); } post = buf.length(); break; case SET_OPEN: pp.setIndex(pos-1); // Backup to opening '[' buf.append(parser.parseSet(rule, pp)); if (U_FAILURE(parser.status)) { return syntaxError(RuleBasedTransliterator::MALFORMED_SET, rule, start); } pos = pp.getIndex(); break; case CURSOR_POS: if (cursor >= 0) { return syntaxError(RuleBasedTransliterator::MULTIPLE_CURSORS, rule, start); } cursor = buf.length(); break; case CURSOR_OFFSET: if (cursorOffset < 0) { if (buf.length() > 0) { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } --cursorOffset; } else if (cursorOffset > 0) { if (buf.length() != cursorOffsetPos || cursor >= 0) { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } ++cursorOffset; } else { if (cursor == 0 && buf.length() == 0) { cursorOffset = -1; } else if (cursor < 0) { cursorOffsetPos = buf.length(); cursorOffset = 1; } else { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } } break; // case SET_CLOSE: default: // Disallow unquoted characters other than [0-9A-Za-z] // in the printable ASCII range. These characters are // reserved for possible future use. if (c >= 0x0021 && c <= 0x007E && !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { return syntaxError(RuleBasedTransliterator::UNQUOTED_SPECIAL, rule, start); } buf.append(c); break; } } if (cursorOffset > 0 && cursor != cursorOffsetPos) { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } // text = buf.toString(); return pos; } /** * Remove context. */ void RuleHalf::removeContext() { //text = text.substring(ante < 0 ? 0 : ante, // post < 0 ? text.length() : post); if (post >= 0) { text.remove(post); } if (ante >= 0) { text.removeBetween(0, ante); } ante = post = -1; } /** * Create and return an int32_t[] array of segments. */ int32_t* RuleHalf::createSegments() const { if (segments == NULL) { return NULL; } int32_t len = segments->size(); int32_t* result = new int32_t[len + 1]; for (int32_t i=0; ielementAt(i); } result[len] = -1; // end marker return result; } //---------------------------------------------------------------------- // END RuleHalf //---------------------------------------------------------------------- TransliterationRuleData* TransliterationRuleParser::parse(const UnicodeString& rules, UTransDirection direction, UParseError* parseError) { TransliterationRuleParser parser(rules, direction, parseError); parser.parseRules(); if (U_FAILURE(parser.status)) { delete parser.data; parser.data = 0; } return parser.data; } /** * @param rules list of rules, separated by newline characters * @exception IllegalArgumentException if there is a syntax error in the * rules */ TransliterationRuleParser::TransliterationRuleParser( const UnicodeString& theRules, UTransDirection theDirection, UParseError* theParseError) : rules(theRules), direction(theDirection), data(0), parseError(theParseError) { parseData = new ParseData(0, &setVariablesVector); } /** * Destructor. */ TransliterationRuleParser::~TransliterationRuleParser() { delete parseData; } /** * Parse the given string as a sequence of rules, separated by newline * characters ('\n'), and cause this object to implement those rules. Any * previous rules are discarded. Typically this method is called exactly * once, during construction. * @exception IllegalArgumentException if there is a syntax error in the * rules */ void TransliterationRuleParser::parseRules(void) { status = U_ZERO_ERROR; delete data; data = new TransliterationRuleData(status); if (U_FAILURE(status)) { return; } parseData->data = data; setVariablesVector.removeAllElements(); if (parseError != 0) { parseError->code = 0; } determineVariableRange(); int32_t pos = 0; int32_t limit = rules.length(); while (pos < limit && U_SUCCESS(status)) { UChar c = rules.charAt(pos++); if (Unicode::isWhitespace(c)) { // Ignore leading whitespace. Note that this is not // Unicode spaces, but Java spaces -- a subset, // representing whitespace likely to be seen in code. continue; } // Skip lines starting with the comment character if (c == RULE_COMMENT_CHAR) { pos = rules.indexOf((UChar)0x000A /*\n*/, pos) + 1; if (pos == 0) { break; // No "\n" found; rest of rule is a commnet } continue; // Either fall out or restart with next line } // We've found the start of a rule. c is its first // character, and pos points past c. Lexically parse the // rule into component pieces. pos = parseRule(--pos, limit); } // Convert the set vector to an array data->setVariablesLength = setVariablesVector.size(); data->setVariables = data->setVariablesLength == 0 ? 0 : new UnicodeSet*[data->setVariablesLength]; // orphanElement removes the given element and shifts all other // elements down. For performance (and code clarity) we work from // the end back to index 0. for (int32_t i=data->setVariablesLength; i>0; ) { --i; data->setVariables[i] = (UnicodeSet*) setVariablesVector.orphanElementAt(i); } // Index the rules if (U_SUCCESS(status)) { data->ruleSet.freeze(*data, status); } } /** * MAIN PARSER. Parse the next rule in the given rule string, starting * at pos. Return the index after the last character parsed. Do not * parse characters at or after limit. * * Important: The character at pos must be a non-whitespace character * that is not the comment character. * * This method handles quoting, escaping, and whitespace removal. It * parses the end-of-rule character. It recognizes context and cursor * indicators. Once it does a lexical breakdown of the rule at pos, it * creates a rule object and adds it to our rule list. */ int32_t TransliterationRuleParser::parseRule(int32_t pos, int32_t limit) { // Locate the left side, operator, and right side int32_t start = pos; UChar op = 0; const UnicodeString& rule = rules; // TEMPORARY: FIX LATER // Use pointers to automatics to make swapping possible. RuleHalf _left(*this), _right(*this); RuleHalf* left = &_left; RuleHalf* right = &_right; undefinedVariableName.remove(); pos = left->parse(rule, pos, limit, *this); if (U_FAILURE(status)) { return start; } if (pos == limit || gOPERATORS.indexOf(op = rule.charAt(pos++)) < 0) { return syntaxError(RuleBasedTransliterator::MISSING_OPERATOR, rule, start); } // Found an operator char. Check for forward-reverse operator. if (op == REVERSE_RULE_OP && (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { ++pos; op = FWDREV_RULE_OP; } pos = right->parse(rule, pos, limit, *this); if (U_FAILURE(status)) { return start; } if (pos < limit) { if (rule.charAt(pos) == END_OF_RULE) { ++pos; } else { // RuleHalf parser must have terminated at an operator return syntaxError(RuleBasedTransliterator::UNQUOTED_SPECIAL, rule, start); } } if (op == VARIABLE_DEF_OP) { // LHS is the name. RHS is a single character, either a literal // or a set (already parsed). If RHS is longer than one // character, it is either a multi-character string, or multiple // sets, or a mixture of chars and sets -- syntax error. // We expect to see a single undefined variable (the one being // defined). if (undefinedVariableName.length() == 0) { // "Missing '$' or duplicate definition" return syntaxError(RuleBasedTransliterator::BAD_VARIABLE_DEFINITION, rule, start); } if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { // "Malformed LHS" return syntaxError(RuleBasedTransliterator::MALFORMED_VARIABLE_DEFINITION, rule, start); } // We allow anything on the right, including an empty string. UnicodeString* value = new UnicodeString(right->text); data->variableNames->put(undefinedVariableName, value, status); ++variableLimit; return pos; } // If this is not a variable definition rule, we shouldn't have // any undefined variable names. if (undefinedVariableName.length() != 0) { syntaxError(// "Undefined variable $" + undefinedVariableName, RuleBasedTransliterator::UNDEFINED_VARIABLE, rule, start); } // If the direction we want doesn't match the rule // direction, do nothing. if (op != FWDREV_RULE_OP && ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { return pos; } // Transform the rule into a forward rule by swapping the // sides if necessary. if (direction == UTRANS_REVERSE) { left = &_right; right = &_left; } // Remove non-applicable elements in forward-reverse // rules. Bidirectional rules ignore elements that do not // apply. if (op == FWDREV_RULE_OP) { right->removeContext(); delete right->segments; right->segments = NULL; left->cursor = left->maxRef = -1; left->cursorOffset = 0; } // Normalize context if (left->ante < 0) { left->ante = 0; } if (left->post < 0) { left->post = left->text.length(); } // Context is only allowed on the input side. Cursors are only // allowed on the output side. Segment delimiters can only appear // on the left, and references on the right. Cursor offset // cannot appear without an explicit cursor. Cursor offset // cannot place the cursor outside the limits of the context. if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || right->segments != NULL || left->maxRef >= 0 || (right->cursorOffset != 0 && right->cursor < 0) || (right->cursorOffset > (left->text.length() - left->post)) || (-right->cursorOffset > left->ante)) { return syntaxError(RuleBasedTransliterator::MALFORMED_RULE, rule, start); } // Check integrity of segments and segment references. Each // segment's start must have a corresponding limit, and the // references must not refer to segments that do not exist. if (left->segments != NULL) { int n = left->segments->size(); if (n % 2 != 0) { return syntaxError(RuleBasedTransliterator::MISSING_SEGMENT_CLOSE, rule, start); } n /= 2; if (right->maxRef > n) { return syntaxError(RuleBasedTransliterator::UNDEFINED_SEGMENT_REFERENCE, rule, start); } } data->ruleSet.addRule(new TransliterationRule( left->text, left->ante, left->post, right->text, right->cursor, right->cursorOffset, left->createSegments(), status), status); return pos; } /** * Called by main parser upon syntax error. Search the rule string * for the probable end of the rule. Of course, if the error is that * the end of rule marker is missing, then the rule end will not be found. * In any case the rule start will be correctly reported. * @param msg error description * @param rule pattern string * @param start position of first character of current rule */ int32_t TransliterationRuleParser::syntaxError(int32_t parseErrorCode, const UnicodeString& rule, int32_t start) { if (parseError != 0) { parseError->code = parseErrorCode; parseError->line = 0; // We don't return a line # parseError->offset = start; // Character offset from rule start int32_t end = quotedIndexOf(rule, start, rule.length(), END_OF_RULE); if (end < 0) { end = rule.length(); } int32_t len = uprv_max(end - start, U_PARSE_CONTEXT_LEN-1); // Extract everything into the preContext and leave the postContext // blank, since we don't have precise error position. // TODO: Fix this. rule.extract(start, len, parseError->preContext); // Current rule parseError->preContext[len] = 0; parseError->postContext[0] = 0; } status = U_ILLEGAL_ARGUMENT_ERROR; return start; } /** * Parse a UnicodeSet out, store it, and return the stand-in character * used to represent it. */ UChar TransliterationRuleParser::parseSet(const UnicodeString& rule, ParsePosition& pos) { UnicodeSet* set = new UnicodeSet(rule, pos, *parseData, status); if (variableNext >= variableLimit) { // throw new RuntimeException("Private use variables exhausted"); delete set; status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } set->compact(); setVariablesVector.addElement(set); return variableNext++; } /** * Append the value of the given variable name to the given * UnicodeString. */ void TransliterationRuleParser::appendVariableDef(const UnicodeString& name, UnicodeString& buf) { const UnicodeString* s = (const UnicodeString*) data->variableNames->get(name); if (s == NULL) { // We allow one undefined variable so that variable definition // statements work. For the first undefined variable we return // the special placeholder variableLimit-1, and save the variable // name. if (undefinedVariableName.length() == 0) { undefinedVariableName = name; if (variableNext >= variableLimit) { // throw new RuntimeException("Private use variables exhausted"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } buf.append((UChar) --variableLimit); } else { //throw new IllegalArgumentException("Undefined variable $" // + name); status = U_ILLEGAL_ARGUMENT_ERROR; return; } } else { buf.append(*s); } } /** * Determines what part of the private use region of Unicode we can use for * variable stand-ins. The correct way to do this is as follows: Parse each * rule, and for forward and reverse rules, take the FROM expression, and * make a hash of all characters used. The TO expression should be ignored. * When done, everything not in the hash is available for use. In practice, * this method may employ some other algorithm for improved speed. */ void TransliterationRuleParser::determineVariableRange(void) { UnicodeRange privateUse(0xE000, 0x1900); // Private use area UnicodeRange* r = privateUse.largestUnusedSubrange(rules); data->setVariablesBase = variableNext = variableLimit = (UChar) 0; if (r != 0) { // Allocate 9 characters for segment references 1 through 9 data->segmentBase = r->start; data->setVariablesBase = variableNext = (UChar) (data->segmentBase + 9); variableLimit = (UChar) (r->start + r->length); delete r; } if (variableNext >= variableLimit) { status = U_ILLEGAL_ARGUMENT_ERROR; } } /** * Returns the index of a character, ignoring quoted text. * For example, in the string "abc'hide'h", the 'h' in "hide" will not be * found by a search for 'h'. */ int32_t TransliterationRuleParser::quotedIndexOf(const UnicodeString& text, int32_t start, int32_t limit, UChar charToFind) { for (int32_t i=start; i