/* ****************************************************************************** * Copyright (C) 1996-2012, International Business Machines * * Corporation and others. All Rights Reserved. * ****************************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/unistr.h" #include "unicode/putil.h" #include "unicode/usearch.h" #include "cmemory.h" #include "unicode/coll.h" #include "unicode/tblcoll.h" #include "unicode/coleitr.h" #include "unicode/ucoleitr.h" #include "unicode/regex.h" // TODO: make conditional on regexp being built. #include "unicode/uniset.h" #include "unicode/uset.h" #include "unicode/ustring.h" #include "hash.h" #include "uhash.h" #include "ucln_in.h" #include "ucol_imp.h" #include "umutex.h" #include "uassert.h" #include "unicode/colldata.h" U_NAMESPACE_BEGIN #define ARRAY_SIZE(array) (sizeof(array)/sizeof(array[0])) #define NEW_ARRAY(type, count) (type *) uprv_malloc((count) * sizeof(type)) #define DELETE_ARRAY(array) uprv_free((void *) (array)) #define ARRAY_COPY(dst, src, count) uprv_memcpy((void *) (dst), (void *) (src), (count) * sizeof (src)[0]) UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CEList) #ifdef INSTRUMENT_CELIST int32_t CEList::_active = 0; int32_t CEList::_histogram[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; #endif CEList::CEList(UCollator *coll, const UnicodeString &string, UErrorCode &status) : ces(NULL), listMax(CELIST_BUFFER_SIZE), listSize(0) { UCollationElements *elems = ucol_openElements(coll, string.getBuffer(), string.length(), &status); UCollationStrength strength = ucol_getStrength(coll); UBool toShift = ucol_getAttribute(coll, UCOL_ALTERNATE_HANDLING, &status) == UCOL_SHIFTED; uint32_t variableTop = ucol_getVariableTop(coll, &status); uint32_t strengthMask = 0; int32_t order; if (U_FAILURE(status)) { return; } // **** only set flag if string has Han(gul) **** ucol_forceHanImplicit(elems, &status); switch (strength) { default: strengthMask |= UCOL_TERTIARYORDERMASK; /* fall through */ case UCOL_SECONDARY: strengthMask |= UCOL_SECONDARYORDERMASK; /* fall through */ case UCOL_PRIMARY: strengthMask |= UCOL_PRIMARYORDERMASK; } #ifdef INSTRUMENT_CELIST _active += 1; _histogram[0] += 1; #endif ces = ceBuffer; while ((order = ucol_next(elems, &status)) != UCOL_NULLORDER) { UBool cont = isContinuation(order); order &= strengthMask; if (toShift && variableTop > (uint32_t)order && (order & UCOL_PRIMARYORDERMASK) != 0) { if (strength >= UCOL_QUATERNARY) { order &= UCOL_PRIMARYORDERMASK; } else { order = UCOL_IGNORABLE; } } if (order == UCOL_IGNORABLE) { continue; } if (cont) { order |= UCOL_CONTINUATION_MARKER; } add(order, status); } ucol_closeElements(elems); } CEList::~CEList() { #ifdef INSTRUMENT_CELIST _active -= 1; #endif if (ces != ceBuffer) { DELETE_ARRAY(ces); } } void CEList::add(uint32_t ce, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (listSize >= listMax) { int32_t newMax = listMax + CELIST_BUFFER_SIZE; #ifdef INSTRUMENT_CELIST _histogram[listSize / CELIST_BUFFER_SIZE] += 1; #endif uint32_t *newCEs = NEW_ARRAY(uint32_t, newMax); if (newCEs == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } uprv_memcpy(newCEs, ces, listSize * sizeof(uint32_t)); if (ces != ceBuffer) { DELETE_ARRAY(ces); } ces = newCEs; listMax = newMax; } ces[listSize++] = ce; } uint32_t CEList::get(int32_t index) const { if (index >= 0 && index < listSize) { return ces[index]; } return (uint32_t)UCOL_NULLORDER; } uint32_t &CEList::operator[](int32_t index) const { return ces[index]; } UBool CEList::matchesAt(int32_t offset, const CEList *other) const { if (other == NULL || listSize - offset < other->size()) { return FALSE; } for (int32_t i = offset, j = 0; j < other->size(); i += 1, j += 1) { if (ces[i] != (*other)[j]) { return FALSE; } } return TRUE; } int32_t CEList::size() const { return listSize; } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(StringList) #ifdef INSTRUMENT_STRING_LIST int32_t StringList::_lists = 0; int32_t StringList::_strings = 0; int32_t StringList::_histogram[101] = {0}; #endif StringList::StringList(UErrorCode &status) : strings(NULL), listMax(STRING_LIST_BUFFER_SIZE), listSize(0) { if (U_FAILURE(status)) { return; } strings = new UnicodeString [listMax]; if (strings == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } #ifdef INSTRUMENT_STRING_LIST _lists += 1; _histogram[0] += 1; #endif } StringList::~StringList() { delete[] strings; } void StringList::add(const UnicodeString *string, UErrorCode &status) { if (U_FAILURE(status)) { return; } #ifdef INSTRUMENT_STRING_LIST _strings += 1; #endif if (listSize >= listMax) { int32_t newMax = listMax + STRING_LIST_BUFFER_SIZE; UnicodeString *newStrings = new UnicodeString[newMax]; if (newStrings == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } for (int32_t i=0; i 100) { _h = 100; } _histogram[_h] += 1; #endif delete[] strings; strings = newStrings; listMax = newMax; } // The ctor initialized all the strings in // the array to empty strings, so this // is the same as copying the source string. strings[listSize++].append(*string); } void StringList::add(const UChar *chars, int32_t count, UErrorCode &status) { const UnicodeString string(chars, count); add(&string, status); } const UnicodeString *StringList::get(int32_t index) const { if (index >= 0 && index < listSize) { return &strings[index]; } return NULL; } int32_t StringList::size() const { return listSize; } U_CDECL_BEGIN static void U_CALLCONV deleteStringList(void *obj) { StringList *strings = (StringList *) obj; delete strings; } static void U_CALLCONV deleteCEList(void *obj) { CEList *list = (CEList *) obj; delete list; } static void U_CALLCONV deleteUnicodeStringKey(void *obj) { UnicodeString *key = (UnicodeString *) obj; delete key; } static void U_CALLCONV deleteChars(void * /*obj*/) { // char *chars = (char *) obj; // All the key strings are owned by the // CollData objects and don't need to // be freed here. //DELETE_ARRAY(chars); } U_CDECL_END class CEToStringsMap : public UMemory { public: CEToStringsMap(UErrorCode &status); ~CEToStringsMap(); void put(uint32_t ce, UnicodeString *string, UErrorCode &status); StringList *getStringList(uint32_t ce) const; private: void putStringList(uint32_t ce, StringList *stringList, UErrorCode &status); UHashtable *map; }; CEToStringsMap::CEToStringsMap(UErrorCode &status) : map(NULL) { if (U_FAILURE(status)) { return; } map = uhash_open(uhash_hashLong, uhash_compareLong, uhash_compareCaselessUnicodeString, &status); if (U_FAILURE(status)) { return; } uhash_setValueDeleter(map, deleteStringList); } CEToStringsMap::~CEToStringsMap() { uhash_close(map); } void CEToStringsMap::put(uint32_t ce, UnicodeString *string, UErrorCode &status) { StringList *strings = getStringList(ce); if (strings == NULL) { strings = new StringList(status); if (strings == NULL || U_FAILURE(status)) { status = U_MEMORY_ALLOCATION_ERROR; return; } putStringList(ce, strings, status); } strings->add(string, status); } StringList *CEToStringsMap::getStringList(uint32_t ce) const { return (StringList *) uhash_iget(map, ce); } void CEToStringsMap::putStringList(uint32_t ce, StringList *stringList, UErrorCode &status) { uhash_iput(map, ce, (void *) stringList, &status); } class StringToCEsMap : public UMemory { public: StringToCEsMap(UErrorCode &status); ~StringToCEsMap(); void put(const UnicodeString *string, const CEList *ces, UErrorCode &status); const CEList *get(const UnicodeString *string); void free(const CEList *list); private: UHashtable *map; }; StringToCEsMap::StringToCEsMap(UErrorCode &status) : map(NULL) { if (U_FAILURE(status)) { return; } map = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, uhash_compareLong, &status); if (U_FAILURE(status)) { return; } uhash_setValueDeleter(map, deleteCEList); uhash_setKeyDeleter(map, deleteUnicodeStringKey); } StringToCEsMap::~StringToCEsMap() { uhash_close(map); } void StringToCEsMap::put(const UnicodeString *string, const CEList *ces, UErrorCode &status) { uhash_put(map, (void *) string, (void *) ces, &status); } const CEList *StringToCEsMap::get(const UnicodeString *string) { return (const CEList *) uhash_get(map, string); } class CollDataCacheEntry : public UMemory { public: CollDataCacheEntry(CollData *theData); ~CollDataCacheEntry(); CollData *data; int32_t refCount; }; CollDataCacheEntry::CollDataCacheEntry(CollData *theData) : data(theData), refCount(1) { // nothing else to do } CollDataCacheEntry::~CollDataCacheEntry() { // check refCount? delete data; } class CollDataCache : public UMemory { public: CollDataCache(UErrorCode &status); ~CollDataCache(); CollData *get(UCollator *collator, UErrorCode &status); void unref(CollData *collData); void flush(); private: static char *getKey(UCollator *collator, char *keyBuffer, int32_t *charBufferLength); static void deleteKey(char *key); UHashtable *cache; }; static UMutex lock = U_MUTEX_INITIALIZER; U_CDECL_BEGIN static void U_CALLCONV deleteCollDataCacheEntry(void *obj) { CollDataCacheEntry *entry = (CollDataCacheEntry *) obj; delete entry; } U_CDECL_END CollDataCache::CollDataCache(UErrorCode &status) : cache(NULL) { if (U_FAILURE(status)) { return; } cache = uhash_open(uhash_hashChars, uhash_compareChars, uhash_compareLong, &status); if (U_FAILURE(status)) { return; } uhash_setValueDeleter(cache, deleteCollDataCacheEntry); uhash_setKeyDeleter(cache, deleteChars); } CollDataCache::~CollDataCache() { umtx_lock(&lock); uhash_close(cache); cache = NULL; umtx_unlock(&lock); } CollData *CollDataCache::get(UCollator *collator, UErrorCode &status) { char keyBuffer[KEY_BUFFER_SIZE]; int32_t keyLength = KEY_BUFFER_SIZE; char *key = getKey(collator, keyBuffer, &keyLength); CollData *result = NULL, *newData = NULL; CollDataCacheEntry *entry = NULL, *newEntry = NULL; umtx_lock(&lock); entry = (CollDataCacheEntry *) uhash_get(cache, key); if (entry == NULL) { umtx_unlock(&lock); newData = new CollData(collator, key, keyLength, status); newEntry = new CollDataCacheEntry(newData); if (U_FAILURE(status) || newData == NULL || newEntry == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } umtx_lock(&lock); entry = (CollDataCacheEntry *) uhash_get(cache, key); if (entry == NULL) { uhash_put(cache, newData->key, newEntry, &status); umtx_unlock(&lock); if (U_FAILURE(status)) { delete newEntry; delete newData; return NULL; } return newData; } } result = entry->data; entry->refCount += 1; umtx_unlock(&lock); if (key != keyBuffer) { deleteKey(key); } if (newEntry != NULL) { delete newEntry; delete newData; } return result; } void CollDataCache::unref(CollData *collData) { CollDataCacheEntry *entry = NULL; umtx_lock(&lock); entry = (CollDataCacheEntry *) uhash_get(cache, collData->key); if (entry != NULL) { entry->refCount -= 1; } umtx_unlock(&lock); } char *CollDataCache::getKey(UCollator *collator, char *keyBuffer, int32_t *keyBufferLength) { UErrorCode status = U_ZERO_ERROR; int32_t len = ucol_getShortDefinitionString(collator, NULL, keyBuffer, *keyBufferLength, &status); if (len >= *keyBufferLength) { *keyBufferLength = (len + 2) & ~1; // round to even length, leaving room for terminating null keyBuffer = NEW_ARRAY(char, *keyBufferLength); status = U_ZERO_ERROR; len = ucol_getShortDefinitionString(collator, NULL, keyBuffer, *keyBufferLength, &status); } keyBuffer[len] = '\0'; return keyBuffer; } void CollDataCache::flush() { const UHashElement *element; int32_t pos = -1; umtx_lock(&lock); while ((element = uhash_nextElement(cache, &pos)) != NULL) { CollDataCacheEntry *entry = (CollDataCacheEntry *) element->value.pointer; if (entry->refCount <= 0) { uhash_removeElement(cache, element); } } umtx_unlock(&lock); } void CollDataCache::deleteKey(char *key) { DELETE_ARRAY(key); } U_CDECL_BEGIN static UBool coll_data_cleanup(void) { CollData::freeCollDataCache(); return TRUE; } U_CDECL_END UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CollData) CollData::CollData() { // nothing } #define CLONE_COLLATOR //#define CACHE_CELISTS CollData::CollData(UCollator *collator, char *cacheKey, int32_t cacheKeyLength, UErrorCode &status) : coll(NULL), charsToCEList(NULL), ceToCharsStartingWith(NULL), key(NULL) { // [:c:] == [[:cn:][:cc:][:co:][:cf:][:cs:]] // i.e. other, control, private use, format, surrogate U_STRING_DECL(test_pattern, "[[:assigned:]-[:c:]]", 20); U_STRING_INIT(test_pattern, "[[:assigned:]-[:c:]]", 20); USet *charsToTest = uset_openPattern(test_pattern, 20, &status); // Han ext. A, Han, Jamo, Hangul, Han Ext. B // i.e. all the characers we handle implicitly U_STRING_DECL(remove_pattern, "[[\\u3400-\\u9FFF][\\u1100-\\u11F9][\\uAC00-\\uD7AF][\\U00020000-\\U0002A6DF]]", 70); U_STRING_INIT(remove_pattern, "[[\\u3400-\\u9FFF][\\u1100-\\u11F9][\\uAC00-\\uD7AF][\\U00020000-\\U0002A6DF]]", 70); USet *charsToRemove = uset_openPattern(remove_pattern, 70, &status); if (U_FAILURE(status)) { return; } USet *expansions = uset_openEmpty(); USet *contractions = uset_openEmpty(); int32_t itemCount; #ifdef CACHE_CELISTS charsToCEList = new StringToCEsMap(status); if (U_FAILURE(status)) { goto bail; } #else charsToCEList = NULL; #endif ceToCharsStartingWith = new CEToStringsMap(status); if (U_FAILURE(status)) { goto bail; } if (cacheKeyLength > KEY_BUFFER_SIZE) { key = NEW_ARRAY(char, cacheKeyLength); if (key == NULL) { status = U_MEMORY_ALLOCATION_ERROR; goto bail; } } else { key = keyBuffer; } ARRAY_COPY(key, cacheKey, cacheKeyLength); #ifdef CLONE_COLLATOR coll = ucol_safeClone(collator, NULL, NULL, &status); if (U_FAILURE(status)) { goto bail; } #else coll = collator; #endif ucol_getContractionsAndExpansions(coll, contractions, expansions, FALSE, &status); uset_addAll(charsToTest, contractions); uset_addAll(charsToTest, expansions); uset_removeAll(charsToTest, charsToRemove); itemCount = uset_getItemCount(charsToTest); for(int32_t item = 0; item < itemCount; item += 1) { UChar32 start = 0, end = 0; UChar buffer[16]; int32_t len = uset_getItem(charsToTest, item, &start, &end, buffer, 16, &status); if (len == 0) { for (UChar32 ch = start; ch <= end; ch += 1) { UnicodeString *st = new UnicodeString(ch); if (st == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } CEList *ceList = new CEList(coll, *st, status); ceToCharsStartingWith->put(ceList->get(0), st, status); #ifdef CACHE_CELISTS charsToCEList->put(st, ceList, status); #else delete ceList; delete st; #endif } } else if (len > 0) { UnicodeString *st = new UnicodeString(buffer, len); if (st == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } CEList *ceList = new CEList(coll, *st, status); ceToCharsStartingWith->put(ceList->get(0), st, status); #ifdef CACHE_CELISTS charsToCEList->put(st, ceList, status); #else delete ceList; delete st; #endif } else { // shouldn't happen... } if (U_FAILURE(status)) { break; } } bail: uset_close(contractions); uset_close(expansions); uset_close(charsToRemove); uset_close(charsToTest); if (U_FAILURE(status)) { return; } UChar32 hanRanges[] = {UCOL_FIRST_HAN, UCOL_LAST_HAN, UCOL_FIRST_HAN_COMPAT, UCOL_LAST_HAN_COMPAT, UCOL_FIRST_HAN_A, UCOL_LAST_HAN_A, UCOL_FIRST_HAN_B, UCOL_LAST_HAN_B}; UChar jamoRanges[] = {UCOL_FIRST_L_JAMO, UCOL_FIRST_V_JAMO, UCOL_FIRST_T_JAMO, UCOL_LAST_T_JAMO}; UnicodeString hanString = UnicodeString::fromUTF32(hanRanges, ARRAY_SIZE(hanRanges)); UnicodeString jamoString(FALSE, jamoRanges, ARRAY_SIZE(jamoRanges)); CEList hanList(coll, hanString, status); CEList jamoList(coll, jamoString, status); int32_t j = 0; if (U_FAILURE(status)) { return; } for (int32_t c = 0; c < jamoList.size(); c += 1) { uint32_t jce = jamoList[c]; if (! isContinuation(jce)) { jamoLimits[j++] = jce; } } jamoLimits[3] += (1 << UCOL_PRIMARYORDERSHIFT); minHan = 0xFFFFFFFF; maxHan = 0; for(int32_t h = 0; h < hanList.size(); h += 2) { uint32_t han = (uint32_t) hanList[h]; if (han < minHan) { minHan = han; } if (han > maxHan) { maxHan = han; } } maxHan += (1 << UCOL_PRIMARYORDERSHIFT); } CollData::~CollData() { #ifdef CLONE_COLLATOR ucol_close(coll); #endif if (key != keyBuffer) { DELETE_ARRAY(key); } delete ceToCharsStartingWith; #ifdef CACHE_CELISTS delete charsToCEList; #endif } UCollator *CollData::getCollator() const { return coll; } const StringList *CollData::getStringList(int32_t ce) const { return ceToCharsStartingWith->getStringList(ce); } const CEList *CollData::getCEList(const UnicodeString *string) const { #ifdef CACHE_CELISTS return charsToCEList->get(string); #else UErrorCode status = U_ZERO_ERROR; const CEList *list = new CEList(coll, *string, status); if (U_FAILURE(status)) { delete list; list = NULL; } return list; #endif } void CollData::freeCEList(const CEList *list) { #ifndef CACHE_CELISTS delete list; #endif } int32_t CollData::minLengthInChars(const CEList *ceList, int32_t offset, int32_t *history) const { // find out shortest string for the longest sequence of ces. // this can probably be folded with the minLengthCache... if (history[offset] >= 0) { return history[offset]; } uint32_t ce = ceList->get(offset); int32_t maxOffset = ceList->size(); int32_t shortestLength = INT32_MAX; const StringList *strings = ceToCharsStartingWith->getStringList(ce); if (strings != NULL) { int32_t stringCount = strings->size(); for (int32_t s = 0; s < stringCount; s += 1) { const UnicodeString *string = strings->get(s); #ifdef CACHE_CELISTS const CEList *ceList2 = charsToCEList->get(string); #else UErrorCode status = U_ZERO_ERROR; const CEList *ceList2 = new CEList(coll, *string, status); if (U_FAILURE(status)) { delete ceList2; ceList2 = NULL; } #endif if (ceList->matchesAt(offset, ceList2)) { U_ASSERT(ceList2 != NULL); int32_t clength = ceList2->size(); int32_t slength = string->length(); int32_t roffset = offset + clength; int32_t rlength = 0; if (roffset < maxOffset) { rlength = minLengthInChars(ceList, roffset, history); if (rlength <= 0) { // delete before continue to avoid memory leak. #ifndef CACHE_CELISTS delete ceList2; #endif // ignore any dead ends continue; } } if (shortestLength > slength + rlength) { shortestLength = slength + rlength; } } #ifndef CACHE_CELISTS delete ceList2; #endif } } if (shortestLength == INT32_MAX) { // No matching strings at this offset. See if // the CE is in a range we can handle manually. if (ce >= minHan && ce < maxHan) { // all han have implicit orders which // generate two CEs. int32_t roffset = offset + 2; int32_t rlength = 0; //history[roffset++] = -1; //history[roffset++] = 1; if (roffset < maxOffset) { rlength = minLengthInChars(ceList, roffset, history); } if (rlength < 0) { return -1; } shortestLength = 1 + rlength; goto have_shortest; } else if (ce >= jamoLimits[0] && ce < jamoLimits[3]) { int32_t roffset = offset; int32_t rlength = 0; // **** this loop may not handle archaic Hangul correctly **** for (int32_t j = 0; roffset < maxOffset && j < 4; j += 1, roffset += 1) { uint32_t jce = ceList->get(roffset); // Some Jamo have 24-bit primary order; skip the // 2nd CE. This should always be OK because if // we're still in the loop all we've seen are // a series of Jamo in LVT order. if (isContinuation(jce)) { continue; } if (j >= 3 || jce < jamoLimits[j] || jce >= jamoLimits[j + 1]) { break; } } if (roffset == offset) { // we started with a non-L Jamo... // just say it comes from a single character roffset += 1; // See if the single Jamo has a 24-bit order. if (roffset < maxOffset && isContinuation(ceList->get(roffset))) { roffset += 1; } } if (roffset < maxOffset) { rlength = minLengthInChars(ceList, roffset, history); } if (rlength < 0) { return -1; } shortestLength = 1 + rlength; goto have_shortest; } // Can't handle it manually either. Just move on. return -1; } have_shortest: history[offset] = shortestLength; return shortestLength; } int32_t CollData::minLengthInChars(const CEList *ceList, int32_t offset) const { int32_t clength = ceList->size(); int32_t *history = NEW_ARRAY(int32_t, clength); for (int32_t i = 0; i < clength; i += 1) { history[i] = -1; } int32_t minLength = minLengthInChars(ceList, offset, history); DELETE_ARRAY(history); return minLength; } CollData *CollData::open(UCollator *collator, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } CollDataCache *cache = getCollDataCache(); return cache->get(collator, status); } void CollData::close(CollData *collData) { CollDataCache *cache = getCollDataCache(); cache->unref(collData); } CollDataCache *CollData::collDataCache = NULL; CollDataCache *CollData::getCollDataCache() { UErrorCode status = U_ZERO_ERROR; CollDataCache *cache = NULL; UMTX_CHECK(NULL, collDataCache, cache); if (cache == NULL) { cache = new CollDataCache(status); if (U_FAILURE(status)) { delete cache; return NULL; } umtx_lock(NULL); if (collDataCache == NULL) { collDataCache = cache; ucln_i18n_registerCleanup(UCLN_I18N_COLL_DATA, coll_data_cleanup); } umtx_unlock(NULL); if (collDataCache != cache) { delete cache; } } return collDataCache; } void CollData::freeCollDataCache() { CollDataCache *cache = NULL; UMTX_CHECK(NULL, collDataCache, cache); if (cache != NULL) { umtx_lock(NULL); if (collDataCache != NULL) { collDataCache = NULL; } else { cache = NULL; } umtx_unlock(NULL); delete cache; } } void CollData::flushCollDataCache() { CollDataCache *cache = NULL; UMTX_CHECK(NULL, collDataCache, cache); // **** this will fail if the another **** // **** thread deletes the cache here **** if (cache != NULL) { cache->flush(); } } U_NAMESPACE_END #endif // #if !UCONFIG_NO_COLLATION