/* ******************************************************************************* * * Copyright (C) 2000, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * * File reslist.c * * Modification History: * * Date Name Description * 02/21/00 weiv Creation. ******************************************************************************* */ #include #include "reslist.h" #include "unewdata.h" #include "unicode/ures.h" #include "error.h" #define BIN_ALIGNMENT 16 uint32_t res_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status); static const UDataInfo dataInfo= { sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, sizeof(UChar), 0, {0x52, 0x65, 0x73, 0x42}, /* dataFormat="resb" */ {1, 0, 0, 0}, /* formatVersion */ {1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/ }; static uint8_t calcPadding(uint32_t size) { /* returns space we need to pad */ return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0); } /* Writing Functions */ static uint32_t string_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { udata_write32(mem, res->u.fString.fLength); udata_writeUString(mem, res->u.fString.fChars, res->u.fString.fLength + 1); udata_writePadding(mem, calcPadding(res->fSize)); return usedOffset; } static uint32_t array_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { uint32_t *resources = NULL; uint32_t i = 0; struct SResource *current = NULL; if (U_FAILURE(*status)) { return 0; } if (res->u.fArray.fCount > 0) { resources = (uint32_t *) uprv_malloc(sizeof(uint32_t) * res->u.fArray.fCount); if (resources == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } current = res->u.fArray.fFirst; i = 0; while (current != NULL) { if (current->fType == RES_INT) { resources[i] = (current->fType << 28) | (current->u.fIntValue.fValue & 0xFFFFFFF); } else if (current->fType == RES_BINARY) { uint32_t uo = usedOffset; usedOffset = res_write(mem, current, usedOffset, status); resources[i] = (current->fType << 28) | (usedOffset >> 2); usedOffset += current->fSize + calcPadding(current->fSize) - (usedOffset - uo); } else { usedOffset = res_write(mem, current, usedOffset, status); resources[i] = (current->fType << 28) | (usedOffset >> 2); usedOffset += current->fSize + calcPadding(current->fSize); } i++; current = current->fNext; } /* usedOffset += res->fSize + pad; */ udata_write32(mem, res->u.fArray.fCount); udata_writeBlock(mem, resources, sizeof(uint32_t) * res->u.fArray.fCount); uprv_free(resources); } else { /* array is empty */ udata_write32(mem, 0); } return usedOffset; } static uint32_t intvector_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { uint32_t i = 0; udata_write32(mem, res->u.fIntVector.fCount); for(i = 0; iu.fIntVector.fCount; i++) { udata_write32(mem, res->u.fIntVector.fArray[i]); } return usedOffset; } static uint32_t bin_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { uint32_t pad = 0; uint32_t extrapad = calcPadding(res->fSize); uint32_t dataStart = usedOffset + sizeof(res->u.fBinaryValue.fLength); if (dataStart % BIN_ALIGNMENT) { pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); udata_writePadding(mem, pad); usedOffset += pad; } udata_write32(mem, res->u.fBinaryValue.fLength); udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength); udata_writePadding(mem, (BIN_ALIGNMENT - pad + extrapad)); return usedOffset; } static uint32_t int_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { return usedOffset; } static uint32_t table_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { uint8_t pad = 0; uint32_t i = 0; uint16_t *keys = NULL; uint32_t *resources = NULL; struct SResource *current = NULL; if (U_FAILURE(*status)) { return 0; } pad = calcPadding(res->fSize); if (res->u.fTable.fCount > 0) { keys = (uint16_t *) uprv_malloc(sizeof(uint16_t) * res->u.fTable.fCount); if (keys == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } resources = (uint32_t *) uprv_malloc(sizeof(uint32_t) * res->u.fTable.fCount); if (resources == NULL) { uprv_free(keys); *status = U_MEMORY_ALLOCATION_ERROR; return 0; } current = res->u.fTable.fFirst; i = 0; while (current != NULL) { assert(i < res->u.fTable.fCount); /* where the key is plus root pointer */ keys[i] = (uint16_t) (current->fKey + sizeof(uint32_t)); if (current->fType == RES_INT) { resources[i] = (current->fType << 28) | (current->u.fIntValue.fValue & 0xFFFFFFF); } else if (current->fType == RES_BINARY) { uint32_t uo = usedOffset; usedOffset = res_write(mem, current, usedOffset, status); resources[i] = (current->fType << 28) | (usedOffset >> 2); usedOffset += current->fSize + calcPadding(current->fSize) - (usedOffset - uo); } else { usedOffset = res_write(mem, current, usedOffset, status); resources[i] = (current->fType << 28) | (usedOffset >> 2); usedOffset += current->fSize + calcPadding(current->fSize); } i++; current = current->fNext; } udata_write16(mem, res->u.fTable.fCount); udata_writeBlock(mem, keys, sizeof(uint16_t) * res->u.fTable.fCount); udata_writePadding(mem, pad); udata_writeBlock(mem, resources, sizeof(uint32_t) * res->u.fTable.fCount); uprv_free(keys); uprv_free(resources); } else { /* table is empty */ udata_write16(mem, 0); udata_writePadding(mem, pad); } return usedOffset; } uint32_t res_write(UNewDataMemory *mem, struct SResource *res, uint32_t usedOffset, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } if (res != NULL) { switch (res->fType) { case RES_STRING: return string_write (mem, res, usedOffset, status); case RES_INT_VECTOR: return intvector_write (mem, res, usedOffset, status); case RES_BINARY: return bin_write (mem, res, usedOffset, status); case RES_INT: return int_write (mem, res, usedOffset, status); case RES_ARRAY: return array_write (mem, res, usedOffset, status); case RES_TABLE: return table_write (mem, res, usedOffset, status); default: break; } } *status = U_INTERNAL_PROGRAM_ERROR; return 0; } void bundle_write(struct SRBRoot *bundle, const char *outputDir, UErrorCode *status) { UNewDataMemory *mem = NULL; uint8_t pad = 0; uint32_t root = 0; uint32_t usedOffset = 0; if (U_FAILURE(*status)) { return; } mem = udata_create(outputDir, "res", bundle->fLocale, &dataInfo, U_COPYRIGHT_STRING, status); /*mem = udata_create(outputDir, "res", filename, &dataInfo, U_COPYRIGHT_STRING, status);*/ pad = calcPadding(bundle->fKeyPoint); usedOffset = sizeof(uint32_t) + bundle->fKeyPoint + pad ; /*this is how much root and keys are taking up*/ root = ((usedOffset + bundle->fRoot->u.fTable.fChildrenSize) >> 2) | (RES_TABLE << 28); /* we're gonna put the main table at the end */ udata_write32(mem, root); udata_writeBlock(mem, bundle->fKeys, bundle->fKeyPoint); udata_writePadding(mem, pad); usedOffset = res_write(mem, bundle->fRoot, usedOffset, status); udata_finish(mem, status); } /* Opening Functions */ struct SResource* table_open(struct SRBRoot *bundle, char *tag, UErrorCode *status) { struct SResource *res; if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } res->fType = RES_TABLE; res->fKey = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { uprv_free(res); return NULL; } res->fNext = NULL; res->fSize = sizeof(uint16_t); res->u.fTable.fCount = 0; res->u.fTable.fChildrenSize = 0; res->u.fTable.fFirst = NULL; res->u.fTable.fRoot = bundle; return res; } struct SResource* array_open(struct SRBRoot *bundle, char *tag, UErrorCode *status) { struct SResource *res; if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } res->fType = RES_ARRAY; res->fKey = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { uprv_free(res); return NULL; } res->fNext = NULL; res->fSize = sizeof(int32_t); res->u.fArray.fCount = 0; res->u.fArray.fChildrenSize = 0; res->u.fArray.fFirst = NULL; res->u.fArray.fLast = NULL; return res; } struct SResource *string_open(struct SRBRoot *bundle, char *tag, UChar *value, int32_t len, UErrorCode *status) { struct SResource *res; if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } res->fType = RES_STRING; res->fKey = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { uprv_free(res); return NULL; } res->fNext = NULL; res->u.fString.fLength = len; res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); if (res->u.fString.fChars == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1)); res->fSize = sizeof(int32_t) + sizeof(UChar) * (len + 1); return res; } struct SResource* intvector_open(struct SRBRoot *bundle, char *tag, UErrorCode *status) { struct SResource *res; if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } res->fType = RES_INT_VECTOR; res->fKey = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { uprv_free(res); return NULL; } res->fNext = NULL; res->fSize = sizeof(int32_t); res->u.fIntVector.fCount = 0; res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR); if (res->u.fIntVector.fArray == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } return res; } struct SResource *int_open(struct SRBRoot *bundle, char *tag, int32_t value, UErrorCode *status) { struct SResource *res; if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } res->fType = RES_INT; res->fKey = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { uprv_free(res); return NULL; } res->fSize = 0; res->fNext = NULL; res->u.fIntValue.fValue = value; return res; } struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, UErrorCode *status) { struct SResource *res; if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } res->fType = RES_BINARY; res->fKey = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { uprv_free(res); return NULL; } res->fNext = NULL; res->u.fBinaryValue.fLength = length; if (length > 0) { res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length); if (res->u.fBinaryValue.fData == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } uprv_memcpy(res->u.fBinaryValue.fData, data, length); } res->fSize = sizeof(int32_t) + sizeof(uint8_t) * length + BIN_ALIGNMENT; return res; } struct SRBRoot *bundle_open(UErrorCode *status) { struct SRBRoot *bundle = NULL; if (U_FAILURE(*status)) { return NULL; } bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot)); if (bundle == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } bundle->fLocale = NULL; bundle->fKeyPoint = 0; bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE); if (bundle->fKeys == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(bundle); return NULL; } bundle->fCount = 0; bundle->fRoot = table_open(bundle, NULL, status); if (bundle->fRoot == NULL || U_FAILURE(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(bundle->fKeys); uprv_free(bundle); return NULL; } return bundle; } /* Closing Functions */ void table_close(struct SResource *table, UErrorCode *status) { struct SResource *current = NULL; struct SResource *prev = NULL; current = table->u.fTable.fFirst; while (current != NULL) { prev = current; current = current->fNext; res_close(prev, status); } } void array_close(struct SResource *array, UErrorCode *status) { struct SResource *current = NULL; struct SResource *prev = NULL; current = array->u.fArray.fFirst; while (current != NULL) { prev = current; current = current->fNext; res_close(prev, status); } } void string_close(struct SResource *string, UErrorCode *status) { if (string->u.fString.fChars != NULL) { uprv_free(string->u.fString.fChars); } } void intvector_close(struct SResource *intvector, UErrorCode *status) { if (intvector->u.fIntVector.fArray != NULL) { uprv_free(intvector->u.fIntVector.fArray); } } void int_close(struct SResource *intres, UErrorCode *status) { /* Intentionally left blank */ } void bin_close(struct SResource *binres, UErrorCode *status) { if (binres->u.fBinaryValue.fData != NULL) { uprv_free(binres->u.fBinaryValue.fData); } } void res_close(struct SResource *res, UErrorCode *status) { if (res != NULL) { switch(res->fType) { case RES_STRING: string_close(res, status); break; case RES_INT_VECTOR: intvector_close(res, status); break; case RES_BINARY: bin_close(res, status); break; case RES_INT: int_close(res, status); break; case RES_ARRAY: array_close(res, status); break; case RES_TABLE : table_close(res, status); break; default: /* Shouldn't happen */ break; } uprv_free(res); } } void bundle_close(struct SRBRoot *bundle, UErrorCode *status) { struct SResource *current = NULL; struct SResource *prev = NULL; if (bundle->fRoot != NULL) { current = bundle->fRoot->u.fTable.fFirst; while (current != NULL) { prev = current; current = current->fNext; res_close(prev, status); } uprv_free(bundle->fRoot); } if (bundle->fLocale != NULL) { uprv_free(bundle->fLocale); } if (bundle->fKeys != NULL) { uprv_free(bundle->fKeys); } uprv_free(bundle); } /* Adding Functions */ void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) { struct SResource *current = NULL; struct SResource *prev = NULL; struct SResTable *list; if (U_FAILURE(*status)) { return; } /* remember this linenumber to report to the user if there is a duplicate key */ res->line = linenumber; /* here we need to traverse the list */ list = &(table->u.fTable); ++(list->fCount); table->fSize += sizeof(uint32_t) + sizeof(uint16_t); table->u.fTable.fChildrenSize += res->fSize + calcPadding(res->fSize); if (res->fType == RES_TABLE) { table->u.fTable.fChildrenSize += res->u.fTable.fChildrenSize; } else if (res->fType == RES_ARRAY) { table->u.fTable.fChildrenSize += res->u.fArray.fChildrenSize; } /* is list still empty? */ if (list->fFirst == NULL) { list->fFirst = res; res->fNext = NULL; return; } current = list->fFirst; while (current != NULL) { if (uprv_strcmp(((list->fRoot->fKeys) + (current->fKey)), ((list->fRoot->fKeys) + (res->fKey))) < 0) { prev = current; current = current->fNext; } else if (uprv_strcmp(((list->fRoot->fKeys) + (current->fKey)), ((list->fRoot->fKeys) + (res->fKey))) > 0) { /* we're either in front of list, or in middle */ if (prev == NULL) { /* front of the list */ list->fFirst = res; } else { /* middle of the list */ prev->fNext = res; } res->fNext = current; return; } else { /* Key already exists! ERROR! */ error(linenumber, "duplicate key '%s' in table, first appeared at line %d", list->fRoot->fKeys + current->fKey, current->line); *status = U_UNSUPPORTED_ERROR; return; } } /* end of list */ prev->fNext = res; res->fNext = NULL; } void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) { if (U_FAILURE(*status)) { return; } if (array->u.fArray.fFirst == NULL) { array->u.fArray.fFirst = res; array->u.fArray.fLast = res; } else { array->u.fArray.fLast->fNext = res; array->u.fArray.fLast = res; } (array->u.fArray.fCount)++; array->fSize += sizeof(uint32_t); array->u.fArray.fChildrenSize += res->fSize + calcPadding(res->fSize); if (res->fType == RES_TABLE) { array->u.fArray.fChildrenSize += res->u.fTable.fChildrenSize; } else if (res->fType == RES_ARRAY) { array->u.fArray.fChildrenSize += res->u.fArray.fChildrenSize; } } void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) { if (U_FAILURE(*status)) { return; } *(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value; intvector->u.fIntVector.fCount++; intvector->fSize += sizeof(uint32_t); } /* Misc Functions */ void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) { if(U_FAILURE(*status)) { return; } if (bundle->fLocale!=NULL) { uprv_free(bundle->fLocale); } bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1)); if(bundle->fLocale == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } /*u_strcpy(bundle->fLocale, locale);*/ u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1); } uint16_t bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) { uint16_t keypos; if (U_FAILURE(*status)) { return (uint16_t) - 1; } if (tag == NULL) { return (uint16_t) - 1; } keypos = bundle->fKeyPoint; bundle->fKeyPoint += (uint16_t) (uprv_strlen(tag) + 1); if (bundle->fKeyPoint > KEY_SPACE_SIZE) { *status = U_MEMORY_ALLOCATION_ERROR; return (uint16_t) - 1; } uprv_strcpy(bundle->fKeys + keypos, tag); return keypos; }