/* ******************************************************************************* * Copyright (C) 1996-2004, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* */ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "itrbnf.h" #include "unicode/umachine.h" #include "unicode/tblcoll.h" #include "unicode/coleitr.h" #include "unicode/ures.h" #include "unicode/ustring.h" #include "unicode/decimfmt.h" #include "unicode/udata.h" //#include "llong.h" #include // import com.ibm.text.RuleBasedNumberFormat; // import com.ibm.test.TestFmwk; // import java.util.Locale; // import java.text.NumberFormat; // current macro not in icu1.8.1 #define TESTCASE(id,test) \ case id: \ name = #test; \ if (exec) { \ logln(#test "---"); \ logln((UnicodeString)""); \ test(); \ } \ break void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) { if (exec) logln("TestSuite RuleBasedNumberFormat"); switch (index) { #if U_HAVE_RBNF TESTCASE(0, TestEnglishSpellout); TESTCASE(1, TestOrdinalAbbreviations); TESTCASE(2, TestDurations); TESTCASE(3, TestSpanishSpellout); TESTCASE(4, TestFrenchSpellout); TESTCASE(5, TestSwissFrenchSpellout); TESTCASE(6, TestItalianSpellout); TESTCASE(7, TestGermanSpellout); TESTCASE(8, TestThaiSpellout); TESTCASE(9, TestAPI); TESTCASE(10, TestFractionalRuleSet); TESTCASE(11, TestSwedishSpellout); TESTCASE(12, TestBelgianFrenchSpellout); TESTCASE(13, TestSmallValues); #else TESTCASE(0, TestRBNFDisabled); #endif default: name = ""; break; } } #if U_HAVE_RBNF void IntlTestRBNF::TestAPI() { // This test goes through the APIs that were not tested before. // These tests are too small to have separate test classes/functions UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); logln("RBNF API test starting"); // test clone { logln("Testing Clone"); RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone(); if(rbnfClone != NULL) { if(!(*rbnfClone == *formatter)) { errln("Clone should be semantically equivalent to the original!"); } delete rbnfClone; } else { errln("Cloning failed!"); } } // test assignment { logln("Testing assignment operator"); RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); assignResult = *formatter; if(!(assignResult == *formatter)) { errln("Assignment result should be semantically equivalent to the original!"); } } // test rule constructor { logln("Testing rule constructor"); UResourceBundle *en = ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status); if(U_FAILURE(status)) { errln("Unable to access resource bundle with data!"); } else { int32_t ruleLen = 0; const UChar *spelloutRules = ures_getStringByKey(en, "SpelloutRules", &ruleLen, &status); if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { errln("Unable to access the rules string!"); } else { UParseError perror; RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); if(!(ruleCtorResult == *formatter)) { errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); } } ures_close(en); } } // test getRules { logln("Testing getRules function"); UnicodeString rules = formatter->getRules(); UParseError perror; RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); if(!(fromRulesResult == *formatter)) { errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); } } { logln("Testing copy constructor"); RuleBasedNumberFormat copyCtorResult(*formatter); if(!(copyCtorResult == *formatter)) { errln("Copy constructor result result should be semantically equivalent to the original!"); } } #if !UCONFIG_NO_COLLATION // test ruleset names { logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); if(noOfRuleSetNames == 0) { errln("Number of rule set names should be more than zero"); } UnicodeString ruleSetName; int32_t i = 0; int32_t intFormatNum = 34567; double doubleFormatNum = 893411.234; logln("number of rule set names is %i", noOfRuleSetNames); for(i = 0; i < noOfRuleSetNames; i++) { FieldPosition pos1, pos2; UnicodeString intFormatResult, doubleFormatResult; Formattable intParseResult, doubleParseResult; ruleSetName = formatter->getRuleSetName(i); log("Rule set name %i is ", i); log(ruleSetName); logln(". Format results are: "); intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); if(U_FAILURE(status)) { errln("Format using a rule set failed"); break; } logln(intFormatResult); logln(doubleFormatResult); formatter->setLenient(TRUE); formatter->parse(intFormatResult, intParseResult, status); formatter->parse(doubleFormatResult, doubleParseResult, status); logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); formatter->setLenient(FALSE); formatter->parse(intFormatResult, intParseResult, status); formatter->parse(doubleFormatResult, doubleParseResult, status); logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); if(U_FAILURE(status)) { errln("Error during parsing"); } intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); if(U_SUCCESS(status)) { errln("Using invalid rule set name should have failed"); break; } status = U_ZERO_ERROR; doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); if(U_SUCCESS(status)) { errln("Using invalid rule set name should have failed"); break; } status = U_ZERO_ERROR; } status = U_ZERO_ERROR; } #endif // test API UnicodeString expected("four point five",""); logln("Testing format(double)"); UnicodeString result; formatter->format(4.5,result); if(result != expected) { errln("Formatted 4.5, expected " + expected + " got " + result); } else { logln("Formatted 4.5, expected " + expected + " got " + result); } result.remove(); expected = "four"; formatter->format((int32_t)4,result); if(result != expected) { errln("Formatted 4, expected " + expected + " got " + result); } else { logln("Formatted 4, expected " + expected + " got " + result); } // clean up logln("Cleaning up"); delete formatter; } void IntlTestRBNF::TestFractionalRuleSet() { UnicodeString fracRules( "%main:\n" // this rule formats the number if it's 1 or more. It formats // the integral part using a DecimalFormat ("#,##0" puts // thousands separators in the right places) and the fractional // part using %%frac. If there is no fractional part, it // just shows the integral part. " x.0: <#,##0<[ >%%frac>];\n" // this rule formats the number if it's between 0 and 1. It // shows only the fractional part (0.5 shows up as "1/2," not // "0 1/2") " 0.x: >%%frac>;\n" // the fraction rule set. This works the same way as the one in the // preceding example: We multiply the fractional part of the number // being formatted by each rule's base value and use the rule that // produces the result closest to 0 (or the first rule that produces 0). // Since we only provide rules for the numbers from 2 to 10, we know // we'll get a fraction with a denominator between 2 and 10. // "<0<" causes the numerator of the fraction to be formatted // using numerals "%%frac:\n" " 2: 1/2;\n" " 3: <0 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); // unsigned < LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); // unsigned >= LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); // unsigned <= LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); // operator> LLAssert(llong(1, 1) > llong(1, 0)); LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); LLAssert(llong(1, 0) > llong(0, 0xffffffff)); LLAssert(llong(0, 0) > llong(0x80000000, 1)); // operator< LLAssert(llong(1, 0) < llong(1, 1)); LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); LLAssert(llong(0, 0xffffffff) < llong(1, 0)); LLAssert(llong(0x80000000, 1) < llong(0, 0)); // operator>= LLAssert(llong(1, 1) >= llong(1, 0)); LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); LLAssert(llong(0, 0) >= llong(0x80000000, 1)); LLAssert(llong() >= llong(0, 0)); LLAssert(llong(1,0) >= llong(1, 0)); LLAssert(llong(0,1) >= llong(0, 1)); // operator<= LLAssert(llong(1, 0) <= llong(1, 1)); LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); LLAssert(llong(0x80000000, 1) <= llong(0, 0)); LLAssert(llong() <= llong(0, 0)); LLAssert(llong(1,0) <= llong(1, 0)); LLAssert(llong(0,1) <= llong(0, 1)); // operator==(int32) LLAssert(llong() == (int32_t)0); LLAssert(llong(0,1) == (int32_t)1); // operator!=(int32) LLAssert(llong(1,0) != (int32_t)0); LLAssert(llong(0,1) != (int32_t)2); LLAssert(llong(0,0xffffffff) != (int32_t)-1); llong negOne(0xffffffff, 0xffffffff); // operator>(int32) LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); LLAssert(negOne > (int32_t)-2); LLAssert(llong(1, 0) > (int32_t)0x7fffffff); LLAssert(llong(0, 0) > (int32_t)-1); // operator<(int32) LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); // operator>=(int32) LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); LLAssert(negOne >= (int32_t)-2); LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); LLAssert(llong(0, 0) >= (int32_t)-1); LLAssert(llong() >= (int32_t)0); LLAssert(llong(0,1) >= (int32_t)1); // operator<=(int32) LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); LLAssert(llong() <= (int32_t)0); LLAssert(llong(0,1) <= (int32_t)1); // operator= LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); // operator <<= LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used // operator << LLAssert((llong((int32_t)1) << 5).asUInt() == 32); // operator >>= (sign extended) LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used // operator >> sign extended) LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); // ushr (right shift without sign extension) LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used // operator&(llong) LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); // operator|(llong) LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); // operator^(llong) LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); // operator&(uint32) LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); // operator|(uint32) LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); // operator^(uint32) LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); // operator~ LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); // operator&=(llong) LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); // operator|=(llong) LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); // operator^=(llong) LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); // operator&=(uint32) LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); // operator|=(uint32) LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); // operator^=(uint32) LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); // prefix inc LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); // prefix dec LLAssert(llong(0,0xffffffff) == --llong(1, 0)); // postfix inc { llong n(0, 0xffffffff); LLAssert(llong(0, 0xffffffff) == n++); LLAssert(llong(1, 0) == n); } // postfix dec { llong n(1, 0); LLAssert(llong(1, 0) == n--); LLAssert(llong(0, 0xffffffff) == n); } // unary minus LLAssert(llong(0, 0) == -llong(0, 0)); LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow // operator-= { llong n; LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); LLAssert(n == llong(0xffffffff, 0xffffffff)); n = llong(1, 0); LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); LLAssert(n == llong(0, 0xffffffff)); } // operator- { llong n; LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); LLAssert(n == llong(0, 0)); n = llong(1, 0); LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); LLAssert(n == llong(1, 0)); } // operator+= { llong n(0xffffffff, 0xffffffff); LLAssert((n += llong(0, 1)) == llong(0, 0)); LLAssert(n == llong(0, 0)); n = llong(0, 0xffffffff); LLAssert((n += llong(0, 1)) == llong(1, 0)); LLAssert(n == llong(1, 0)); } // operator+ { llong n(0xffffffff, 0xffffffff); LLAssert((n + llong(0, 1)) == llong(0, 0)); LLAssert(n == llong(0xffffffff, 0xffffffff)); n = llong(0, 0xffffffff); LLAssert((n + llong(0, 1)) == llong(1, 0)); LLAssert(n == llong(0, 0xffffffff)); } } void IntlTestRBNF::TestLLong() { logln("Starting TestLLong"); TestLLongConstructors(); TestLLongSimpleOperators(); logln("Testing operator*=, operator*"); // operator*=, operator* // small and large values, positive, &NEGative, zero // also test commutivity { const llong ZERO; const llong ONE(0, 1); const llong NEG_ONE((int32_t)-1); const llong THREE(0, 3); const llong NEG_THREE((int32_t)-3); const llong TWO_TO_16(0, 0x10000); const llong NEG_TWO_TO_16 = -TWO_TO_16; const llong TWO_TO_32(1, 0); const llong NEG_TWO_TO_32 = -TWO_TO_32; const llong NINE(0, 9); const llong NEG_NINE = -NINE; const llong TWO_TO_16X3(0, 0x00030000); const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; const llong TWO_TO_32X3(3, 0); const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; const llong TWO_TO_48(0x10000, 0); const llong NEG_TWO_TO_48 = -TWO_TO_48; const int32_t VALUE_WIDTH = 9; const llong* values[VALUE_WIDTH] = { &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 }; const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO }; for (int i = 0; i < VALUE_WIDTH; ++i) { for (int j = 0; j < VALUE_WIDTH; ++j) { llong lhs = *values[i]; llong rhs = *values[j]; llong ans = *answers[i*VALUE_WIDTH + j]; llong n = lhs; LLAssert((n *= rhs) == ans); LLAssert(n == ans); n = lhs; LLAssert((n * rhs) == ans); LLAssert(n == lhs); } } } logln("Testing operator/=, operator/"); // operator/=, operator/ // test num = 0, div = 0, pos/neg, > 2^32, div > num { const llong ZERO; const llong ONE(0, 1); const llong NEG_ONE = -ONE; const llong MAX(0x7fffffff, 0xffffffff); const llong MIN(0x80000000, 0); const llong TWO(0, 2); const llong NEG_TWO = -TWO; const llong FIVE(0, 5); const llong NEG_FIVE = -FIVE; const llong TWO_TO_32(1, 0); const llong NEG_TWO_TO_32 = -TWO_TO_32; const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; const llong* tuples[] = { // lhs, rhs, ans &ZERO, &ZERO, &ZERO, &ONE, &ZERO,&MAX, &NEG_ONE, &ZERO, &MIN, &ONE, &ONE, &ONE, &ONE, &NEG_ONE, &NEG_ONE, &NEG_ONE, &ONE, &NEG_ONE, &NEG_ONE, &NEG_ONE, &ONE, &FIVE, &TWO, &TWO, &FIVE, &NEG_TWO, &NEG_TWO, &NEG_FIVE, &TWO, &NEG_TWO, &NEG_FIVE, &NEG_TWO, &TWO, &TWO, &FIVE, &ZERO, &TWO, &NEG_FIVE, &ZERO, &NEG_TWO, &FIVE, &ZERO, &NEG_TWO, &NEG_FIVE, &ZERO, &TWO_TO_32, &TWO_TO_32, &ONE, &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, &TWO_TO_32, &FIVE, &TWO_TO_32d5, &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, &TWO_TO_32X5, &FIVE, &TWO_TO_32, &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, &TWO_TO_32X5, &TWO_TO_32, &FIVE, &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE }; const int TUPLE_WIDTH = 3; const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; for (int i = 0; i < TUPLE_COUNT; ++i) { const llong lhs = *tuples[i*TUPLE_WIDTH+0]; const llong rhs = *tuples[i*TUPLE_WIDTH+1]; const llong ans = *tuples[i*TUPLE_WIDTH+2]; llong n = lhs; if (!((n /= rhs) == ans)) { errln("fail: (n /= rhs) == ans"); } LLAssert(n == ans); n = lhs; LLAssert((n / rhs) == ans); LLAssert(n == lhs); } } logln("Testing operator%%=, operator%%"); //operator%=, operator% { const llong ZERO; const llong ONE(0, 1); const llong TWO(0, 2); const llong THREE(0,3); const llong FOUR(0, 4); const llong FIVE(0, 5); const llong SIX(0, 6); const llong NEG_ONE = -ONE; const llong NEG_TWO = -TWO; const llong NEG_THREE = -THREE; const llong NEG_FOUR = -FOUR; const llong NEG_FIVE = -FIVE; const llong NEG_SIX = -SIX; const llong NINETY_NINE(0, 99); const llong HUNDRED(0, 100); const llong HUNDRED_ONE(0, 101); const llong BIG(0x12345678, 0x9abcdef0); const llong BIG_FIVE(BIG * FIVE); const llong BIG_FIVEm1 = BIG_FIVE - ONE; const llong BIG_FIVEp1 = BIG_FIVE + ONE; const llong* tuples[] = { &ZERO, &FIVE, &ZERO, &ONE, &FIVE, &ONE, &TWO, &FIVE, &TWO, &THREE, &FIVE, &THREE, &FOUR, &FIVE, &FOUR, &FIVE, &FIVE, &ZERO, &SIX, &FIVE, &ONE, &ZERO, &NEG_FIVE, &ZERO, &ONE, &NEG_FIVE, &ONE, &TWO, &NEG_FIVE, &TWO, &THREE, &NEG_FIVE, &THREE, &FOUR, &NEG_FIVE, &FOUR, &FIVE, &NEG_FIVE, &ZERO, &SIX, &NEG_FIVE, &ONE, &NEG_ONE, &FIVE, &NEG_ONE, &NEG_TWO, &FIVE, &NEG_TWO, &NEG_THREE, &FIVE, &NEG_THREE, &NEG_FOUR, &FIVE, &NEG_FOUR, &NEG_FIVE, &FIVE, &ZERO, &NEG_SIX, &FIVE, &NEG_ONE, &NEG_ONE, &NEG_FIVE, &NEG_ONE, &NEG_TWO, &NEG_FIVE, &NEG_TWO, &NEG_THREE, &NEG_FIVE, &NEG_THREE, &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, &NEG_FIVE, &NEG_FIVE, &ZERO, &NEG_SIX, &NEG_FIVE, &NEG_ONE, &NINETY_NINE, &FIVE, &FOUR, &HUNDRED, &FIVE, &ZERO, &HUNDRED_ONE, &FIVE, &ONE, &BIG_FIVEm1, &FIVE, &FOUR, &BIG_FIVE, &FIVE, &ZERO, &BIG_FIVEp1, &FIVE, &ONE }; const int TUPLE_WIDTH = 3; const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; for (int i = 0; i < TUPLE_COUNT; ++i) { const llong lhs = *tuples[i*TUPLE_WIDTH+0]; const llong rhs = *tuples[i*TUPLE_WIDTH+1]; const llong ans = *tuples[i*TUPLE_WIDTH+2]; llong n = lhs; if (!((n %= rhs) == ans)) { errln("fail: (n %= rhs) == ans"); } LLAssert(n == ans); n = lhs; LLAssert((n % rhs) == ans); LLAssert(n == lhs); } } logln("Testing pow"); // pow LLAssert(llong(0, 0).pow(0) == llong(0, 0)); LLAssert(llong(0, 0).pow(2) == llong(0, 0)); LLAssert(llong(0, 2).pow(0) == llong(0, 1)); LLAssert(llong(0, 2).pow(2) == llong(0, 4)); LLAssert(llong(0, 2).pow(32) == llong(1, 0)); LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); // absolute value { const llong n(0xffffffff,0xffffffff); LLAssert(n.abs() == llong(0, 1)); } #ifdef RBNF_DEBUG logln("Testing atoll"); // atoll const char empty[] = ""; const char zero[] = "0"; const char neg_one[] = "-1"; const char neg_12345[] = "-12345"; const char big1[] = "123456789abcdef0"; const char big2[] = "fFfFfFfFfFfFfFfF"; LLAssert(llong::atoll(empty) == llong(0, 0)); LLAssert(llong::atoll(zero) == llong(0, 0)); LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); #endif // u_atoll const UChar uempty[] = { 0 }; const UChar uzero[] = { 0x30, 0 }; const UChar uneg_one[] = { 0x2d, 0x31, 0 }; const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; LLAssert(llong::utoll(uempty) == llong(0, 0)); LLAssert(llong::utoll(uzero) == llong(0, 0)); LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); #ifdef RBNF_DEBUG logln("Testing lltoa"); // lltoa { char buf[64]; // ascii LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); } #endif logln("Testing u_lltoa"); // u_lltoa { UChar buf[64]; LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); } } /* if 0 */ #endif void IntlTestRBNF::TestEnglishSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "1", "one" }, { "2", "two" }, { "15", "fifteen" }, { "20", "twenty" }, { "23", "twenty-three" }, { "73", "seventy-three" }, { "88", "eighty-eight" }, { "100", "one hundred" }, { "106", "one hundred and six" }, { "127", "one hundred and twenty-seven" }, { "200", "two hundred" }, { "579", "five hundred and seventy-nine" }, { "1,000", "one thousand" }, { "2,000", "two thousand" }, { "3,004", "three thousand and four" }, { "4,567", "four thousand five hundred and sixty-seven" }, { "15,943", "fifteen thousand nine hundred and forty-three" }, { "2,345,678", "two million, three hundred and forty-five thousand, six hundred and seventy-eight" }, { "-36", "minus thirty-six" }, { "234.567", "two hundred and thirty-four point five six seven" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "fifty-7", "57" }, { " fifty-7", "57" }, { " fifty-7", "57" }, { "2 thousand six HUNDRED fifty-7", "2,657" }, { "fifteen hundred and zero", "1,500" }, { "FOurhundred thiRTY six", "436" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } void IntlTestRBNF::TestOrdinalAbbreviations() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "1", "1st" }, { "2", "2nd" }, { "3", "3rd" }, { "4", "4th" }, { "7", "7th" }, { "10", "10th" }, { "11", "11th" }, { "13", "13th" }, { "20", "20th" }, { "21", "21st" }, { "22", "22nd" }, { "23", "23rd" }, { "24", "24th" }, { "33", "33rd" }, { "102", "102nd" }, { "312", "312th" }, { "12,345", "12,345th" }, { NULL, NULL} }; doTest(formatter, testData, FALSE); } delete formatter; } void IntlTestRBNF::TestDurations() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "3,600", "1:00:00" }, //move me and I fail { "0", "0 sec." }, { "1", "1 sec." }, { "24", "24 sec." }, { "60", "1:00" }, { "73", "1:13" }, { "145", "2:25" }, { "666", "11:06" }, // { "3,600", "1:00:00" }, { "3,740", "1:02:20" }, { "10,293", "2:51:33" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "2-51-33", "10,293" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } void IntlTestRBNF::TestSpanishSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "1", "uno" }, { "6", "seis" }, { "16", "diecis\\u00e9is" }, { "20", "veinte" }, { "24", "veinticuatro" }, { "26", "veintis\\u00e9is" }, { "73", "setenta y tres" }, { "88", "ochenta y ocho" }, { "100", "cien" }, { "106", "ciento seis" }, { "127", "ciento veintisiete" }, { "200", "doscientos" }, { "579", "quinientos setenta y nueve" }, { "1,000", "mil" }, { "2,000", "dos mil" }, { "3,004", "tres mil cuatro" }, { "4,567", "cuatro mil quinientos sesenta y siete" }, { "15,943", "quince mil novecientos cuarenta y tres" }, { "2,345,678", "dos mill\\u00f3n trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, { "-36", "menos treinta y seis" }, { "234.567", "doscientos treinta y cuatro punto cinco seis siete" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestFrenchSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "1", "un" }, { "15", "quinze" }, { "20", "vingt" }, { "21", "vingt-et-un" }, { "23", "vingt-trois" }, { "62", "soixante-deux" }, { "70", "soixante-dix" }, { "71", "soixante et onze" }, { "73", "soixante-treize" }, { "80", "quatre-vingts" }, { "88", "quatre-vingt-huit" }, { "100", "cent" }, { "106", "cent six" }, { "127", "cent vingt-sept" }, { "200", "deux cents" }, { "579", "cinq cents soixante-dix-neuf" }, { "1,000", "mille" }, { "1,123", "onze cents vingt-trois" }, { "1,594", "mille cinq cents quatre-vingt-quatorze" }, { "2,000", "deux mille" }, { "3,004", "trois mille quatre" }, { "4,567", "quatre mille cinq cents soixante-sept" }, { "15,943", "quinze mille neuf cents quarante-trois" }, { "2,345,678", "deux million trois cents quarante-cinq mille six cents soixante-dix-huit" }, { "-36", "moins trente-six" }, { "234.567", "deux cents trente-quatre virgule cinq six sept" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "trente-un", "31" }, { "un cents quatre vingt dix huit", "198" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } static const char* swissFrenchTestData[][2] = { { "1", "un" }, { "15", "quinze" }, { "20", "vingt" }, { "21", "vingt-et-un" }, { "23", "vingt-trois" }, { "62", "soixante-deux" }, { "70", "septante" }, { "71", "septante-et-un" }, { "73", "septante-trois" }, { "80", "huitante" }, { "88", "huitante-huit" }, { "100", "cent" }, { "106", "cent six" }, { "127", "cent vingt-sept" }, { "200", "deux cents" }, { "579", "cinq cents septante-neuf" }, { "1,000", "mille" }, { "1,123", "onze cents vingt-trois" }, { "1,594", "mille cinq cents nonante-quatre" }, { "2,000", "deux mille" }, { "3,004", "trois mille quatre" }, { "4,567", "quatre mille cinq cents soixante-sept" }, { "15,943", "quinze mille neuf cents quarante-trois" }, { "2,345,678", "deux million trois cents quarante-cinq mille six cents septante-huit" }, { "-36", "moins trente-six" }, { "234.567", "deux cents trente-quatre virgule cinq six sept" }, { NULL, NULL} }; void IntlTestRBNF::TestSwissFrenchSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { doTest(formatter, swissFrenchTestData, TRUE); } delete formatter; } void IntlTestRBNF::TestBelgianFrenchSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); if (U_FAILURE(status)) { errln("rbnf status: 0x%x (%s)\n", status, u_errorName(status)); errln("FAIL: could not construct formatter"); } else { // Belgian french should match Swiss french. doTest(formatter, swissFrenchTestData, TRUE); } delete formatter; } void IntlTestRBNF::TestItalianSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "1", "uno" }, { "15", "quindici" }, { "20", "venti" }, { "23", "ventitre" }, { "73", "settantatre" }, { "88", "ottantotto" }, { "100", "cento" }, { "106", "centosei" }, { "108", "centotto" }, { "127", "centoventisette" }, { "181", "centottantuno" }, { "200", "duecento" }, { "579", "cinquecentosettantanove" }, { "1,000", "mille" }, { "2,000", "duemila" }, { "3,004", "tremilaquattro" }, { "4,567", "quattromilacinquecentosessantasette" }, { "15,943", "quindicimilanovecentoquarantatre" }, { "-36", "meno trentisei" }, { "234.567", "duecentotrentiquattro virgola cinque sei sette" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestGermanSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "1", "eins" }, { "15", "f\\u00fcnfzehn" }, { "20", "zwanzig" }, { "23", "dreiundzwanzig" }, { "73", "dreiundsiebzig" }, { "88", "achtundachtzig" }, { "100", "hundert" }, { "106", "hundertsechs" }, { "127", "hundertsiebenundzwanzig" }, { "200", "zweihundert" }, { "579", "f\\u00fcnfhundertneunundsiebzig" }, { "1,000", "tausend" }, { "2,000", "zweitausend" }, { "3,004", "dreitausendvier" }, { "4,567", "viertausendf\\u00fcnfhundertsiebenundsechzig" }, { "15,943", "f\\u00fcnfzehntausendneunhundertdreiundvierzig" }, { "2,345,678", "zwei Millionen dreihundertf\\u00fcnfundvierzigtausendsechshundertachtundsiebzig" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } void IntlTestRBNF::TestThaiSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testData[][2] = { { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, { "10", "\\u0e2a\\u0e34\\u0e1a" }, { "11", "\\u0e2a\\u0e34\\u0e1a\\u0e40\\u0e2d\\u0e47\\u0e14" }, { "21", "\\u0e22\\u0e35\\u0e48\\u0e2a\\u0e34\\u0e1a\\u0e40\\u0e2d\\u0e47\\u0e14" }, { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u0e23\\u0e49\\u0e2d\\u0e22\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u0e08\\u0e38\\u0e14\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestSwedishSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testDataDefault[][2] = { { "101", "etthundra\\u00aden" }, { "123", "etthundra\\u00adtjugotre" }, { "1,001", "ettusen en" }, { "1,100", "ettusen etthundra" }, { "1,101", "ettusen etthundra\\u00aden" }, { "1,234", "ettusen tv\\u00e5hundra\\u00adtrettiofyra" }, { "10,001", "tio\\u00adtusen en" }, { "11,000", "elva\\u00adtusen" }, { "12,000", "tolv\\u00adtusen" }, { "20,000", "tjugo\\u00adtusen" }, { "21,000", "tjugoen\\u00adtusen" }, { "21,001", "tjugoen\\u00adtusen en" }, { "200,000", "tv\\u00e5hundra\\u00adtusen" }, { "201,000", "tv\\u00e5hundra\\u00aden\\u00adtusen" }, { "200,200", "tv\\u00e5hundra\\u00adtusen tv\\u00e5hundra" }, { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, { "12,345,678", "tolv miljoner trehundra\\u00adfyrtiofem\\u00adtusen sexhundra\\u00adsjuttio\\u00e5tta" }, { "123,456.789", "etthundra\\u00adtjugotre\\u00adtusen fyrahundra\\u00adfemtiosex komma sju \\u00e5tta nio" }, { "-12,345.678", "minus tolv\\u00adtusen trehundra\\u00adfyrtiofem komma sex sju \\u00e5tta" }, { NULL, NULL } }; doTest(formatter, testDataDefault, TRUE); static const char* testDataNeutrum[][2] = { { "101", "etthundra\\u00adett" }, { "1,001", "ettusen ett" }, { "1,101", "ettusen etthundra\\u00adett" }, { "10,001", "tio\\u00adtusen ett" }, { "21,001", "tjugoen\\u00adtusen ett" }, { NULL, NULL } }; formatter->setDefaultRuleSet("%neutrum", status); if (U_SUCCESS(status)) { logln("testing neutrum rules"); doTest(formatter, testDataNeutrum, TRUE); } else { errln("Can't test neutrum rules"); } static const char* testDataYear[][2] = { { "101", "etthundra\\u00adett" }, { "900", "niohundra" }, { "1,001", "tiohundra\\u00adett" }, { "1,100", "elvahundra" }, { "1,101", "elvahundra\\u00adett" }, { "1,234", "tolvhundra\\u00adtrettiofyra" }, { "2,001", "tjugohundra\\u00adett" }, { "10,001", "tio\\u00adtusen ett" }, { NULL, NULL } }; formatter->setDefaultRuleSet("%year", status); if (U_SUCCESS(status)) { logln("testing year rules"); doTest(formatter, testDataYear, TRUE); } else { errln("Can't test year rules"); } } delete formatter; } void IntlTestRBNF::TestSmallValues() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); if (U_FAILURE(status)) { errln("FAIL: could not construct formatter"); } else { static const char* testDataDefault[][2] = { { "0.001", "zero point zero zero one" }, { "0.0001", "zero point zero zero zero one" }, { "0.00001", "zero point zero zero zero zero one" }, { "0.000001", "zero point zero zero zero zero zero one" }, { "0.0000001", "zero point zero zero zero zero zero zero one" }, { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, { "10,000,000.001", "ten million point zero zero one" }, { "10,000,000.0001", "ten million point zero zero zero one" }, { "10,000,000.00001", "ten million point zero zero zero zero one" }, { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, { "10,000,000", "ten million" }, // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, { "1,234,567.7654321", "one million, two hundred and thirty-four thousand, five hundred and sixty-seven point seven six five four three two one" }, { "123,456.654321", "one hundred and twenty-three thousand, four hundred and fifty-six point six five four three two one" }, { "12,345.54321", "twelve thousand three hundred and forty-five point five four three two one" }, { "1,234.4321", "one thousand two hundred and thirty-four point four three two one" }, { "123.321", "one hundred and twenty-three point three two one" }, { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, { NULL, NULL } }; doTest(formatter, testDataDefault, TRUE); delete formatter; } } void IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* testData[][2], UBool testParsing) { // man, error reporting would be easier with printf-style syntax for unicode string and formattable UErrorCode status = U_ZERO_ERROR; // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); NumberFormat* decFmt = new DecimalFormat("#,###.################", status); if (U_FAILURE(status)) { errln("FAIL: could not create NumberFormat"); } else { for (int i = 0; testData[i][0]; ++i) { const char* numString = testData[i][0]; const char* expectedWords = testData[i][1]; logln("%i: %s\n", i, numString); Formattable expectedNumber; decFmt->parse(numString, expectedNumber, status); if (U_FAILURE(status)) { errln("FAIL: decFmt could not parse %s", numString); break; } else { UnicodeString actualString; FieldPosition pos; formatter->format(expectedNumber, actualString/* , pos*/, status); if (U_FAILURE(status)) { UnicodeString msg = "Fail: formatter could not format "; decFmt->format(expectedNumber, msg, status); errln(msg); break; } else { UnicodeString expectedString = UnicodeString(expectedWords).unescape(); if (actualString != expectedString) { UnicodeString msg = "FAIL: check failed for "; decFmt->format(expectedNumber, msg, status); msg.append(", expected "); msg.append(expectedString); msg.append(" but got "); msg.append(actualString); errln(msg); break; } else if (testParsing) { Formattable parsedNumber; formatter->parse(actualString, parsedNumber, status); if (U_FAILURE(status)) { UnicodeString msg = "FAIL: formatter could not parse "; msg.append(actualString); msg.append(" status code: " ); msg.append(u_errorName(status)); errln(msg); break; } else { if (parsedNumber != expectedNumber) { UnicodeString msg = "FAIL: parse failed for "; msg.append(actualString); msg.append(", expected "); decFmt->format(expectedNumber, msg, status); msg.append(", but got "); decFmt->format(parsedNumber, msg, status); errln(msg); break; } } } } } } delete decFmt; } } void IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) { UErrorCode status = U_ZERO_ERROR; NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); if (U_FAILURE(status)) { errln("FAIL: could not create NumberFormat"); } else { for (int i = 0; testData[i][0]; ++i) { const char* spelledNumber = testData[i][0]; // spelled-out number const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); Formattable actualNumber; formatter->parse(spelledNumberString, actualNumber, status); if (U_FAILURE(status)) { UnicodeString msg = "FAIL: formatter could not parse "; msg.append(spelledNumberString); errln(msg); break; } else { // I changed the logic of this test somewhat from Java-- instead of comparing the // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, // so change it back. UnicodeString asciiUSNumberString = asciiUSNumber; Formattable expectedNumber; decFmt->parse(asciiUSNumberString, expectedNumber, status); if (U_FAILURE(status)) { UnicodeString msg = "FAIL: decFmt could not parse "; msg.append(asciiUSNumberString); errln(msg); break; } else { UnicodeString actualNumberString; UnicodeString expectedNumberString; decFmt->format(actualNumber, actualNumberString, status); decFmt->format(expectedNumber, expectedNumberString, status); if (actualNumberString != expectedNumberString) { UnicodeString msg = "FAIL: parsing"; msg.append(asciiUSNumberString); msg.append("\n"); msg.append(" lenient parse failed for "); msg.append(spelledNumberString); msg.append(", expected "); msg.append(expectedNumberString); msg.append(", but got "); msg.append(actualNumberString); errln(msg); break; } } } } delete decFmt; } } /* U_HAVE_RBNF */ #else void IntlTestRBNF::TestRBNFDisabled() { errln("*** RBNF currently disabled on this platform ***\n"); } /* U_HAVE_RBNF */ #endif #endif /* #if !UCONFIG_NO_FORMATTING */