/* ******************************************************************************* * * Copyright (C) 2009-2010, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: normalizer2.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2009nov22 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #if !UCONFIG_NO_NORMALIZATION #include "unicode/localpointer.h" #include "unicode/normalizer2.h" #include "unicode/unistr.h" #include "unicode/unorm.h" #include "cpputils.h" #include "cstring.h" #include "mutex.h" #include "normalizer2impl.h" #include "ucln_cmn.h" #include "uhash.h" U_NAMESPACE_BEGIN // Public API dispatch via Normalizer2 subclasses -------------------------- *** // Normalizer2 implementation for the old UNORM_NONE. class NoopNormalizer2 : public Normalizer2 { virtual UnicodeString & normalize(const UnicodeString &src, UnicodeString &dest, UErrorCode &errorCode) const { if(U_SUCCESS(errorCode)) { if(&dest!=&src) { dest=src; } else { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } } return dest; } virtual UnicodeString & normalizeSecondAndAppend(UnicodeString &first, const UnicodeString &second, UErrorCode &errorCode) const { if(U_SUCCESS(errorCode)) { if(&first!=&second) { first.append(second); } else { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } } return first; } virtual UnicodeString & append(UnicodeString &first, const UnicodeString &second, UErrorCode &errorCode) const { if(U_SUCCESS(errorCode)) { if(&first!=&second) { first.append(second); } else { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } } return first; } virtual UBool isNormalized(const UnicodeString &, UErrorCode &) const { return TRUE; } virtual UNormalizationCheckResult quickCheck(const UnicodeString &, UErrorCode &) const { return UNORM_YES; } virtual int32_t spanQuickCheckYes(const UnicodeString &s, UErrorCode &) const { return s.length(); } virtual UBool hasBoundaryBefore(UChar32) const { return TRUE; } virtual UBool hasBoundaryAfter(UChar32) const { return TRUE; } virtual UBool isInert(UChar32) const { return TRUE; } static UClassID U_EXPORT2 getStaticClassID(); virtual UClassID getDynamicClassID() const; }; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NoopNormalizer2) // Intermediate class: // Has Normalizer2Impl and does boilerplate argument checking and setup. class Normalizer2WithImpl : public Normalizer2 { public: Normalizer2WithImpl(const Normalizer2Impl &ni) : impl(ni) {} // normalize virtual UnicodeString & normalize(const UnicodeString &src, UnicodeString &dest, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { dest.setToBogus(); return dest; } const UChar *sArray=src.getBuffer(); if(&dest==&src || sArray==NULL) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; dest.setToBogus(); return dest; } dest.remove(); ReorderingBuffer buffer(impl, dest); if(buffer.init(src.length(), errorCode)) { normalize(sArray, sArray+src.length(), buffer, errorCode); } return dest; } virtual void normalize(const UChar *src, const UChar *limit, ReorderingBuffer &buffer, UErrorCode &errorCode) const = 0; // normalize and append virtual UnicodeString & normalizeSecondAndAppend(UnicodeString &first, const UnicodeString &second, UErrorCode &errorCode) const { return normalizeSecondAndAppend(first, second, TRUE, errorCode); } virtual UnicodeString & append(UnicodeString &first, const UnicodeString &second, UErrorCode &errorCode) const { return normalizeSecondAndAppend(first, second, FALSE, errorCode); } UnicodeString & normalizeSecondAndAppend(UnicodeString &first, const UnicodeString &second, UBool doNormalize, UErrorCode &errorCode) const { uprv_checkCanGetBuffer(first, errorCode); if(U_FAILURE(errorCode)) { return first; } const UChar *secondArray=second.getBuffer(); if(&first==&second || secondArray==NULL) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; return first; } ReorderingBuffer buffer(impl, first); if(buffer.init(first.length()+second.length(), errorCode)) { normalizeAndAppend(secondArray, secondArray+second.length(), doNormalize, buffer, errorCode); } return first; } virtual void normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize, ReorderingBuffer &buffer, UErrorCode &errorCode) const = 0; // quick checks virtual UBool isNormalized(const UnicodeString &s, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return FALSE; } const UChar *sArray=s.getBuffer(); if(sArray==NULL) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } const UChar *sLimit=sArray+s.length(); return sLimit==spanQuickCheckYes(sArray, sLimit, errorCode); } virtual UNormalizationCheckResult quickCheck(const UnicodeString &s, UErrorCode &errorCode) const { return Normalizer2WithImpl::isNormalized(s, errorCode) ? UNORM_YES : UNORM_NO; } virtual int32_t spanQuickCheckYes(const UnicodeString &s, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return 0; } const UChar *sArray=s.getBuffer(); if(sArray==NULL) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } return (int32_t)(spanQuickCheckYes(sArray, sArray+s.length(), errorCode)-sArray); } virtual const UChar * spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &errorCode) const = 0; virtual UNormalizationCheckResult getQuickCheck(UChar32) const { return UNORM_YES; } static UClassID U_EXPORT2 getStaticClassID(); virtual UClassID getDynamicClassID() const; const Normalizer2Impl &impl; }; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Normalizer2WithImpl) class DecomposeNormalizer2 : public Normalizer2WithImpl { public: DecomposeNormalizer2(const Normalizer2Impl &ni) : Normalizer2WithImpl(ni) {} private: virtual void normalize(const UChar *src, const UChar *limit, ReorderingBuffer &buffer, UErrorCode &errorCode) const { impl.decompose(src, limit, &buffer, errorCode); } using Normalizer2WithImpl::normalize; // Avoid warning about hiding base class function. virtual void normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize, ReorderingBuffer &buffer, UErrorCode &errorCode) const { impl.decomposeAndAppend(src, limit, doNormalize, buffer, errorCode); } virtual const UChar * spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &errorCode) const { return impl.decompose(src, limit, NULL, errorCode); } using Normalizer2WithImpl::spanQuickCheckYes; // Avoid warning about hiding base class function. virtual UNormalizationCheckResult getQuickCheck(UChar32 c) const { return impl.isDecompYes(impl.getNorm16(c)) ? UNORM_YES : UNORM_NO; } virtual UBool hasBoundaryBefore(UChar32 c) const { return impl.hasDecompBoundary(c, TRUE); } virtual UBool hasBoundaryAfter(UChar32 c) const { return impl.hasDecompBoundary(c, FALSE); } virtual UBool isInert(UChar32 c) const { return impl.isDecompInert(c); } }; class ComposeNormalizer2 : public Normalizer2WithImpl { public: ComposeNormalizer2(const Normalizer2Impl &ni, UBool fcc) : Normalizer2WithImpl(ni), onlyContiguous(fcc) {} private: virtual void normalize(const UChar *src, const UChar *limit, ReorderingBuffer &buffer, UErrorCode &errorCode) const { impl.compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); } using Normalizer2WithImpl::normalize; // Avoid warning about hiding base class function. virtual void normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize, ReorderingBuffer &buffer, UErrorCode &errorCode) const { impl.composeAndAppend(src, limit, doNormalize, onlyContiguous, buffer, errorCode); } virtual UBool isNormalized(const UnicodeString &s, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return FALSE; } const UChar *sArray=s.getBuffer(); if(sArray==NULL) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } UnicodeString temp; ReorderingBuffer buffer(impl, temp); if(!buffer.init(5, errorCode)) { // small destCapacity for substring normalization return FALSE; } return impl.compose(sArray, sArray+s.length(), onlyContiguous, FALSE, buffer, errorCode); } virtual UNormalizationCheckResult quickCheck(const UnicodeString &s, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return UNORM_MAYBE; } const UChar *sArray=s.getBuffer(); if(sArray==NULL) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; return UNORM_MAYBE; } UNormalizationCheckResult qcResult=UNORM_YES; impl.composeQuickCheck(sArray, sArray+s.length(), onlyContiguous, &qcResult); return qcResult; } virtual const UChar * spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &) const { return impl.composeQuickCheck(src, limit, onlyContiguous, NULL); } using Normalizer2WithImpl::spanQuickCheckYes; // Avoid warning about hiding base class function. virtual UNormalizationCheckResult getQuickCheck(UChar32 c) const { return impl.getCompQuickCheck(impl.getNorm16(c)); } virtual UBool hasBoundaryBefore(UChar32 c) const { return impl.hasCompBoundaryBefore(c); } virtual UBool hasBoundaryAfter(UChar32 c) const { return impl.hasCompBoundaryAfter(c, onlyContiguous, FALSE); } virtual UBool isInert(UChar32 c) const { return impl.hasCompBoundaryAfter(c, onlyContiguous, TRUE); } const UBool onlyContiguous; }; class FCDNormalizer2 : public Normalizer2WithImpl { public: FCDNormalizer2(const Normalizer2Impl &ni) : Normalizer2WithImpl(ni) {} private: virtual void normalize(const UChar *src, const UChar *limit, ReorderingBuffer &buffer, UErrorCode &errorCode) const { impl.makeFCD(src, limit, &buffer, errorCode); } using Normalizer2WithImpl::normalize; // Avoid warning about hiding base class function. virtual void normalizeAndAppend(const UChar *src, const UChar *limit, UBool doNormalize, ReorderingBuffer &buffer, UErrorCode &errorCode) const { impl.makeFCDAndAppend(src, limit, doNormalize, buffer, errorCode); } virtual const UChar * spanQuickCheckYes(const UChar *src, const UChar *limit, UErrorCode &errorCode) const { return impl.makeFCD(src, limit, NULL, errorCode); } using Normalizer2WithImpl::spanQuickCheckYes; // Avoid warning about hiding base class function. virtual UBool hasBoundaryBefore(UChar32 c) const { return impl.hasFCDBoundaryBefore(c); } virtual UBool hasBoundaryAfter(UChar32 c) const { return impl.hasFCDBoundaryAfter(c); } virtual UBool isInert(UChar32 c) const { return impl.isFCDInert(c); } }; // instance cache ---------------------------------------------------------- *** struct Norm2AllModes : public UMemory { static Norm2AllModes *createInstance(const char *packageName, const char *name, UErrorCode &errorCode); Norm2AllModes() : comp(impl, FALSE), decomp(impl), fcd(impl), fcc(impl, TRUE) {} Normalizer2Impl impl; ComposeNormalizer2 comp; DecomposeNormalizer2 decomp; FCDNormalizer2 fcd; ComposeNormalizer2 fcc; }; Norm2AllModes * Norm2AllModes::createInstance(const char *packageName, const char *name, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return NULL; } LocalPointer allModes(new Norm2AllModes); if(allModes.isNull()) { errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } allModes->impl.load(packageName, name, errorCode); return U_SUCCESS(errorCode) ? allModes.orphan() : NULL; } U_CDECL_BEGIN static UBool U_CALLCONV uprv_normalizer2_cleanup(); U_CDECL_END class Norm2AllModesSingleton : public TriStateSingletonWrapper { public: Norm2AllModesSingleton(TriStateSingleton &s, const char *n) : TriStateSingletonWrapper(s), name(n) {} Norm2AllModes *getInstance(UErrorCode &errorCode) { return TriStateSingletonWrapper::getInstance(createInstance, name, errorCode); } private: static void *createInstance(const void *context, UErrorCode &errorCode) { ucln_common_registerCleanup(UCLN_COMMON_NORMALIZER2, uprv_normalizer2_cleanup); return Norm2AllModes::createInstance(NULL, (const char *)context, errorCode); } const char *name; }; STATIC_TRI_STATE_SINGLETON(nfcSingleton); STATIC_TRI_STATE_SINGLETON(nfkcSingleton); STATIC_TRI_STATE_SINGLETON(nfkc_cfSingleton); class Norm2Singleton : public SimpleSingletonWrapper { public: Norm2Singleton(SimpleSingleton &s) : SimpleSingletonWrapper(s) {} Normalizer2 *getInstance(UErrorCode &errorCode) { return SimpleSingletonWrapper::getInstance(createInstance, NULL, errorCode); } private: static void *createInstance(const void *, UErrorCode &errorCode) { Normalizer2 *noop=new NoopNormalizer2; if(noop==NULL) { errorCode=U_MEMORY_ALLOCATION_ERROR; } ucln_common_registerCleanup(UCLN_COMMON_NORMALIZER2, uprv_normalizer2_cleanup); return noop; } }; STATIC_SIMPLE_SINGLETON(noopSingleton); static UHashtable *cache=NULL; U_CDECL_BEGIN static void U_CALLCONV deleteNorm2AllModes(void *allModes) { delete (Norm2AllModes *)allModes; } static UBool U_CALLCONV uprv_normalizer2_cleanup() { Norm2AllModesSingleton(nfcSingleton, NULL).deleteInstance(); Norm2AllModesSingleton(nfkcSingleton, NULL).deleteInstance(); Norm2AllModesSingleton(nfkc_cfSingleton, NULL).deleteInstance(); Norm2Singleton(noopSingleton).deleteInstance(); uhash_close(cache); cache=NULL; return TRUE; } U_CDECL_END const Normalizer2 *Normalizer2Factory::getNFCInstance(UErrorCode &errorCode) { Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); return allModes!=NULL ? &allModes->comp : NULL; } const Normalizer2 *Normalizer2Factory::getNFDInstance(UErrorCode &errorCode) { Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); return allModes!=NULL ? &allModes->decomp : NULL; } const Normalizer2 *Normalizer2Factory::getFCDInstance(UErrorCode &errorCode) { Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); if(allModes!=NULL) { allModes->impl.getFCDTrie(errorCode); return &allModes->fcd; } else { return NULL; } } const Normalizer2 *Normalizer2Factory::getFCCInstance(UErrorCode &errorCode) { Norm2AllModes *allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); return allModes!=NULL ? &allModes->fcc : NULL; } const Normalizer2 *Normalizer2Factory::getNFKCInstance(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode); return allModes!=NULL ? &allModes->comp : NULL; } const Normalizer2 *Normalizer2Factory::getNFKDInstance(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode); return allModes!=NULL ? &allModes->decomp : NULL; } const Normalizer2 *Normalizer2Factory::getNFKC_CFInstance(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfkc_cfSingleton, "nfkc_cf").getInstance(errorCode); return allModes!=NULL ? &allModes->comp : NULL; } const Normalizer2 *Normalizer2Factory::getNoopInstance(UErrorCode &errorCode) { return Norm2Singleton(noopSingleton).getInstance(errorCode); } const Normalizer2 * Normalizer2Factory::getInstance(UNormalizationMode mode, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return NULL; } switch(mode) { case UNORM_NFD: return getNFDInstance(errorCode); case UNORM_NFKD: return getNFKDInstance(errorCode); case UNORM_NFC: return getNFCInstance(errorCode); case UNORM_NFKC: return getNFKCInstance(errorCode); case UNORM_FCD: return getFCDInstance(errorCode); default: // UNORM_NONE return getNoopInstance(errorCode); } } const Normalizer2Impl * Normalizer2Factory::getNFCImpl(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); return allModes!=NULL ? &allModes->impl : NULL; } const Normalizer2Impl * Normalizer2Factory::getNFKCImpl(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode); return allModes!=NULL ? &allModes->impl : NULL; } const Normalizer2Impl * Normalizer2Factory::getNFKC_CFImpl(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfkc_cfSingleton, "nfkc_cf").getInstance(errorCode); return allModes!=NULL ? &allModes->impl : NULL; } const Normalizer2Impl * Normalizer2Factory::getImpl(const Normalizer2 *norm2) { return &((Normalizer2WithImpl *)norm2)->impl; } const UTrie2 * Normalizer2Factory::getFCDTrie(UErrorCode &errorCode) { Norm2AllModes *allModes= Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); if(allModes!=NULL) { return allModes->impl.getFCDTrie(errorCode); } else { return NULL; } } const Normalizer2 * Normalizer2::getInstance(const char *packageName, const char *name, UNormalization2Mode mode, UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return NULL; } if(name==NULL || *name==0) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } Norm2AllModes *allModes=NULL; if(packageName==NULL) { if(0==uprv_strcmp(name, "nfc")) { allModes=Norm2AllModesSingleton(nfcSingleton, "nfc").getInstance(errorCode); } else if(0==uprv_strcmp(name, "nfkc")) { allModes=Norm2AllModesSingleton(nfkcSingleton, "nfkc").getInstance(errorCode); } else if(0==uprv_strcmp(name, "nfkc_cf")) { allModes=Norm2AllModesSingleton(nfkc_cfSingleton, "nfkc_cf").getInstance(errorCode); } } if(allModes==NULL && U_SUCCESS(errorCode)) { { Mutex lock; if(cache!=NULL) { allModes=(Norm2AllModes *)uhash_get(cache, name); } } if(allModes==NULL) { LocalPointer localAllModes( Norm2AllModes::createInstance(packageName, name, errorCode)); if(U_SUCCESS(errorCode)) { Mutex lock; if(cache==NULL) { cache=uhash_open(uhash_hashChars, uhash_compareChars, NULL, &errorCode); if(U_FAILURE(errorCode)) { return NULL; } uhash_setKeyDeleter(cache, uprv_free); uhash_setValueDeleter(cache, deleteNorm2AllModes); } void *temp=uhash_get(cache, name); if(temp==NULL) { int32_t keyLength=uprv_strlen(name)+1; char *nameCopy=(char *)uprv_malloc(keyLength); if(nameCopy==NULL) { errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memcpy(nameCopy, name, keyLength); uhash_put(cache, nameCopy, allModes=localAllModes.orphan(), &errorCode); } else { // race condition allModes=(Norm2AllModes *)temp; } } } } if(allModes!=NULL && U_SUCCESS(errorCode)) { switch(mode) { case UNORM2_COMPOSE: return &allModes->comp; case UNORM2_DECOMPOSE: return &allModes->decomp; case UNORM2_FCD: allModes->impl.getFCDTrie(errorCode); return &allModes->fcd; case UNORM2_COMPOSE_CONTIGUOUS: return &allModes->fcc; default: break; // do nothing } } return NULL; } UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Normalizer2) U_NAMESPACE_END // C API ------------------------------------------------------------------- *** U_NAMESPACE_USE U_DRAFT const UNormalizer2 * U_EXPORT2 unorm2_getInstance(const char *packageName, const char *name, UNormalization2Mode mode, UErrorCode *pErrorCode) { return (const UNormalizer2 *)Normalizer2::getInstance(packageName, name, mode, *pErrorCode); } U_DRAFT void U_EXPORT2 unorm2_close(UNormalizer2 *norm2) { delete (Normalizer2 *)norm2; } U_DRAFT int32_t U_EXPORT2 unorm2_normalize(const UNormalizer2 *norm2, const UChar *src, int32_t length, UChar *dest, int32_t capacity, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return 0; } if(src==NULL || length<-1 || capacity<0 || (dest==NULL && capacity>0) || src==dest) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString destString(dest, 0, capacity); const Normalizer2 *n2=(const Normalizer2 *)norm2; if(n2->getDynamicClassID()==Normalizer2WithImpl::getStaticClassID()) { // Avoid duplicate argument checking and support NUL-terminated src. const Normalizer2WithImpl *n2wi=(const Normalizer2WithImpl *)n2; ReorderingBuffer buffer(n2wi->impl, destString); if(buffer.init(length, *pErrorCode)) { n2wi->normalize(src, length>=0 ? src+length : NULL, buffer, *pErrorCode); } } else { UnicodeString srcString(length<0, src, length); n2->normalize(srcString, destString, *pErrorCode); } return destString.extract(dest, capacity, *pErrorCode); } static int32_t normalizeSecondAndAppend(const UNormalizer2 *norm2, UChar *first, int32_t firstLength, int32_t firstCapacity, const UChar *second, int32_t secondLength, UBool doNormalize, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return 0; } if( second==NULL || secondLength<-1 || firstCapacity<0 || (first==NULL && firstCapacity>0) || firstLength<-1 || first==second ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString firstString(first, firstLength, firstCapacity); const Normalizer2 *n2=(const Normalizer2 *)norm2; if(n2->getDynamicClassID()==Normalizer2WithImpl::getStaticClassID()) { // Avoid duplicate argument checking and support NUL-terminated src. const Normalizer2WithImpl *n2wi=(const Normalizer2WithImpl *)n2; ReorderingBuffer buffer(n2wi->impl, firstString); if(buffer.init(firstLength+secondLength+1, *pErrorCode)) { // destCapacity>=-1 n2wi->normalizeAndAppend(second, secondLength>=0 ? second+secondLength : NULL, doNormalize, buffer, *pErrorCode); } } else { UnicodeString secondString(secondLength<0, second, secondLength); if(doNormalize) { n2->normalizeSecondAndAppend(firstString, secondString, *pErrorCode); } else { n2->append(firstString, secondString, *pErrorCode); } } return firstString.extract(first, firstCapacity, *pErrorCode); } U_DRAFT int32_t U_EXPORT2 unorm2_normalizeSecondAndAppend(const UNormalizer2 *norm2, UChar *first, int32_t firstLength, int32_t firstCapacity, const UChar *second, int32_t secondLength, UErrorCode *pErrorCode) { return normalizeSecondAndAppend(norm2, first, firstLength, firstCapacity, second, secondLength, TRUE, pErrorCode); } U_DRAFT int32_t U_EXPORT2 unorm2_append(const UNormalizer2 *norm2, UChar *first, int32_t firstLength, int32_t firstCapacity, const UChar *second, int32_t secondLength, UErrorCode *pErrorCode) { return normalizeSecondAndAppend(norm2, first, firstLength, firstCapacity, second, secondLength, FALSE, pErrorCode); } U_DRAFT UBool U_EXPORT2 unorm2_isNormalized(const UNormalizer2 *norm2, const UChar *s, int32_t length, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return 0; } if(s==NULL || length<-1) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString sString(length<0, s, length); return ((const Normalizer2 *)norm2)->isNormalized(sString, *pErrorCode); } U_DRAFT UNormalizationCheckResult U_EXPORT2 unorm2_quickCheck(const UNormalizer2 *norm2, const UChar *s, int32_t length, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return UNORM_NO; } if(s==NULL || length<-1) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return UNORM_NO; } UnicodeString sString(length<0, s, length); return ((const Normalizer2 *)norm2)->quickCheck(sString, *pErrorCode); } U_DRAFT int32_t U_EXPORT2 unorm2_spanQuickCheckYes(const UNormalizer2 *norm2, const UChar *s, int32_t length, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return 0; } if(s==NULL || length<-1) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } UnicodeString sString(length<0, s, length); return ((const Normalizer2 *)norm2)->spanQuickCheckYes(sString, *pErrorCode); } U_DRAFT UBool U_EXPORT2 unorm2_hasBoundaryBefore(const UNormalizer2 *norm2, UChar32 c) { return ((const Normalizer2 *)norm2)->hasBoundaryBefore(c); } U_DRAFT UBool U_EXPORT2 unorm2_hasBoundaryAfter(const UNormalizer2 *norm2, UChar32 c) { return ((const Normalizer2 *)norm2)->hasBoundaryAfter(c); } U_DRAFT UBool U_EXPORT2 unorm2_isInert(const UNormalizer2 *norm2, UChar32 c) { return ((const Normalizer2 *)norm2)->isInert(c); } // Some properties APIs ---------------------------------------------------- *** U_CFUNC UNormalizationCheckResult U_EXPORT2 unorm_getQuickCheck(UChar32 c, UNormalizationMode mode) { if(mode<=UNORM_NONE || UNORM_FCD<=mode) { return UNORM_YES; } UErrorCode errorCode=U_ZERO_ERROR; const Normalizer2 *norm2=Normalizer2Factory::getInstance(mode, errorCode); if(U_SUCCESS(errorCode)) { return ((const Normalizer2WithImpl *)norm2)->getQuickCheck(c); } else { return UNORM_MAYBE; } } U_CAPI const uint16_t * U_EXPORT2 unorm_getFCDTrieIndex(UChar32 &fcdHighStart, UErrorCode *pErrorCode) { const UTrie2 *trie=Normalizer2Factory::getFCDTrie(*pErrorCode); if(U_SUCCESS(*pErrorCode)) { fcdHighStart=trie->highStart; return trie->index; } else { return NULL; } } #endif // !UCONFIG_NO_NORMALIZATION