/* ********************************************************************** * Copyright (c) 2003, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Author: Alan Liu * Created: July 21 2003 * Since: ICU 2.8 ********************************************************************** */ #if !UCONFIG_NO_FORMATTING #include "olsontz.h" #include "unicode/ures.h" #include "unicode/simpletz.h" #include "unicode/gregocal.h" #include "cmemory.h" #include "uassert.h" U_NAMESPACE_BEGIN #define SECONDS_PER_DAY (24*60*60) static const int32_t ZEROS[] = {0,0}; const char OlsonTimeZone::fgClassID = 0; // Value is irrelevant //---------------------------------------------------------------------- // Support methods // TODO clean up; consolidate with GregorianCalendar, TimeZone, StandarTimeZone static int32_t floorDivide(int32_t numerator, int32_t denominator) { return (numerator >= 0) ? numerator / denominator : ((numerator + 1) / denominator) - 1; } static double floorDivide(double numerator, double denominator, double& remainder) { double quotient = uprv_floor(numerator / denominator); remainder = numerator - (quotient * denominator); return quotient; } static int32_t floorDivide(double numerator, int32_t denominator, int32_t& remainder) { double quotient, rem; quotient = floorDivide(numerator, denominator, rem); remainder = (int32_t) rem; return (int32_t) quotient; } static const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian static const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian static const int16_t DAYS_BEFORE[] = {0,31,59,90,120,151,181,212,243,273,304,334, 0,31,60,91,121,152,182,213,244,274,305,335}; static const int8_t MONTH_LENGTH[] = {31,28,31,30,31,30,31,31,30,31,30,31, 31,29,31,30,31,30,31,31,30,31,30,31}; static UBool isLeapYear(int year) { return (year%4 == 0) && ((year%100 != 0) || (year%400 == 0)); } /** * Convert a year, month, and day-of-month, given in the proleptic Gregorian * calendar, to 1970 epoch days. * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc. * @param month 0-based month, with 0==Jan * @param dom 1-based day of month */ static double fieldsToDay(int32_t year, int32_t month, int32_t dom) { int32_t y = year - 1; double julian = 365 * y + floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal floorDivide(y, 400) - floorDivide(y, 100) + 2 + // => Gregorian cal DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom return julian - JULIAN_1970_CE; // JD => epoch day } /** * Convert a 1970-epoch day number to proleptic Gregorian year, month, * day-of-month, and day-of-week. * @param day 1970-epoch day (integral value) * @param year output parameter to receive year * @param month output parameter to receive month (0-based, 0==Jan) * @param dom output parameter to receive day-of-month (1-based) * @param dow output parameter to receive day-of-week (1-based, 1==Sun) */ static void dayToFields(double day, int32_t& year, int32_t& month, int32_t& dom, int32_t& dow) { int32_t doy; // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar) day += JULIAN_1970_CE - JULIAN_1_CE; int32_t n400 = floorDivide(day, 146097, doy); // 400-year cycle length int32_t n100 = floorDivide(doy, 36524, doy); // 100-year cycle length int32_t n4 = floorDivide(doy, 1461, doy); // 4-year cycle length int32_t n1 = floorDivide(doy, 365, doy); year = 400*n400 + 100*n100 + 4*n4 + n1; if (n100 == 4 || n1 == 4) { doy = 365; // Dec 31 at end of 4- or 400-year cycle } else { ++year; } UBool isLeap = isLeapYear(year); // Gregorian day zero is a Monday. dow = (int32_t) uprv_fmod(day + 1, 7); dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY; // Common Julian/Gregorian calculation int32_t correction = 0; int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 if (doy >= march1) { correction = isLeap ? 1 : 2; } month = (12 * (doy + correction) + 6) / 367; // zero-based month dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM } //---------------------------------------------------------------------- /** * Default constructor. Creates a time zone with an empty ID and * a fixed GMT offset of zero. */ OlsonTimeZone::OlsonTimeZone() : finalZone(0), finalYear(INT32_MAX) { constructEmpty(); } /** * Construct a GMT+0 zone with no transitions. This is done when a * constructor fails so the resultant object is well-behaved. */ void OlsonTimeZone::constructEmpty() { transitionCount = 0; typeCount = 1; transitionTimes = typeOffsets = ZEROS; typeData = (const uint8_t*) ZEROS; } /** * Construct from a resource bundle * @param top the top-level zoneinfo resource bundle. This is used * to lookup the rule that `res' may refer to, if there is one. * @param res the resource bundle of the zone to be constructed * @param ec input-output error code */ OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top, const UResourceBundle* res, UErrorCode& ec) : finalZone(0), finalYear(INT32_MAX) { if ((top == NULL || res == NULL) && U_SUCCESS(ec)) { ec = U_ILLEGAL_ARGUMENT_ERROR; } if (U_SUCCESS(ec)) { // TODO -- clean up -- Doesn't work if res points to an alias // // TODO remove nonconst casts below when ures_* API is fixed // setID(ures_getKey((UResourceBundle*) res)); // cast away const // Size 1 is an alias TO another zone (int) // HOWEVER, the caller should dereference this and never pass it in to us // Size 3 is a purely historical zone (no final rules) // Size 4 is like size 3, but with an alias list at the end // Size 5 is a hybrid zone, with historical and final elements // Size 6 is like size 5, but with an alias list at the end int32_t size = ures_getSize((UResourceBundle*) res); // cast away const if (size < 3 || size > 6) { ec = U_INVALID_FORMAT_ERROR; } // Transitions list may be emptry int32_t i; UResourceBundle* r = ures_getByIndex(res, 0, NULL, &ec); transitionTimes = ures_getIntVector(r, &i, &ec); ures_close(r); if ((i<0 || i>0x7FFF) && U_SUCCESS(ec)) { ec = U_INVALID_FORMAT_ERROR; } transitionCount = (int16_t) i; // Type offsets list must be of even size, with size >= 2 r = ures_getByIndex(res, 1, NULL, &ec); typeOffsets = ures_getIntVector(r, &i, &ec); ures_close(r); if ((i<2 || i>0x7FFE || ((i&1)!=0)) && U_SUCCESS(ec)) { ec = U_INVALID_FORMAT_ERROR; } typeCount = (int16_t) i >> 1; // Type data must be of the same size as the transitions list r = ures_getByIndex(res, 2, NULL, &ec); int32_t len; typeData = ures_getBinary(r, &len, &ec); ures_close(r); if (len != transitionCount && U_SUCCESS(ec)) { ec = U_INVALID_FORMAT_ERROR; } // Process final rule and data, if any if (size >= 5) { UnicodeString ruleid = ures_getUnicodeStringByIndex(res, 3, &ec); r = ures_getByIndex(res, 4, NULL, &ec); const int32_t* data = ures_getIntVector(r, &len, &ec); ures_close(r); if (U_SUCCESS(ec)) { if (data != 0 && len == 2) { int32_t rawOffset = data[0] * U_MILLIS_PER_SECOND; // Subtract one from the actual final year; we // actually store final year - 1, and compare // using > rather than >=. This allows us to use // INT32_MAX as an exclusive upper limit for all // years, including INT32_MAX. U_ASSERT(data[1] > INT32_MIN); finalYear = data[1] - 1; char key[64]; key[0] = '_'; ruleid.extract(0, sizeof(key)-2, key+1, sizeof(key)-1, ""); r = ures_getByKey(top, key, NULL, &ec); if (U_SUCCESS(ec)) { // 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600 data = ures_getIntVector(r, &len, &ec); if (U_SUCCESS(ec) && len == 11) { finalZone = new SimpleTimeZone(rawOffset, "", (int8_t)data[0], (int8_t)data[1], (int8_t)data[2], data[3] * U_MILLIS_PER_SECOND, (SimpleTimeZone::TimeMode) data[4], (int8_t)data[5], (int8_t)data[6], (int8_t)data[7], data[8] * U_MILLIS_PER_SECOND, (SimpleTimeZone::TimeMode) data[9], data[10] * U_MILLIS_PER_SECOND, ec); } else { ec = U_INVALID_FORMAT_ERROR; } } ures_close(r); } else { ec = U_INVALID_FORMAT_ERROR; } } } } if (U_FAILURE(ec)) { constructEmpty(); } } /** * Copy constructor */ OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) : TimeZone(other), finalZone(0) { *this = other; } /** * Assignment operator */ OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) { transitionCount = other.transitionCount; typeCount = other.typeCount; transitionTimes = other.transitionTimes; typeOffsets = other.typeOffsets; typeData = other.typeData; finalYear = other.finalYear; delete finalZone; finalZone = (other.finalZone != 0) ? (SimpleTimeZone*) other.finalZone->clone() : 0; return *this; } /** * Destructor */ OlsonTimeZone::~OlsonTimeZone() { delete finalZone; } /** * Returns true if the two TimeZone objects are equal. */ UBool OlsonTimeZone::operator==(const TimeZone& other) const { const OlsonTimeZone* z = (const OlsonTimeZone*) &other; return TimeZone::operator==(other) && // [sic] pointer comparison: typeData points into // memory-mapped or DLL space, so if two zones have the same // pointer, they are equal. (typeData == z->typeData || // If the pointers are not equal, the zones may still // be equal if their rules and transitions are equal (finalYear == z->finalYear && ((finalZone == 0 && z->finalZone == 0) || (finalZone != 0 && z->finalZone != 0 && *finalZone == *z->finalZone)) && transitionCount == z->transitionCount && typeCount == z->typeCount && uprv_memcmp(transitionTimes, z->transitionTimes, sizeof(transitionTimes[0]) * transitionCount) == 0 && uprv_memcmp(typeOffsets, z->typeOffsets, (sizeof(typeOffsets[0]) * typeCount) << 1) == 0 && uprv_memcmp(typeData, z->typeData, (sizeof(typeData[0]) * typeCount)) == 0 )); } /** * TimeZone API. */ TimeZone* OlsonTimeZone::clone() const { return new OlsonTimeZone(*this); } /** * TimeZone API. */ int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, int32_t dom, uint8_t dow, int32_t millis, UErrorCode& ec) const { if (month < UCAL_JANUARY || month > UCAL_DECEMBER) { if (U_SUCCESS(ec)) { ec = U_ILLEGAL_ARGUMENT_ERROR; } return 0; } else { return getOffset(era, year, month, dom, dow, millis, MONTH_LENGTH[month + isLeapYear(year)?12:0], ec); } } /** * TimeZone API. */ int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, int32_t dom, uint8_t dow, int32_t millis, int32_t monthLength, UErrorCode& ec) const { if (U_FAILURE(ec)) { return 0; } if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC) || month < UCAL_JANUARY || month > UCAL_DECEMBER || dom < 1 || dom > monthLength || dow < UCAL_SUNDAY || dow > UCAL_SATURDAY || millis < 0 || millis >= U_MILLIS_PER_DAY || monthLength < 28 || monthLength > 31) { ec = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if (era == GregorianCalendar::BC) { year = -year; } if (year > finalYear) { // [sic] >, not >=; see above U_ASSERT(finalZone != 0); return finalZone->getOffset(era, year, month, dom, dow, millis, monthLength, ec); } // Compute local epoch seconds from input fields double time = fieldsToDay(year, month, dom) * SECONDS_PER_DAY + uprv_floor(millis / (double) U_MILLIS_PER_SECOND); return zoneOffset(findTransition(time, TRUE)) * U_MILLIS_PER_SECOND; } /** * TimeZone API. */ void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) { // We don't support this operation, since OlsonTimeZones are // immutable (except for the ID, which is in the base class). // Nothing to do! } /** * TimeZone API. */ int32_t OlsonTimeZone::getRawOffset() const { UErrorCode ec = U_ZERO_ERROR; int32_t raw, dst; getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND, FALSE, raw, dst, ec); return raw; } /** * TimeZone API. */ void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) const { if (U_FAILURE(ec)) { return; } int32_t year, month, dom, dow; double secs = uprv_floor(date / U_MILLIS_PER_SECOND); double days = uprv_floor(date / U_MILLIS_PER_DAY); dayToFields(days, year, month, dom, dow); if (year > finalYear) { // [sic] >, not >=; see above U_ASSERT(finalZone != 0); int32_t millis = (int32_t) (date - days * U_MILLIS_PER_DAY); rawoff = finalZone->getRawOffset(); if (!local) { // Adjust from GMT to local date += rawoff; double days2 = uprv_floor(date / U_MILLIS_PER_DAY); millis = (int32_t) (date - days2 * U_MILLIS_PER_DAY); if (days2 != days) { dayToFields(days2, year, month, dom, dow); } } dstoff = finalZone->getOffset( GregorianCalendar::AD, year, month, dom, (uint8_t) dow, millis, ec) - rawoff; return; } int16_t i = findTransition(secs, local); rawoff = rawOffset(i) * U_MILLIS_PER_SECOND; dstoff = dstOffset(i) * U_MILLIS_PER_SECOND; } /** * Find the smallest i (in 0..transitionCount-1) such that time >= * transition(i), where transition(i) is either the GMT or the local * transition time, as specified by `local'. * @param time epoch seconds, either GMT or local wall * @param local if TRUE, `time' is in local wall units, otherwise it * is GMT * @return an index i, where 0 <= i < transitionCount, and * transition(i) <= time < transition(i+1), or i == 0 if * transitionCount == 0 or time < transition(0). */ int16_t OlsonTimeZone::findTransition(double time, UBool local) const { int16_t i = 0; if (transitionCount != 0) { // Linear search from the end is the fastest approach, since // most lookups will happen at/near the end. for (i = transitionCount - 1; i > 0; --i) { int32_t transition = transitionTimes[i]; if (local) { transition += zoneOffset(typeData[i]); } if (time >= transition) { break; } } U_ASSERT(i>=0 && i= transitionTimes[i]); U_ASSERT(local || i == transitionCount-1 || time < transitionTimes[i+1]); i = typeData[i]; } U_ASSERT(i>=0 && i finalYear) { // [sic] >, not >=; see above U_ASSERT(finalZone != 0 && finalZone->useDaylightTime()); return TRUE; } // Find start of this year, and start of next year int32_t start = (int32_t) fieldsToDay(year, 0, 1) * SECONDS_PER_DAY; int32_t limit = (int32_t) fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY; // Return TRUE if DST is observed at any time during the current // year. for (int16_t i=0; i= limit) { break; } if (transitionTimes[i] >= start && dstOffset(typeData[i]) != 0) { return TRUE; } } return FALSE; } /** * TimeZone API. */ UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const { int32_t raw, dst; getOffset(date, FALSE, raw, dst, ec); return dst != 0; } U_NAMESPACE_END #endif // !UCONFIG_NO_FORMATTING //eof