/* ******************************************************************************* * * * Copyright (C) 1999-2003, International Business Machines Corporation * * and others. All Rights Reserved. * * * ******************************************************************************* * file name: uresdata.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999dec08 * created by: Markus W. Scherer * Modification History: * * Date Name Description * 06/20/2000 helena OS/400 port changes; mostly typecast. * 06/24/02 weiv Added support for resource sharing */ #include "unicode/utypes.h" #include "unicode/udata.h" #include "cmemory.h" #include "cstring.h" #include "uarrsort.h" #include "udataswp.h" #include "ucol_swp.h" #include "uresdata.h" #include "uresimp.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) /* * Resource access helpers */ /* get a const char* pointer to the key with the keyOffset byte offset from pRoot */ #define RES_GET_KEY(pRoot, keyOffset) ((const char *)(pRoot)+(keyOffset)) #define URESDATA_ITEM_NOT_FOUND -1 /* * All the type-access functions assume that * the resource is of the expected type. */ /* * Array functions */ static Resource _res_getArrayItem(Resource *pRoot, Resource res, int32_t indexR) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res); if(indexR<*p) { return ((const Resource *)(p))[1+indexR]; } else { return RES_BOGUS; /* indexR>itemCount */ } } /* * Table functions * * Important: the key offsets are 16-bit byte offsets from pRoot, * and the itemCount is one more 16-bit, too. * Thus, there are (count+1) uint16_t values. * In order to 4-align the Resource item values, there is a padding * word if count is even, i.e., there is exactly (~count&1) * 16-bit padding words. * * For Table32, both the count and the key offsets are int32_t's * and need not alignment. */ static const char * _res_getTableKey(const Resource *pRoot, const Resource res, int32_t indexS) { const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pRoot, res); if((uint32_t)indexS<(uint32_t)*p) { return RES_GET_KEY(pRoot, p[indexS+1]); } else { return NULL; /* indexS>itemCount */ } } static const char * _res_getTable32Key(const Resource *pRoot, const Resource res, int32_t indexS) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res); if((uint32_t)indexS<(uint32_t)*p) { return RES_GET_KEY(pRoot, p[indexS+1]); } else { return NULL; /* indexS>itemCount */ } } static Resource _res_getTableItem(const Resource *pRoot, const Resource res, int32_t indexR) { const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pRoot, res); int32_t count=*p; if((uint32_t)indexR<(uint32_t)count) { return ((const Resource *)(p+1+count+(~count&1)))[indexR]; } else { return RES_BOGUS; /* indexR>itemCount */ } } static Resource _res_getTable32Item(const Resource *pRoot, const Resource res, int32_t indexR) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pRoot, res); int32_t count=*p; if((uint32_t)indexR<(uint32_t)count) { return ((const Resource *)(p+1+count))[indexR]; } else { return RES_BOGUS; /* indexR>itemCount */ } } static Resource _res_findTableItem(const Resource *pRoot, const Resource res, const char *key, int32_t *index, const char **realKey) { const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pRoot, res); int32_t i, start, limit; limit=*p++; /* number of entries */ if(limit == 0) { /* this table is empty */ *index=URESDATA_ITEM_NOT_FOUND; return RES_BOGUS; } /* do a binary search for the key */ start=0; while(startsize>=20 && pInfo->isBigEndian==U_IS_BIG_ENDIAN && pInfo->charsetFamily==U_CHARSET_FAMILY && pInfo->sizeofUChar==U_SIZEOF_UCHAR && pInfo->dataFormat[0]==0x52 && /* dataFormat="ResB" */ pInfo->dataFormat[1]==0x65 && pInfo->dataFormat[2]==0x73 && pInfo->dataFormat[3]==0x42 && pInfo->formatVersion[0]==1); } /* semi-public functions ---------------------------------------------------- */ U_CFUNC UBool res_load(ResourceData *pResData, const char *path, const char *name, UErrorCode *errorCode) { UResType rootType; /* load the ResourceBundle file */ pResData->data=udata_openChoice(path, "res", name, isAcceptable, NULL, errorCode); if(U_FAILURE(*errorCode)) { return FALSE; } /* get its memory and root resource */ pResData->pRoot=(Resource *)udata_getMemory(pResData->data); pResData->rootRes=*pResData->pRoot; /* currently, we accept only resources that have a Table as their roots */ rootType=RES_GET_TYPE(pResData->rootRes); if(rootType!=URES_TABLE && rootType!=URES_TABLE32) { *errorCode=U_INVALID_FORMAT_ERROR; udata_close(pResData->data); pResData->data=NULL; return FALSE; } return TRUE; } U_CFUNC void res_unload(ResourceData *pResData) { if(pResData->data!=NULL) { udata_close(pResData->data); pResData->data=NULL; } } U_CFUNC const UChar * res_getString(const ResourceData *pResData, const Resource res, int32_t *pLength) { if(res!=RES_BOGUS && RES_GET_TYPE(res)==URES_STRING) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res); if (pLength) { *pLength=*p; } return (const UChar *)++p; } else { if (pLength) { *pLength=0; } return NULL; } } U_CFUNC const UChar * res_getAlias(const ResourceData *pResData, const Resource res, int32_t *pLength) { if(res!=RES_BOGUS && RES_GET_TYPE(res)==URES_ALIAS) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res); if (pLength) { *pLength=*p; } return (const UChar *)++p; } else { if (pLength) { *pLength=0; } return NULL; } } U_CFUNC const uint8_t * res_getBinary(const ResourceData *pResData, const Resource res, int32_t *pLength) { if(res!=RES_BOGUS) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res); *pLength=*p++; if (*pLength == 0) { p = NULL; } return (const uint8_t *)p; } else { *pLength=0; return NULL; } } U_CFUNC const int32_t * res_getIntVector(const ResourceData *pResData, const Resource res, int32_t *pLength) { if(res!=RES_BOGUS && RES_GET_TYPE(res)==URES_INT_VECTOR) { const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res); *pLength=*p++; if (*pLength == 0) { p = NULL; } return (const int32_t *)p; } else { *pLength=0; return NULL; } } U_CFUNC int32_t res_countArrayItems(const ResourceData *pResData, const Resource res) { if(res!=RES_BOGUS) { switch(RES_GET_TYPE(res)) { case URES_STRING: return 1; case URES_ARRAY: case URES_TABLE32: { const int32_t *p=(const int32_t *)RES_GET_POINTER(pResData->pRoot, res); return *p; } case URES_TABLE: { const uint16_t *p=(const uint16_t *)RES_GET_POINTER(pResData->pRoot, res); return *p; } default: break; } } return 0; } U_CFUNC Resource res_getResource(const ResourceData *pResData, const char *key) { int32_t index; const char *realKey; if(RES_GET_TYPE(pResData->rootRes)==URES_TABLE) { return _res_findTableItem(pResData->pRoot, pResData->rootRes, key, &index, &realKey); } else { return _res_findTable32Item(pResData->pRoot, pResData->rootRes, key, &index, &realKey); } } U_CFUNC Resource res_getArrayItem(const ResourceData *pResData, Resource array, const int32_t indexR) { return _res_getArrayItem(pResData->pRoot, array, indexR); } U_CFUNC Resource res_findResource(const ResourceData *pResData, Resource r, const char** path, const char** key) { /* we pass in a path. CollationElements/Sequence or zoneStrings/3/2 etc. * iterates over a path and stops when a scalar resource is found. This * CAN be an alias. Path gets set to the part that has not yet been processed. */ const char *pathP = *path, *nextSepP = *path; char *closeIndex = NULL; Resource t1 = r; Resource t2; int32_t indexR = 0, keyLen = 0; UResType type = RES_GET_TYPE(t1); while(nextSepP && *pathP && t1 != RES_BOGUS && (type == URES_TABLE || type == URES_TABLE32 || type == URES_ARRAY) ) { /* Iteration stops if: the path has been consumed, we found a non-existing * resource (t1 == RES_BOGUS) or we found a scalar resource (including alias) */ nextSepP = uprv_strchr(pathP, RES_PATH_SEPARATOR); /* if there are more separators, terminate string * and set path to the remaining part of the string */ if(nextSepP != NULL) { keyLen = nextSepP-pathP; *path = nextSepP+1; } else { keyLen = uprv_strlen(pathP); *path += keyLen; } /* if the resource is a table */ /* try the key based access */ if(type == URES_TABLE) { t2 = _res_findTableItemN(pResData->pRoot, t1, pathP, keyLen, key); if(t2 == RES_BOGUS) { /* if we fail to get the resource by key, maybe we got an index */ indexR = uprv_strtol(pathP, &closeIndex, 10); if(closeIndex != pathP) { /* if we indeed have an index, try to get the item by index */ t2 = res_getTableItemByIndex(pResData, t1, indexR, key); } } } else if(type == URES_TABLE32) { t2 = _res_findTable32ItemN(pResData->pRoot, t1, pathP, keyLen, key); if(t2 == RES_BOGUS) { /* if we fail to get the resource by key, maybe we got an index */ indexR = uprv_strtol(pathP, &closeIndex, 10); if(closeIndex != pathP) { /* if we indeed have an index, try to get the item by index */ t2 = res_getTableItemByIndex(pResData, t1, indexR, key); } } } else if(type == URES_ARRAY) { indexR = uprv_strtol(pathP, &closeIndex, 10); if(closeIndex != pathP) { t2 = _res_getArrayItem(pResData->pRoot, t1, indexR); } else { t2 = RES_BOGUS; /* have an array, but don't have a valid index */ } *key = NULL; } else { /* can't do much here, except setting t2 to bogus */ t2 = RES_BOGUS; } t1 = t2; type = RES_GET_TYPE(t1); /* position pathP to next resource key/index */ pathP += keyLen+1; } return t1; } U_CFUNC Resource res_getTableItemByKey(const ResourceData *pResData, Resource table, int32_t *indexR, const char **key) { if(key != NULL && *key != NULL) { if(RES_GET_TYPE(table)==URES_TABLE) { return _res_findTableItem(pResData->pRoot, table, *key, indexR, key); } else { return _res_findTable32Item(pResData->pRoot, table, *key, indexR, key); } } else { return RES_BOGUS; } } U_CFUNC Resource res_getTableItemByIndex(const ResourceData *pResData, Resource table, int32_t indexR, const char **key) { if(indexR>-1) { if(RES_GET_TYPE(table)==URES_TABLE) { if(key != NULL) { *key = _res_getTableKey(pResData->pRoot, table, indexR); } return _res_getTableItem(pResData->pRoot, table, indexR); } else { if(key != NULL) { *key = _res_getTable32Key(pResData->pRoot, table, indexR); } return _res_getTable32Item(pResData->pRoot, table, indexR); } } else { return RES_BOGUS; } } /* resource bundle swapping ------------------------------------------------- */ /* * Need to always enumerate the entire item tree, * track the lowest address of any item to use as the limit for char keys[], * track the highest address of any item to return the size of the data. * * We should have thought of storing those in the data... * It is possible to extend the data structure by putting additional values * in places that are inaccessible by ordinary enumeration of the item tree. * For example, additional integers could be stored at the beginning or * end of the key strings; this could be indicated by a minor version number, * and the data swapping would have to know about these values. * * The data structure does not forbid keys to be shared, so we must swap * all keys once instead of each key when it is referenced. * * These swapping functions assume that a resource bundle always has a length * that is a multiple of 4 bytes. * Currently, this is trivially true because genrb writes bundle tree leaves * physically first, before their branches, so that the root table with its * array of resource items (uint32_t values) is always last. */ /* definitions for table sorting ------------------------ */ /* * row of a temporary array * * gets platform-endian key string indexes and sorting indexes; * after sorting this array by keys, the actual key/value arrays are permutated * according to the sorting indexes */ typedef struct Row { int32_t keyIndex, sortIndex; } Row; static int32_t ures_compareRows(const void *context, const void *left, const void *right) { const char *keyChars=(const char *)context; return (int32_t)uprv_strcmp(keyChars+((const Row *)left)->keyIndex, keyChars+((const Row *)right)->keyIndex); } typedef struct TempTable { const char *keyChars; Row *rows; int32_t *resort; } TempTable; enum { STACK_ROW_CAPACITY=200 }; /* binary data with known formats is swapped too */ typedef enum UResSpecialType { URES_NO_SPECIAL_TYPE, URES_COLLATION_BINARY, URES_SPECIAL_TYPE_COUNT } UResSpecialType; /* resource table key for collation binaries: "%%CollationBin" */ static const UChar gCollationBinKey[]={ 0x25, 0x25, 0x43, 0x6f, 0x6c, 0x6c, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x42, 0x69, 0x6e, 0 }; /* * preflight one resource item and set bottom and top values; * length, bottom, and top count Resource item offsets (4 bytes each), not bytes */ static void ures_preflightResource(const UDataSwapper *ds, const Resource *inBundle, int32_t length, Resource res, int32_t *pBottom, int32_t *pTop, int32_t *pMaxTableLength, UErrorCode *pErrorCode) { const Resource *p; int32_t offset; if(res==0 || RES_GET_TYPE(res)==URES_INT) { /* empty string or integer, nothing to do */ return; } /* all other types use an offset to point to their data */ offset=(int32_t)RES_GET_OFFSET(res); if(0<=length && length<=offset) { udata_printError(ds, "ures_preflightResource(res=%08x) resource offset exceeds bundle length %d\n", res, length); *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return; } else if(offset<*pBottom) { *pBottom=offset; } p=inBundle+offset; switch(RES_GET_TYPE(res)) { case URES_ALIAS: /* physically same value layout as string, fall through */ case URES_STRING: /* top=offset+1+(string length +1)/2 rounded up */ offset+=1+((udata_readInt32(ds, (int32_t)*p)+1)+1)/2; break; case URES_BINARY: /* top=offset+1+(binary length)/4 rounded up */ offset+=1+(udata_readInt32(ds, (int32_t)*p)+3)/4; break; case URES_TABLE: case URES_TABLE32: { Resource item; int32_t i, count; if(RES_GET_TYPE(res)==URES_TABLE) { /* get table item count */ const uint16_t *pKey16=(const uint16_t *)p; count=ds->readUInt16(*pKey16++); /* top=((1+ table item count)/2 rounded up)+(table item count) */ offset+=((1+count)+1)/2; } else { /* get table item count */ const int32_t *pKey32=(const int32_t *)p; count=udata_readInt32(ds, *pKey32++); /* top=(1+ table item count)+(table item count) */ offset+=1+count; } if(count>*pMaxTableLength) { *pMaxTableLength=count; } p=inBundle+offset; /* pointer to table resources */ offset+=count; /* recurse */ if(offset<=length) { for(i=0; ireadUInt32(*p++); ures_preflightResource(ds, inBundle, length, item, pBottom, pTop, pMaxTableLength, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_preflightResource(table res=%08x)[%d].recurse(%08x) failed - %s\n", res, i, item, u_errorName(*pErrorCode)); break; } } } } break; case URES_ARRAY: { Resource item; int32_t i, count; /* top=offset+1+(array length) */ count=udata_readInt32(ds, (int32_t)*p++); offset+=1+count; /* recurse */ if(offset<=length) { for(i=0; ireadUInt32(*p++); ures_preflightResource(ds, inBundle, length, item, pBottom, pTop, pMaxTableLength, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_preflightResource(array res=%08x)[%d].recurse(%08x) failed - %s\n", res, i, item, u_errorName(*pErrorCode)); break; } } } } break; case URES_INT_VECTOR: /* top=offset+1+(vector length) */ offset+=1+udata_readInt32(ds, (int32_t)*p); break; default: /* also catches RES_BOGUS */ udata_printError(ds, "ures_preflightResource(res=%08x) unknown resource type\n", res); *pErrorCode=U_UNSUPPORTED_ERROR; break; } if(U_FAILURE(*pErrorCode)) { /* nothing to do */ } else if(0<=length && length*pTop) { *pTop=offset; } } /* * swap one resource item * since preflighting succeeded, we need not check offsets against length any more */ static void ures_swapResource(const UDataSwapper *ds, const Resource *inBundle, Resource *outBundle, Resource res, /* caller swaps res itself */ UResSpecialType specialType, TempTable *pTempTable, UErrorCode *pErrorCode) { const Resource *p; Resource *q; int32_t offset, count; if(res==0 || RES_GET_TYPE(res)==URES_INT) { /* empty string or integer, nothing to do */ return; } /* all other types use an offset to point to their data */ offset=(int32_t)RES_GET_OFFSET(res); p=inBundle+offset; q=outBundle+offset; switch(RES_GET_TYPE(res)) { case URES_ALIAS: /* physically same value layout as string, fall through */ case URES_STRING: count=udata_readInt32(ds, (int32_t)*p); /* swap length */ ds->swapArray32(ds, p, 4, q, pErrorCode); /* swap each UChar (the terminating NUL would not change) */ ds->swapArray16(ds, p+1, 2*count, q+1, pErrorCode); break; case URES_BINARY: count=udata_readInt32(ds, (int32_t)*p); /* swap length */ ds->swapArray32(ds, p, 4, q, pErrorCode); /* no need to swap or copy bytes - ures_swap() copied them all */ /* swap known formats */ if(specialType==URES_COLLATION_BINARY) { #if !UCONFIG_NO_COLLATION ucol_swapBinary(ds, p+1, count, q+1, pErrorCode); #endif } break; case URES_TABLE: case URES_TABLE32: { const uint16_t *pKey16; uint16_t *qKey16; const int32_t *pKey32; int32_t *qKey32; Resource item; int32_t i, oldIndex; if(RES_GET_TYPE(res)==URES_TABLE) { /* get table item count */ pKey16=(const uint16_t *)p; qKey16=(uint16_t *)q; count=ds->readUInt16(*pKey16); pKey32=qKey32=NULL; /* swap count */ ds->swapArray16(ds, pKey16++, 2, qKey16++, pErrorCode); offset+=((1+count)+1)/2; } else { /* get table item count */ pKey32=(const int32_t *)p; qKey32=(int32_t *)q; count=udata_readInt32(ds, *pKey32); pKey16=qKey16=NULL; /* swap count */ ds->swapArray32(ds, pKey32++, 4, qKey32++, pErrorCode); offset+=1+count; } if(count==0) { break; } p=inBundle+offset; /* pointer to table resources */ q=outBundle+offset; /* recurse */ for(i=0; icompareInvChars(ds, outData+readUInt16(pKey[i]), "%%CollationBin") * etc. * * use some UDataSwapFn pointer from somewhere for collation swapping * because the common library cannot directly call into the i18n library */ if(0==ds->compareInvChars(ds, ((const char *)outBundle)+ (pKey16!=NULL ? ds->readUInt16(pKey16[i]) : udata_readInt32(ds, pKey32[i])), -1, gCollationBinKey, LENGTHOF(gCollationBinKey)-1) ) { specialType=URES_COLLATION_BINARY; } else { specialType=URES_NO_SPECIAL_TYPE; } item=ds->readUInt32(p[i]); ures_swapResource(ds, inBundle, outBundle, item, specialType, pTempTable, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_swapResource(table res=%08x)[%d].recurse(%08x) failed - %s\n", res, i, item, u_errorName(*pErrorCode)); return; } } if(ds->inCharset==ds->outCharset) { /* no need to sort, just swap the offset/value arrays */ if(pKey16!=NULL) { ds->swapArray16(ds, pKey16, count*2, qKey16, pErrorCode); ds->swapArray32(ds, p, count*4, q, pErrorCode); } else { /* swap key offsets and items as one array */ ds->swapArray32(ds, pKey32, count*2*4, qKey32, pErrorCode); } break; } /* * We need to sort tables by outCharset key strings because they * sort differently for different charset families. * ures_swap() already set pTempTable->keyChars appropriately. * First we set up a temporary table with the key indexes and * sorting indexes and sort that. * Then we permutate and copy/swap the actual values. */ if(pKey16!=NULL) { for(i=0; irows[i].keyIndex=ds->readUInt16(pKey16[i]); pTempTable->rows[i].sortIndex=i; } } else { for(i=0; irows[i].keyIndex=udata_readInt32(ds, pKey32[i]); pTempTable->rows[i].sortIndex=i; } } uprv_sortArray(pTempTable->rows, count, sizeof(Row), ures_compareRows, pTempTable->keyChars, FALSE, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_swapResource(table res=%08x).uprv_sortArray(%d items) failed - %s\n", res, count, u_errorName(*pErrorCode)); return; } /* * copy/swap/permutate items * * If we swap in-place, then the permutation must use another * temporary array (pTempTable->resort) * before the results are copied to the outBundle. */ /* keys */ if(pKey16!=NULL) { uint16_t *rKey16; if(pKey16!=qKey16) { rKey16=qKey16; } else { rKey16=(uint16_t *)pTempTable->resort; } for(i=0; irows[i].sortIndex; ds->swapArray16(ds, pKey16+oldIndex, 2, rKey16+i, pErrorCode); } if(qKey16!=rKey16) { uprv_memcpy(qKey16, rKey16, 2*count); } } else { int32_t *rKey32; if(pKey32!=qKey32) { rKey32=qKey32; } else { rKey32=pTempTable->resort; } for(i=0; irows[i].sortIndex; ds->swapArray32(ds, pKey32+oldIndex, 4, rKey32+i, pErrorCode); } if(qKey32!=rKey32) { uprv_memcpy(qKey32, rKey32, 4*count); } } /* resources */ { Resource *r; if(p!=q) { r=q; } else { r=(Resource *)pTempTable->resort; } for(i=0; irows[i].sortIndex; ds->swapArray32(ds, p+oldIndex, 4, r+i, pErrorCode); } if(q!=r) { uprv_memcpy(q, r, 4*count); } } } break; case URES_ARRAY: { Resource item; int32_t i; count=udata_readInt32(ds, (int32_t)*p); /* swap length */ ds->swapArray32(ds, p++, 4, q++, pErrorCode); /* recurse */ for(i=0; ireadUInt32(p[i]); ures_swapResource(ds, inBundle, outBundle, item, URES_NO_SPECIAL_TYPE, pTempTable, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_swapResource(array res=%08x)[%d].recurse(%08x) failed - %s\n", res, i, item, u_errorName(*pErrorCode)); return; } } /* swap items */ ds->swapArray32(ds, p, 4*count, q, pErrorCode); } break; case URES_INT_VECTOR: count=udata_readInt32(ds, (int32_t)*p); /* swap length and each integer */ ds->swapArray32(ds, p, 4*(1+count), q, pErrorCode); break; default: /* also catches RES_BOGUS */ *pErrorCode=U_UNSUPPORTED_ERROR; break; } } U_CAPI int32_t U_EXPORT2 ures_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode) { const UDataInfo *pInfo; const Resource *inBundle; Resource rootRes; int32_t headerSize, maxTableLength; Row rows[STACK_ROW_CAPACITY]; int32_t resort[STACK_ROW_CAPACITY]; TempTable tempTable; /* the following integers count Resource item offsets (4 bytes each), not bytes */ int32_t bundleLength, stringsBottom, bottom, top; /* udata_swapDataHeader checks the arguments */ headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } /* check data format and format version */ pInfo=(const UDataInfo *)((const char *)inData+4); if(!( pInfo->dataFormat[0]==0x52 && /* dataFormat="ResB" */ pInfo->dataFormat[1]==0x65 && pInfo->dataFormat[2]==0x73 && pInfo->dataFormat[3]==0x42 && pInfo->formatVersion[0]==1 )) { udata_printError(ds, "ures_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not a resource bundle\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3], pInfo->formatVersion[0]); *pErrorCode=U_UNSUPPORTED_ERROR; return 0; } /* a resource bundle must contain at least one resource item */ if(length<0) { bundleLength=-1; } else { bundleLength=(length-headerSize)/4; /* formatVersion 1.1 must have a root item and at least 5 indexes */ if( bundleLength< (pInfo->formatVersion[1]==0 ? 1 : 1+5) ) { udata_printError(ds, "ures_swap(): too few bytes (%d after header) for a resource bundle\n", length-headerSize); *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } } inBundle=(const Resource *)((const char *)inData+headerSize); rootRes=ds->readUInt32(*inBundle); if(pInfo->formatVersion[1]==0) { /* preflight to get the bottom, top and maxTableLength values */ stringsBottom=1; /* just past root */ bottom=0x7fffffff; top=maxTableLength=0; ures_preflightResource(ds, inBundle, bundleLength, rootRes, &bottom, &top, &maxTableLength, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_preflightResource(root res=%08x) failed - %s\n", rootRes, u_errorName(*pErrorCode)); return 0; } } else { /* formatVersion 1.1 adds the indexes[] array */ const int32_t *inIndexes; inIndexes=(const int32_t *)(inBundle+1); stringsBottom=1+udata_readInt32(ds, inIndexes[URES_INDEX_LENGTH]); bottom=udata_readInt32(ds, inIndexes[URES_INDEX_STRINGS_TOP]); top=udata_readInt32(ds, inIndexes[URES_INDEX_BUNDLE_TOP]); maxTableLength=udata_readInt32(ds, inIndexes[URES_INDEX_MAX_TABLE_LENGTH]); if(0<=bundleLength && bundleLength=0) { Resource *outBundle=(Resource *)((char *)outData+headerSize); /* copy the bundle for binary and inaccessible data */ if(inData!=outData) { uprv_memcpy(outBundle, inBundle, 4*top); } /* swap the key strings, but not the padding bytes (0xaa) after the last string and its NUL */ udata_swapInvStringBlock(ds, inBundle+stringsBottom, 4*(bottom-stringsBottom), outBundle+stringsBottom, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_swap().udata_swapInvStringBlock(keys[%d]) failed - %s\n", 4*(bottom-1), u_errorName(*pErrorCode)); return 0; } /* allocate the temporary table for sorting resource tables */ tempTable.keyChars=(const char *)outBundle; /* sort by outCharset */ if(maxTableLength<=STACK_ROW_CAPACITY) { tempTable.rows=rows; tempTable.resort=resort; } else { tempTable.rows=(Row *)uprv_malloc(maxTableLength*sizeof(Row)+maxTableLength*4); if(tempTable.rows==NULL) { udata_printError(ds, "ures_swap(): unable to allocate memory for sorting tables (max length: %d)\n", maxTableLength); *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return 0; } tempTable.resort=(int32_t *)(tempTable.rows+maxTableLength); } /* swap the resources */ ures_swapResource(ds, inBundle, outBundle, rootRes, URES_NO_SPECIAL_TYPE, &tempTable, pErrorCode); if(U_FAILURE(*pErrorCode)) { udata_printError(ds, "ures_swapResource(root res=%08x) failed - %s\n", rootRes, u_errorName(*pErrorCode)); } if(tempTable.rows!=rows) { uprv_free(tempTable.rows); } /* swap the root resource and indexes */ ds->swapArray32(ds, inBundle, stringsBottom*4, outBundle, pErrorCode); } return headerSize+4*top; }