/* ******************************************************************************* * * Copyright (C) 2000-2009, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * * File reslist.c * * Modification History: * * Date Name Description * 02/21/00 weiv Creation. ******************************************************************************* */ #include #include #include "reslist.h" #include "unewdata.h" #include "unicode/ures.h" #include "unicode/putil.h" #include "errmsg.h" #include "uarrsort.h" #include "uinvchar.h" /* * Align binary data at a 16-byte offset from the start of the resource bundle, * to be safe for any data type it may contain. */ #define BIN_ALIGNMENT 16 static UBool gIncludeCopyright = FALSE; static UBool gUsePoolBundle = FALSE; static int32_t gFormatVersion = 2; static UChar gEmptyString = 0; /* How do we store string values? */ enum { STRINGS_UTF16_V1, /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */ STRINGS_UTF16_V2 /* formatVersion 2: optional length in 1..3 UChars + UChars + NUL */ }; enum { MAX_IMPLICIT_STRING_LENGTH = 40 /* do not store the length explicitly for such strings */ }; /* * res_none() returns the address of kNoResource, * for use in non-error cases when no resource is to be added to the bundle. * (NULL is used in error cases.) */ static const struct SResource kNoResource = { URES_NONE }; static UDataInfo dataInfo= { sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, sizeof(UChar), 0, {0x52, 0x65, 0x73, 0x42}, /* dataFormat="ResB" */ {1, 3, 0, 0}, /* formatVersion */ {1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/ }; static const UVersionInfo gFormatVersions[3] = { /* indexed by a major-formatVersion integer */ { 0, 0, 0, 0 }, { 1, 3, 0, 0 }, { 2, 0, 0, 0 } }; static uint8_t calcPadding(uint32_t size) { /* returns space we need to pad */ return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0); } void setIncludeCopyright(UBool val){ gIncludeCopyright=val; } UBool getIncludeCopyright(void){ return gIncludeCopyright; } void setFormatVersion(int32_t formatVersion) { gFormatVersion = formatVersion; } void setUsePoolBundle(UBool use) { gUsePoolBundle = use; } static void bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status); /* Writing Functions */ /* * type_write16() functions write resource values into f16BitUnits * and determine the resource item word, if possible. */ static void res_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status); /* * type_preWrite() functions calculate ("preflight") and advance the *byteOffset * by the size of their data in the binary file and * determine the resource item word. * Most type_preWrite() functions may add any number of bytes, but res_preWrite() * will always pad it to a multiple of 4. * The resource item type may be a related subtype of the fType. * * The type_preWrite() and type_write() functions start and end at the same * byteOffset values. * Prewriting allows bundle_write() to determine the root resource item word, * before actually writing the bundle contents to the file, * which is necessary because the root item is stored at the beginning. */ static void res_preWrite(uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status); /* * type_write() functions write their data to mem and update the byteOffset * in parallel. * (A kingdom for C++ and polymorphism...) */ static void res_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status); static uint16_t * reserve16BitUnits(struct SRBRoot *bundle, int32_t length, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } if ((bundle->f16BitUnitsLength + length) > bundle->f16BitUnitsCapacity) { uint16_t *newUnits; int32_t capacity = 2 * bundle->f16BitUnitsCapacity + length + 1024; capacity &= ~1; /* ensures padding fits if f16BitUnitsLength needs it */ newUnits = (uint16_t *)uprv_malloc(capacity * 2); if (newUnits == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } if (bundle->f16BitUnitsLength > 0) { uprv_memcpy(newUnits, bundle->f16BitUnits, bundle->f16BitUnitsLength * 2); } else { newUnits[0] = 0; bundle->f16BitUnitsLength = 1; } uprv_free(bundle->f16BitUnits); bundle->f16BitUnits = newUnits; bundle->f16BitUnitsCapacity = capacity; } return bundle->f16BitUnits + bundle->f16BitUnitsLength; } static int32_t makeRes16(uint32_t resWord) { uint32_t type, offset; if (resWord == 0) { return 0; /* empty string */ } type = RES_GET_TYPE(resWord); offset = RES_GET_OFFSET(resWord); if (type == URES_STRING_V2 && offset <= 0xffff) { return (int32_t)offset; } return -1; } static int32_t mapKey(struct SRBRoot *bundle, int32_t oldpos) { const KeyMapEntry *map = bundle->fKeyMap; int32_t i, start, limit; /* do a binary search for the old, pre-bundle_compactKeys() key offset */ start = bundle->fPoolBundleKeysCount; limit = start + bundle->fKeysCount; while (start < limit - 1) { i = (start + limit) / 2; if (oldpos < map[i].oldpos) { limit = i; } else { start = i; } } assert(oldpos == map[start].oldpos); return map[start].newpos; } static uint16_t makeKey16(struct SRBRoot *bundle, int32_t key) { if (key >= 0) { return (uint16_t)key; } else { return (uint16_t)(key + bundle->fLocalKeyLimit); /* offset in the pool bundle */ } } /* * Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings. * For unique UTF-16 v2 strings, res_write16() sees fRes != RES_BOGUS * and exits early. */ static void string_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { struct SResource *same; if ((same = res->u.fString.fSame) != NULL) { /* This is a duplicate. */ if (same->fRes == RES_BOGUS) { /* The original has not been visited yet. */ string_write16(bundle, same, status); } res->fRes = same->fRes; res->fWritten = same->fWritten; } } static void array_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { struct SResource *current; int32_t res16 = 0; if (U_FAILURE(*status)) { return; } if (res->u.fArray.fCount == 0 && gFormatVersion > 1) { res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY); res->fWritten = TRUE; return; } for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { res_write16(bundle, current, status); res16 |= makeRes16(current->fRes); } if (U_SUCCESS(*status) && res->u.fArray.fCount <= 0xffff && res16 >= 0) { uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fArray.fCount, status); if (U_SUCCESS(*status)) { res->fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnitsLength); *p16++ = (uint16_t)res->u.fArray.fCount; for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { *p16++ = (uint16_t)makeRes16(current->fRes); } bundle->f16BitUnitsLength += 1 + res->u.fArray.fCount; res->fWritten = TRUE; } } } static void table_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { struct SResource *current; int32_t maxKey = 0, maxPoolKey = 0x80000000; int32_t res16 = 0; UBool hasLocalKeys = FALSE, hasPoolKeys = FALSE; if (U_FAILURE(*status)) { return; } if (res->u.fTable.fCount == 0 && gFormatVersion > 1) { res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE); res->fWritten = TRUE; return; } /* Find the smallest table type that fits the data. */ for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { int32_t key; res_write16(bundle, current, status); if (bundle->fKeyMap == NULL) { key = current->fKey; } else { key = current->fKey = mapKey(bundle, current->fKey); } if (key >= 0) { hasLocalKeys = TRUE; if (key > maxKey) { maxKey = key; } } else { hasPoolKeys = TRUE; if (key > maxPoolKey) { maxPoolKey = key; } } res16 |= makeRes16(current->fRes); } if (U_FAILURE(*status)) { return; } if(res->u.fTable.fCount > (uint32_t)bundle->fMaxTableLength) { bundle->fMaxTableLength = res->u.fTable.fCount; } maxPoolKey &= 0x7fffffff; if (res->u.fTable.fCount <= 0xffff && (!hasLocalKeys || maxKey < bundle->fLocalKeyLimit) && (!hasPoolKeys || maxPoolKey < (0x10000 - bundle->fLocalKeyLimit)) ) { if (res16 >= 0) { uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fTable.fCount * 2, status); if (U_SUCCESS(*status)) { /* 16-bit count, key offsets and values */ res->fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnitsLength); *p16++ = (uint16_t)res->u.fTable.fCount; for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { *p16++ = makeKey16(bundle, current->fKey); } for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { *p16++ = (uint16_t)makeRes16(current->fRes); } bundle->f16BitUnitsLength += 1 + res->u.fTable.fCount * 2; res->fWritten = TRUE; } } else { /* 16-bit count, 16-bit key offsets, 32-bit values */ res->u.fTable.fType = URES_TABLE; } } else { /* 32-bit count, key offsets and values */ res->u.fTable.fType = URES_TABLE32; } } static void res_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { if (U_FAILURE(*status) || res == NULL) { return; } if (res->fRes != RES_BOGUS) { /* * The resource item word was already precomputed, which means * no further data needs to be written. * This might be an integer, or an empty or UTF-16 v2 string, * an empty binary, etc. */ return; } switch (res->fType) { case URES_STRING: string_write16(bundle, res, status); break; case URES_ARRAY: array_write16(bundle, res, status); break; case URES_TABLE: table_write16(bundle, res, status); break; default: /* Only a few resource types write 16-bit units. */ break; } } /* * Only called for UTF-16 v1 strings. * For UTF-16 v2 strings, res_preWrite() sees fRes != RES_BOGUS * and exits early. */ static void string_preWrite(uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { /* Write the UTF-16 v1 string. */ res->fRes = URES_MAKE_RESOURCE(URES_STRING, *byteOffset >> 2); *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR; } static void bin_preWrite(uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { uint32_t pad = 0; uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength); if (dataStart % BIN_ALIGNMENT) { pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); *byteOffset += pad; /* pad == 4 or 8 or 12 */ } res->fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2); *byteOffset += 4 + res->u.fBinaryValue.fLength; } static void array_preWrite(uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { struct SResource *current; if (U_FAILURE(*status)) { return; } for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { res_preWrite(byteOffset, bundle, current, status); } res->fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2); *byteOffset += (1 + res->u.fArray.fCount) * 4; } static void table_preWrite(uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { struct SResource *current; if (U_FAILURE(*status)) { return; } for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { res_preWrite(byteOffset, bundle, current, status); } if (res->u.fTable.fType == URES_TABLE) { /* 16-bit count, 16-bit key offsets, 32-bit values */ res->fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2); *byteOffset += 2 + res->u.fTable.fCount * 6; } else { /* 32-bit count, key offsets and values */ res->fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2); *byteOffset += 4 + res->u.fTable.fCount * 8; } } static void res_preWrite(uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { if (U_FAILURE(*status) || res == NULL) { return; } if (res->fRes != RES_BOGUS) { /* * The resource item word was already precomputed, which means * no further data needs to be written. * This might be an integer, or an empty or UTF-16 v2 string, * an empty binary, etc. */ return; } switch (res->fType) { case URES_STRING: string_preWrite(byteOffset, bundle, res, status); break; case URES_ALIAS: res->fRes = URES_MAKE_RESOURCE(URES_ALIAS, *byteOffset >> 2); *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR; break; case URES_INT_VECTOR: if (res->u.fIntVector.fCount == 0 && gFormatVersion > 1) { res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR); res->fWritten = TRUE; } else { res->fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2); *byteOffset += (1 + res->u.fIntVector.fCount) * 4; } break; case URES_BINARY: bin_preWrite(byteOffset, bundle, res, status); break; case URES_INT: break; case URES_ARRAY: array_preWrite(byteOffset, bundle, res, status); break; case URES_TABLE: table_preWrite(byteOffset, bundle, res, status); break; default: *status = U_INTERNAL_PROGRAM_ERROR; break; } *byteOffset += calcPadding(*byteOffset); } /* * Only called for UTF-16 v1 strings. For UTF-16 v2 strings, * res_write() sees fWritten and exits early. */ static void string_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { /* Write the UTF-16 v1 string. */ int32_t length = res->u.fString.fLength; udata_write32(mem, length); udata_writeUString(mem, res->u.fString.fChars, length + 1); *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR; res->fWritten = TRUE; } static void alias_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { int32_t length = res->u.fString.fLength; udata_write32(mem, length); udata_writeUString(mem, res->u.fString.fChars, length + 1); *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR; } static void array_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { uint32_t i; struct SResource *current = NULL; if (U_FAILURE(*status)) { return; } for (i = 0, current = res->u.fArray.fFirst; current != NULL; ++i, current = current->fNext) { res_write(mem, byteOffset, bundle, current, status); } assert(i == res->u.fArray.fCount); udata_write32(mem, res->u.fArray.fCount); for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) { udata_write32(mem, current->fRes); } *byteOffset += (1 + res->u.fArray.fCount) * 4; } static void intvector_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { uint32_t i = 0; udata_write32(mem, res->u.fIntVector.fCount); for(i = 0; iu.fIntVector.fCount; i++) { udata_write32(mem, res->u.fIntVector.fArray[i]); } *byteOffset += (1 + res->u.fIntVector.fCount) * 4; } static void bin_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { uint32_t pad = 0; uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength); if (dataStart % BIN_ALIGNMENT) { pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT); udata_writePadding(mem, pad); /* pad == 4 or 8 or 12 */ *byteOffset += pad; } udata_write32(mem, res->u.fBinaryValue.fLength); if (res->u.fBinaryValue.fLength > 0) { udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength); } *byteOffset += 4 + res->u.fBinaryValue.fLength; } static void table_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { struct SResource *current; uint32_t i; if (U_FAILURE(*status)) { return; } for (i = 0, current = res->u.fTable.fFirst; current != NULL; ++i, current = current->fNext) { assert(i < res->u.fTable.fCount); res_write(mem, byteOffset, bundle, current, status); } assert(i == res->u.fTable.fCount); if(res->u.fTable.fType == URES_TABLE) { udata_write16(mem, (uint16_t)res->u.fTable.fCount); for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { udata_write16(mem, makeKey16(bundle, current->fKey)); } *byteOffset += (1 + res->u.fTable.fCount)* 2; if ((res->u.fTable.fCount & 1) == 0) { /* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */ udata_writePadding(mem, 2); *byteOffset += 2; } } else /* URES_TABLE32 */ { udata_write32(mem, res->u.fTable.fCount); for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { udata_write32(mem, (uint32_t)current->fKey); } *byteOffset += (1 + res->u.fTable.fCount)* 4; } for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) { udata_write32(mem, current->fRes); } *byteOffset += res->u.fTable.fCount * 4; } void res_write(UNewDataMemory *mem, uint32_t *byteOffset, struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) { uint8_t paddingSize; if (U_FAILURE(*status) || res == NULL) { return; } if (res->fWritten) { assert(res->fRes != RES_BOGUS); return; } switch (res->fType) { case URES_STRING: string_write (mem, byteOffset, bundle, res, status); break; case URES_ALIAS: alias_write (mem, byteOffset, bundle, res, status); break; case URES_INT_VECTOR: intvector_write (mem, byteOffset, bundle, res, status); break; case URES_BINARY: bin_write (mem, byteOffset, bundle, res, status); break; case URES_INT: break; /* fRes was set by int_open() */ case URES_ARRAY: array_write (mem, byteOffset, bundle, res, status); break; case URES_TABLE: table_write (mem, byteOffset, bundle, res, status); break; default: *status = U_INTERNAL_PROGRAM_ERROR; break; } paddingSize = calcPadding(*byteOffset); if (paddingSize > 0) { udata_writePadding(mem, paddingSize); *byteOffset += paddingSize; } res->fWritten = TRUE; } void bundle_write(struct SRBRoot *bundle, const char *outputDir, const char *outputPkg, char *writtenFilename, int writtenFilenameLen, UErrorCode *status) { UNewDataMemory *mem = NULL; uint32_t byteOffset = 0; uint32_t top, size; char dataName[1024]; int32_t indexes[URES_INDEX_TOP]; bundle_compactKeys(bundle, status); /* * Add padding bytes to fKeys so that fKeysTop is 4-aligned. * Safe because the capacity is a multiple of 4. */ while (bundle->fKeysTop & 3) { bundle->fKeys[bundle->fKeysTop++] = (char)0xaa; } /* * In URES_TABLE, use all local key offsets that fit into 16 bits, * and use the remaining 16-bit offsets for pool key offsets * if there are any. * If there are no local keys, then use the whole 16-bit space * for pool key offsets. * Note: This cannot be changed without changing the major formatVersion. */ if (bundle->fKeysBottom < bundle->fKeysTop) { if (bundle->fKeysTop <= 0x10000) { bundle->fLocalKeyLimit = bundle->fKeysTop; } else { bundle->fLocalKeyLimit = 0x10000; } } else { bundle->fLocalKeyLimit = 0; } bundle_compactStrings(bundle, status); res_write16(bundle, bundle->fRoot, status); if (bundle->f16BitUnitsLength & 1) { bundle->f16BitUnits[bundle->f16BitUnitsLength++] = 0xaaaa; /* pad to multiple of 4 bytes */ } /* all keys have been mapped */ uprv_free(bundle->fKeyMap); bundle->fKeyMap = NULL; byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2; res_preWrite(&byteOffset, bundle, bundle->fRoot, status); /* total size including the root item */ top = byteOffset; if (U_FAILURE(*status)) { return; } if (writtenFilename && writtenFilenameLen) { *writtenFilename = 0; } if (writtenFilename) { int32_t off = 0, len = 0; if (outputDir) { len = (int32_t)uprv_strlen(outputDir); if (len > writtenFilenameLen) { len = writtenFilenameLen; } uprv_strncpy(writtenFilename, outputDir, len); } if (writtenFilenameLen -= len) { off += len; writtenFilename[off] = U_FILE_SEP_CHAR; if (--writtenFilenameLen) { ++off; if(outputPkg != NULL) { uprv_strcpy(writtenFilename+off, outputPkg); off += (int32_t)uprv_strlen(outputPkg); writtenFilename[off] = '_'; ++off; } len = (int32_t)uprv_strlen(bundle->fLocale); if (len > writtenFilenameLen) { len = writtenFilenameLen; } uprv_strncpy(writtenFilename + off, bundle->fLocale, len); if (writtenFilenameLen -= len) { off += len; len = 5; if (len > writtenFilenameLen) { len = writtenFilenameLen; } uprv_strncpy(writtenFilename + off, ".res", len); } } } } if(outputPkg) { uprv_strcpy(dataName, outputPkg); uprv_strcat(dataName, "_"); uprv_strcat(dataName, bundle->fLocale); } else { uprv_strcpy(dataName, bundle->fLocale); } uprv_memcpy(dataInfo.formatVersion, gFormatVersions + gFormatVersion, sizeof(UVersionInfo)); mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status); if(U_FAILURE(*status)){ return; } /* write the root item */ udata_write32(mem, bundle->fRoot->fRes); /* * formatVersion 1.1 (ICU 2.8): * write int32_t indexes[] after root and before the strings * to make it easier to parse resource bundles in icuswap or from Java etc. */ uprv_memset(indexes, 0, sizeof(indexes)); indexes[URES_INDEX_LENGTH]= bundle->fIndexLength; indexes[URES_INDEX_KEYS_TOP]= bundle->fKeysTop>>2; indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2); indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP]; indexes[URES_INDEX_MAX_TABLE_LENGTH]= bundle->fMaxTableLength; /* * formatVersion 1.2 (ICU 3.6): * write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set * the memset() above initialized all indexes[] to 0 */ if (bundle->noFallback) { indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK; } /* * formatVersion 2.0 (ICU 4.4): * more compact string value storage, optional pool bundle */ if (URES_INDEX_16BIT_TOP < bundle->fIndexLength) { indexes[URES_INDEX_16BIT_TOP] = (bundle->fKeysTop>>2) + (bundle->f16BitUnitsLength>>1); } if (URES_INDEX_POOL_CHECKSUM < bundle->fIndexLength) { if (bundle->fIsPoolBundle) { indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK; indexes[URES_INDEX_POOL_CHECKSUM] = (int32_t)computeCRC((char *)(bundle->fKeys + bundle->fKeysBottom), (uint32_t)(bundle->fKeysTop - bundle->fKeysBottom), 0); } else if (gUsePoolBundle) { indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE; indexes[URES_INDEX_POOL_CHECKSUM] = bundle->fPoolChecksum; } } /* write the indexes[] */ udata_writeBlock(mem, indexes, bundle->fIndexLength*4); /* write the table key strings */ udata_writeBlock(mem, bundle->fKeys+bundle->fKeysBottom, bundle->fKeysTop-bundle->fKeysBottom); /* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */ udata_writeBlock(mem, bundle->f16BitUnits, bundle->f16BitUnitsLength*2); /* write all of the bundle contents: the root item and its children */ byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2; res_write(mem, &byteOffset, bundle, bundle->fRoot, status); assert(byteOffset == top); size = udata_finish(mem, status); if(top != size) { fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n", (int)size, (int)top); *status = U_INTERNAL_PROGRAM_ERROR; } } /* Opening Functions */ /* gcc 4.2 complained "no previous prototype for ‘res_open’" without this prototype... */ struct SResource* res_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode* status); struct SResource* res_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode* status){ struct SResource *res; int32_t key = bundle_addtag(bundle, tag, status); if (U_FAILURE(*status)) { return NULL; } res = (struct SResource *) uprv_malloc(sizeof(struct SResource)); if (res == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memset(res, 0, sizeof(struct SResource)); res->fKey = key; res->fRes = RES_BOGUS; ustr_init(&res->fComment); if(comment != NULL){ ustr_cpy(&res->fComment, comment, status); if (U_FAILURE(*status)) { res_close(res); return NULL; } } return res; } struct SResource* res_none() { return (struct SResource*)&kNoResource; } struct SResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_TABLE; res->u.fTable.fRoot = bundle; return res; } struct SResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_ARRAY; return res; } static int32_t U_CALLCONV string_hash(const UHashTok key) { const struct SResource *res = (struct SResource *)key.pointer; return uhash_hashUCharsN(res->u.fString.fChars, res->u.fString.fLength); } static UBool U_CALLCONV string_comp(const UHashTok key1, const UHashTok key2) { const struct SResource *res1 = (struct SResource *)key1.pointer; const struct SResource *res2 = (struct SResource *)key2.pointer; return 0 == u_strCompare(res1->u.fString.fChars, res1->u.fString.fLength, res2->u.fString.fChars, res2->u.fString.fLength, FALSE); } struct SResource *string_open(struct SRBRoot *bundle, char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_STRING; if (len == 0 && gFormatVersion > 1) { res->u.fString.fChars = &gEmptyString; res->fRes = 0; res->fWritten = TRUE; return res; } res->u.fString.fLength = len; if (gFormatVersion > 1) { /* check for duplicates */ res->u.fString.fChars = (UChar *)value; if (bundle->fStringSet == NULL) { UErrorCode localStatus = U_ZERO_ERROR; /* if failure: just don't detect dups */ bundle->fStringSet = uhash_open(string_hash, string_comp, string_comp, &localStatus); } else { res->u.fString.fSame = uhash_get(bundle->fStringSet, res); } } if (res->u.fString.fSame == NULL) { /* this is a new string */ res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); if (res->u.fString.fChars == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * len); res->u.fString.fChars[len] = 0; if (bundle->fStringSet != NULL) { /* put it into the set for finding duplicates */ uhash_put(bundle->fStringSet, res, res, status); } if (bundle->fStringsForm != STRINGS_UTF16_V1) { if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(value[0]) && len == u_strlen(value)) { /* * This string will be stored without an explicit length. * Runtime will detect !U16_IS_TRAIL(value[0]) and call u_strlen(). */ res->u.fString.fNumCharsForLength = 0; } else if (len <= 0x3ee) { res->u.fString.fNumCharsForLength = 1; } else if (len <= 0xfffff) { res->u.fString.fNumCharsForLength = 2; } else { res->u.fString.fNumCharsForLength = 3; } bundle->f16BitUnitsLength += res->u.fString.fNumCharsForLength + len + 1; /* +1 for the NUL */ } } else { /* this is a duplicate of fSame */ struct SResource *same = res->u.fString.fSame; res->u.fString.fChars = same->u.fString.fChars; } return res; } /* TODO: make alias_open and string_open use the same code */ struct SResource *alias_open(struct SRBRoot *bundle, char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_ALIAS; if (len == 0 && gFormatVersion > 1) { res->u.fString.fChars = &gEmptyString; res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ALIAS); res->fWritten = TRUE; return res; } res->u.fString.fLength = len; res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1)); if (res->u.fString.fChars == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1)); return res; } struct SResource* intvector_open(struct SRBRoot *bundle, char *tag, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_INT_VECTOR; res->u.fIntVector.fCount = 0; res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR); if (res->u.fIntVector.fArray == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } return res; } struct SResource *int_open(struct SRBRoot *bundle, char *tag, int32_t value, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_INT; res->u.fIntValue.fValue = value; res->fRes = URES_MAKE_RESOURCE(URES_INT, value & 0x0FFFFFFF); res->fWritten = TRUE; return res; } struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) { struct SResource *res = res_open(bundle, tag, comment, status); if (U_FAILURE(*status)) { return NULL; } res->fType = URES_BINARY; res->u.fBinaryValue.fLength = length; res->u.fBinaryValue.fFileName = NULL; if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){ res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1)); uprv_strcpy(res->u.fBinaryValue.fFileName,fileName); } if (length > 0) { res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length); if (res->u.fBinaryValue.fData == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(res); return NULL; } uprv_memcpy(res->u.fBinaryValue.fData, data, length); } else { res->u.fBinaryValue.fData = NULL; res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY); res->fWritten = TRUE; } return res; } struct SRBRoot *bundle_open(const struct UString* comment, UBool isPoolBundle, UErrorCode *status) { struct SRBRoot *bundle; if (U_FAILURE(*status)) { return NULL; } bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot)); if (bundle == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } uprv_memset(bundle, 0, sizeof(struct SRBRoot)); bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE); bundle->fRoot = table_open(bundle, NULL, comment, status); if (bundle->fKeys == NULL || bundle->fRoot == NULL || U_FAILURE(*status)) { if (U_SUCCESS(*status)) { *status = U_MEMORY_ALLOCATION_ERROR; } bundle_close(bundle, status); return NULL; } bundle->fLocale = NULL; bundle->fKeysCapacity = KEY_SPACE_SIZE; /* formatVersion 1.1: start fKeysTop after the root item and indexes[] */ bundle->fIsPoolBundle = isPoolBundle; if (gUsePoolBundle || isPoolBundle) { bundle->fIndexLength = URES_INDEX_POOL_CHECKSUM + 1; } else if (gFormatVersion >= 2) { bundle->fIndexLength = URES_INDEX_16BIT_TOP + 1; } else /* formatVersion 1 */ { bundle->fIndexLength = URES_INDEX_ATTRIBUTES + 1; } bundle->fKeysBottom = (1 /* root */ + bundle->fIndexLength) * 4; uprv_memset(bundle->fKeys, 0, bundle->fKeysBottom); bundle->fKeysTop = bundle->fKeysBottom; if (gFormatVersion == 1) { bundle->fStringsForm = STRINGS_UTF16_V1; } else { bundle->fStringsForm = STRINGS_UTF16_V2; } return bundle; } /* Closing Functions */ static void table_close(struct SResource *table) { struct SResource *current = NULL; struct SResource *prev = NULL; current = table->u.fTable.fFirst; while (current != NULL) { prev = current; current = current->fNext; res_close(prev); } table->u.fTable.fFirst = NULL; } static void array_close(struct SResource *array) { struct SResource *current = NULL; struct SResource *prev = NULL; if(array==NULL){ return; } current = array->u.fArray.fFirst; while (current != NULL) { prev = current; current = current->fNext; res_close(prev); } array->u.fArray.fFirst = NULL; } static void string_close(struct SResource *string) { if (string->u.fString.fChars != NULL && string->u.fString.fChars != &gEmptyString && string->u.fString.fSame == NULL ) { uprv_free(string->u.fString.fChars); string->u.fString.fChars =NULL; } } static void alias_close(struct SResource *alias) { if (alias->u.fString.fChars != NULL) { uprv_free(alias->u.fString.fChars); alias->u.fString.fChars =NULL; } } static void intvector_close(struct SResource *intvector) { if (intvector->u.fIntVector.fArray != NULL) { uprv_free(intvector->u.fIntVector.fArray); intvector->u.fIntVector.fArray =NULL; } } static void int_close(struct SResource *intres) { /* Intentionally left blank */ } static void bin_close(struct SResource *binres) { if (binres->u.fBinaryValue.fData != NULL) { uprv_free(binres->u.fBinaryValue.fData); binres->u.fBinaryValue.fData = NULL; } } void res_close(struct SResource *res) { if (res != NULL) { switch(res->fType) { case URES_STRING: string_close(res); break; case URES_ALIAS: alias_close(res); break; case URES_INT_VECTOR: intvector_close(res); break; case URES_BINARY: bin_close(res); break; case URES_INT: int_close(res); break; case URES_ARRAY: array_close(res); break; case URES_TABLE: table_close(res); break; default: /* Shouldn't happen */ break; } ustr_deinit(&res->fComment); uprv_free(res); } } void bundle_close(struct SRBRoot *bundle, UErrorCode *status) { res_close(bundle->fRoot); uprv_free(bundle->fLocale); uprv_free(bundle->fKeys); uprv_free(bundle->fKeyMap); uhash_close(bundle->fStringSet); uprv_free(bundle->f16BitUnits); uprv_free(bundle); } void bundle_closeString(struct SRBRoot *bundle, struct SResource *string) { if (bundle->fStringSet != NULL) { uhash_remove(bundle->fStringSet, string); } string_close(string); } /* Adding Functions */ void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) { struct SResource *current = NULL; struct SResource *prev = NULL; struct SResTable *list; const char *resKeyString; if (U_FAILURE(*status)) { return; } if (res == &kNoResource) { return; } /* remember this linenumber to report to the user if there is a duplicate key */ res->line = linenumber; /* here we need to traverse the list */ list = &(table->u.fTable); ++(list->fCount); /* is list still empty? */ if (list->fFirst == NULL) { list->fFirst = res; res->fNext = NULL; return; } resKeyString = list->fRoot->fKeys + res->fKey; current = list->fFirst; while (current != NULL) { const char *currentKeyString = list->fRoot->fKeys + current->fKey; int diff; /* * formatVersion 1: compare key strings in native-charset order * formatVersion 2 and up: compare key strings in ASCII order */ if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) { diff = uprv_strcmp(currentKeyString, resKeyString); } else { diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString); } if (diff < 0) { prev = current; current = current->fNext; } else if (diff > 0) { /* we're either in front of list, or in middle */ if (prev == NULL) { /* front of the list */ list->fFirst = res; } else { /* middle of the list */ prev->fNext = res; } res->fNext = current; return; } else { /* Key already exists! ERROR! */ error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line); *status = U_UNSUPPORTED_ERROR; return; } } /* end of list */ prev->fNext = res; res->fNext = NULL; } void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) { if (U_FAILURE(*status)) { return; } if (array->u.fArray.fFirst == NULL) { array->u.fArray.fFirst = res; array->u.fArray.fLast = res; } else { array->u.fArray.fLast->fNext = res; array->u.fArray.fLast = res; } (array->u.fArray.fCount)++; } void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) { if (U_FAILURE(*status)) { return; } *(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value; intvector->u.fIntVector.fCount++; } /* Misc Functions */ void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) { if(U_FAILURE(*status)) { return; } if (bundle->fLocale!=NULL) { uprv_free(bundle->fLocale); } bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1)); if(bundle->fLocale == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } /*u_strcpy(bundle->fLocale, locale);*/ u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1); } static const char * getKeyString(const struct SRBRoot *bundle, int32_t key) { if (key < 0) { return bundle->fPoolBundleKeys + (key & 0x7fffffff); } else { return bundle->fKeys + key; } } const char * res_getKeyString(const struct SRBRoot *bundle, const struct SResource *res, char temp[8]) { if (res->fKey == -1) { return NULL; } return getKeyString(bundle, res->fKey); } const char * bundle_getKeyBytes(struct SRBRoot *bundle, int32_t *pLength) { *pLength = bundle->fKeysTop - bundle->fKeysBottom; return bundle->fKeys + bundle->fKeysBottom; } int32_t bundle_addKeyBytes(struct SRBRoot *bundle, const char *keyBytes, int32_t length, UErrorCode *status) { int32_t keypos; if (U_FAILURE(*status)) { return -1; } if (length < 0 || (keyBytes == NULL && length != 0)) { *status = U_ILLEGAL_ARGUMENT_ERROR; return -1; } if (length == 0) { return bundle->fKeysTop; } keypos = bundle->fKeysTop; bundle->fKeysTop += length; if (bundle->fKeysTop >= bundle->fKeysCapacity) { /* overflow - resize the keys buffer */ bundle->fKeysCapacity += KEY_SPACE_SIZE; bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity); if(bundle->fKeys == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return -1; } } uprv_memcpy(bundle->fKeys + keypos, keyBytes, length); return keypos; } int32_t bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) { int32_t keypos; if (U_FAILURE(*status)) { return -1; } if (tag == NULL) { /* no error: the root table and array items have no keys */ return -1; } keypos = bundle_addKeyBytes(bundle, tag, (int32_t)(uprv_strlen(tag) + 1), status); if (U_SUCCESS(*status)) { ++bundle->fKeysCount; } return keypos; } static int32_t compareInt32(int32_t lPos, int32_t rPos) { /* * Compare possibly-negative key offsets. Don't just return lPos - rPos * because that is prone to negative-integer underflows. */ if (lPos < rPos) { return -1; } else if (lPos > rPos) { return 1; } else { return 0; } } static int32_t U_CALLCONV compareKeySuffixes(const void *context, const void *l, const void *r) { const struct SRBRoot *bundle=(const struct SRBRoot *)context; int32_t lPos = ((const KeyMapEntry *)l)->oldpos; int32_t rPos = ((const KeyMapEntry *)r)->oldpos; const char *lStart = getKeyString(bundle, lPos); const char *lLimit = lStart; const char *rStart = getKeyString(bundle, rPos); const char *rLimit = rStart; int32_t diff; while (*lLimit != 0) { ++lLimit; } while (*rLimit != 0) { ++rLimit; } /* compare keys in reverse character order */ while (lStart < lLimit && rStart < rLimit) { diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit; if (diff != 0) { return diff; } } /* sort equal suffixes by descending key length */ diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart); if (diff != 0) { return diff; } /* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */ return compareInt32(lPos, rPos); } static int32_t U_CALLCONV compareKeyNewpos(const void *context, const void *l, const void *r) { return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos); } static int32_t U_CALLCONV compareKeyOldpos(const void *context, const void *l, const void *r) { return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos); } void bundle_compactKeys(struct SRBRoot *bundle, UErrorCode *status) { KeyMapEntry *map; char *keys; int32_t i; int32_t keysCount = bundle->fPoolBundleKeysCount + bundle->fKeysCount; if (U_FAILURE(*status) || bundle->fKeysCount == 0 || bundle->fKeyMap != NULL) { return; } map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry)); if (map == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return; } keys = (char *)bundle->fPoolBundleKeys; for (i = 0; i < bundle->fPoolBundleKeysCount; ++i) { map[i].oldpos = (int32_t)(keys - bundle->fPoolBundleKeys) | 0x80000000; /* negative oldpos */ map[i].newpos = 0; while (*keys != 0) { ++keys; } /* skip the key */ ++keys; /* skip the NUL */ } keys = bundle->fKeys + bundle->fKeysBottom; for (; i < keysCount; ++i) { map[i].oldpos = (int32_t)(keys - bundle->fKeys); map[i].newpos = 0; while (*keys != 0) { ++keys; } /* skip the key */ ++keys; /* skip the NUL */ } /* Sort the keys so that each one is immediately followed by all of its suffixes. */ uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), compareKeySuffixes, bundle, FALSE, status); /* * Make suffixes point into earlier, longer strings that contain them * and mark the old, now unused suffix bytes as deleted. */ if (U_SUCCESS(*status)) { keys = bundle->fKeys; for (i = 0; i < keysCount;) { /* * This key is not a suffix of the previous one; * keep this one and delete the following ones that are * suffixes of this one. */ const char *key; const char *keyLimit; int32_t j = i + 1; map[i].newpos = map[i].oldpos; if (j < keysCount && map[j].oldpos < 0) { /* Key string from the pool bundle, do not delete. */ i = j; continue; } key = getKeyString(bundle, map[i].oldpos); for (keyLimit = key; *keyLimit != 0; ++keyLimit) {} for (; j < keysCount && map[j].oldpos >= 0; ++j) { const char *k; char *suffix; const char *suffixLimit; int32_t offset; suffix = keys + map[j].oldpos; for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {} offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix); if (offset < 0) { break; /* suffix cannot be longer than the original */ } /* Is it a suffix of the earlier, longer key? */ for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {} if (suffix == suffixLimit && *k == *suffixLimit) { map[j].newpos = map[i].oldpos + offset; /* yes, point to the earlier key */ /* mark the suffix as deleted */ while (*suffix != 0) { *suffix++ = 1; } *suffix = 1; } else { break; /* not a suffix, restart from here */ } } i = j; } /* * Re-sort by newpos, then modify the key characters array in-place * to squeeze out unused bytes, and readjust the newpos offsets. */ uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), compareKeyNewpos, NULL, FALSE, status); if (U_SUCCESS(*status)) { int32_t oldpos, newpos, limit; oldpos = newpos = bundle->fKeysBottom; limit = bundle->fKeysTop; /* skip key offsets that point into the pool bundle rather than this new bundle */ for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {} if (i < keysCount) { while (oldpos < limit) { if (keys[oldpos] == 1) { ++oldpos; /* skip unused bytes */ } else { /* adjust the new offsets for keys starting here */ while (i < keysCount && map[i].newpos == oldpos) { map[i++].newpos = newpos; } /* move the key characters to their new position */ keys[newpos++] = keys[oldpos++]; } } assert(i == keysCount); } bundle->fKeysTop = newpos; /* Re-sort once more, by old offsets for binary searching. */ uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry), compareKeyOldpos, NULL, FALSE, status); if (U_SUCCESS(*status)) { /* key size reduction by limit - newpos */ bundle->fKeyMap = map; map = NULL; } } } uprv_free(map); } static int32_t U_CALLCONV compareStringSuffixes(const void *context, const void *l, const void *r) { struct SResource *left = *((struct SResource **)l); struct SResource *right = *((struct SResource **)r); const UChar *lStart = left->u.fString.fChars; const UChar *lLimit = lStart + left->u.fString.fLength; const UChar *rStart = right->u.fString.fChars; const UChar *rLimit = rStart + right->u.fString.fLength; int32_t diff; /* compare keys in reverse character order */ while (lStart < lLimit && rStart < rLimit) { diff = (int32_t)*--lLimit - (int32_t)*--rLimit; if (diff != 0) { return diff; } } /* sort equal suffixes by descending string length */ return right->u.fString.fLength - left->u.fString.fLength; } static int32_t U_CALLCONV compareStringLengths(const void *context, const void *l, const void *r) { struct SResource *left = *((struct SResource **)l); struct SResource *right = *((struct SResource **)r); int32_t diff; /* Make "is suffix of another string" compare greater than a non-suffix. */ diff = (int)(left->u.fString.fSame != NULL) - (int)(right->u.fString.fSame != NULL); if (diff != 0) { return diff; } /* sort by ascending string length */ return left->u.fString.fLength - right->u.fString.fLength; } static int32_t string_writeUTF16v2(struct SRBRoot *bundle, struct SResource *res, int32_t utf16Length) { int32_t length = res->u.fString.fLength; res->fRes = URES_MAKE_RESOURCE(URES_STRING_V2, utf16Length); res->fWritten = TRUE; switch(res->u.fString.fNumCharsForLength) { case 0: break; case 1: bundle->f16BitUnits[utf16Length++] = (uint16_t)(0xdc00 + length); break; case 2: bundle->f16BitUnits[utf16Length] = (uint16_t)(0xdfef + (length >> 16)); bundle->f16BitUnits[utf16Length + 1] = (uint16_t)length; utf16Length += 2; break; case 3: bundle->f16BitUnits[utf16Length] = 0xdfff; bundle->f16BitUnits[utf16Length + 1] = (uint16_t)(length >> 16); bundle->f16BitUnits[utf16Length + 2] = (uint16_t)length; utf16Length += 3; break; default: break; /* will not occur */ } u_memcpy(bundle->f16BitUnits + utf16Length, res->u.fString.fChars, length + 1); return utf16Length + length + 1; } static void bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status) { if (U_FAILURE(*status)) { return; } switch(bundle->fStringsForm) { case STRINGS_UTF16_V2: if (bundle->f16BitUnitsLength > 0) { struct SResource **array; int32_t count = uhash_count(bundle->fStringSet); int32_t i, pos; /* * Allocate enough space for the initial NUL and the UTF-16 v2 strings, * and some extra for URES_TABLE16 and URES_ARRAY16 values. * Round down to an even number. */ int32_t utf16Length = (bundle->f16BitUnitsLength + 20000) & ~1; bundle->f16BitUnits = (UChar *)uprv_malloc(utf16Length * U_SIZEOF_UCHAR); array = (struct SResource **)uprv_malloc(count * sizeof(struct SResource **)); if (bundle->f16BitUnits == NULL || array == NULL) { uprv_free(bundle->f16BitUnits); bundle->f16BitUnits = NULL; uprv_free(array); *status = U_MEMORY_ALLOCATION_ERROR; return; } bundle->f16BitUnitsCapacity = utf16Length; /* insert the initial NUL */ bundle->f16BitUnits[0] = 0; utf16Length = 1; ++bundle->f16BitUnitsLength; for (pos = -1, i = 0; i < count; ++i) { array[i] = (struct SResource *)uhash_nextElement(bundle->fStringSet, &pos)->key.pointer; } /* Sort the strings so that each one is immediately followed by all of its suffixes. */ uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **), compareStringSuffixes, NULL, FALSE, status); /* * Make suffixes point into earlier, longer strings that contain them. * Temporarily use fSame and fSuffixOffset for suffix strings to * refer to the remaining ones. */ if (U_SUCCESS(*status)) { for (i = 0; i < count;) { /* * This string is not a suffix of the previous one; * write this one and subsume the following ones that are * suffixes of this one. */ struct SResource *res = array[i]; const UChar *strLimit = res->u.fString.fChars + res->u.fString.fLength; int32_t j; for (j = i + 1; j < count; ++j) { struct SResource *suffixRes = array[j]; const UChar *s; const UChar *suffix = suffixRes->u.fString.fChars; const UChar *suffixLimit = suffix + suffixRes->u.fString.fLength; int32_t offset = res->u.fString.fLength - suffixRes->u.fString.fLength; if (offset < 0) { break; /* suffix cannot be longer than the original */ } /* Is it a suffix of the earlier, longer key? */ for (s = strLimit; suffix < suffixLimit && *--s == *--suffixLimit;) {} if (suffix == suffixLimit && *s == *suffixLimit) { if (suffixRes->u.fString.fNumCharsForLength == 0) { /* yes, point to the earlier string */ suffixRes->u.fString.fSame = res; suffixRes->u.fString.fSuffixOffset = offset; } else { /* write the suffix by itself if we need explicit length */ } } else { break; /* not a suffix, restart from here */ } } i = j; } } /* * Re-sort the strings by ascending length (except suffixes last) * to optimize for URES_TABLE16 and URES_ARRAY16: * Keep as many as possible within reach of 16-bit offsets. */ uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **), compareStringLengths, NULL, FALSE, status); if (U_SUCCESS(*status)) { /* Write the non-suffix strings. */ for (i = 0; i < count && array[i]->u.fString.fSame == NULL; ++i) { utf16Length = string_writeUTF16v2(bundle, array[i], utf16Length); } /* Write the suffix strings. Make each point to the real string. */ for (; i < count; ++i) { struct SResource *res = array[i]; struct SResource *same = res->u.fString.fSame; res->fRes = same->fRes + same->u.fString.fNumCharsForLength + res->u.fString.fSuffixOffset; res->u.fString.fSame = NULL; res->fWritten = TRUE; } } assert(utf16Length <= bundle->f16BitUnitsLength); bundle->f16BitUnitsLength = utf16Length; uprv_free(array); } break; default: break; } }