// © 2018 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING && !UPRV_INCOMPLETE_CPP11_SUPPORT // Allow implicit conversion from char16_t* to UnicodeString for this file: // Helpful in toString methods and elsewhere. #define UNISTR_FROM_STRING_EXPLICIT #include "unicode/errorcode.h" #include "unicode/decimfmt.h" #include "number_decimalquantity.h" #include "number_types.h" #include "numparse_impl.h" #include "number_mapper.h" #include "number_patternstring.h" #include "putilimp.h" #include "number_utils.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; using namespace icu::numparse; using namespace icu::numparse::impl; using ERoundingMode = icu::DecimalFormat::ERoundingMode; using EPadPosition = icu::DecimalFormat::EPadPosition; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat) DecimalFormat::DecimalFormat(UErrorCode& status) : DecimalFormat(nullptr, status) { } DecimalFormat::DecimalFormat(const UnicodeString& pattern, UErrorCode& status) : DecimalFormat(nullptr, status) { setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status); refreshFormatter(status); } DecimalFormat::DecimalFormat(const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt, UErrorCode& status) : DecimalFormat(symbolsToAdopt, status) { setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status); refreshFormatter(status); } DecimalFormat::DecimalFormat(const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt, UNumberFormatStyle style, UErrorCode& status) : DecimalFormat(symbolsToAdopt, status) { // If choice is a currency type, ignore the rounding information. if (style == UNumberFormatStyle::UNUM_CURRENCY || style == UNumberFormatStyle::UNUM_CURRENCY_ISO || style == UNumberFormatStyle::UNUM_CURRENCY_ACCOUNTING || style == UNumberFormatStyle::UNUM_CASH_CURRENCY || style == UNumberFormatStyle::UNUM_CURRENCY_STANDARD || style == UNumberFormatStyle::UNUM_CURRENCY_PLURAL) { setPropertiesFromPattern(pattern, IGNORE_ROUNDING_ALWAYS, status); } else { setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status); } // Note: in Java, CurrencyPluralInfo is set in NumberFormat.java, but in C++, it is not set there, // so we have to set it here. if (style == UNumberFormatStyle::UNUM_CURRENCY_PLURAL) { LocalPointer cpi( new CurrencyPluralInfo(fSymbols->getLocale(), status), status); if (U_FAILURE(status)) { return; } fProperties->currencyPluralInfo.fPtr.adoptInstead(cpi.orphan()); } refreshFormatter(status); } DecimalFormat::DecimalFormat(const DecimalFormatSymbols* symbolsToAdopt, UErrorCode& status) { fProperties.adoptInsteadAndCheckErrorCode(new DecimalFormatProperties(), status); fExportedProperties.adoptInsteadAndCheckErrorCode(new DecimalFormatProperties(), status); fWarehouse.adoptInsteadAndCheckErrorCode(new DecimalFormatWarehouse(), status); if (symbolsToAdopt == nullptr) { fSymbols.adoptInsteadAndCheckErrorCode(new DecimalFormatSymbols(status), status); } else { fSymbols.adoptInsteadAndCheckErrorCode(symbolsToAdopt, status); } } #if UCONFIG_HAVE_PARSEALLINPUT void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) { fProperties->parseAllInput = value; } #endif DecimalFormat& DecimalFormat::setAttribute(UNumberFormatAttribute attr, int32_t newValue, UErrorCode& status) { if (U_FAILURE(status)) { return *this; } switch (attr) { case UNUM_LENIENT_PARSE: setLenient(newValue != 0); break; case UNUM_PARSE_INT_ONLY: setParseIntegerOnly(newValue != 0); break; case UNUM_GROUPING_USED: setGroupingUsed(newValue != 0); break; case UNUM_DECIMAL_ALWAYS_SHOWN: setDecimalSeparatorAlwaysShown(newValue != 0); break; case UNUM_MAX_INTEGER_DIGITS: setMaximumIntegerDigits(newValue); break; case UNUM_MIN_INTEGER_DIGITS: setMinimumIntegerDigits(newValue); break; case UNUM_INTEGER_DIGITS: setMinimumIntegerDigits(newValue); setMaximumIntegerDigits(newValue); break; case UNUM_MAX_FRACTION_DIGITS: setMaximumFractionDigits(newValue); break; case UNUM_MIN_FRACTION_DIGITS: setMinimumFractionDigits(newValue); break; case UNUM_FRACTION_DIGITS: setMinimumFractionDigits(newValue); setMaximumFractionDigits(newValue); break; case UNUM_SIGNIFICANT_DIGITS_USED: setSignificantDigitsUsed(newValue != 0); break; case UNUM_MAX_SIGNIFICANT_DIGITS: setMaximumSignificantDigits(newValue); break; case UNUM_MIN_SIGNIFICANT_DIGITS: setMinimumSignificantDigits(newValue); break; case UNUM_MULTIPLIER: setMultiplier(newValue); break; case UNUM_GROUPING_SIZE: setGroupingSize(newValue); break; case UNUM_ROUNDING_MODE: setRoundingMode((DecimalFormat::ERoundingMode) newValue); break; case UNUM_FORMAT_WIDTH: setFormatWidth(newValue); break; case UNUM_PADDING_POSITION: /** The position at which padding will take place. */ setPadPosition((DecimalFormat::EPadPosition) newValue); break; case UNUM_SECONDARY_GROUPING_SIZE: setSecondaryGroupingSize(newValue); break; #if UCONFIG_HAVE_PARSEALLINPUT case UNUM_PARSE_ALL_INPUT: setParseAllInput((UNumberFormatAttributeValue) newValue); break; #endif case UNUM_PARSE_NO_EXPONENT: setParseNoExponent((UBool) newValue); break; case UNUM_PARSE_DECIMAL_MARK_REQUIRED: setDecimalPatternMatchRequired((UBool) newValue); break; case UNUM_CURRENCY_USAGE: setCurrencyUsage((UCurrencyUsage) newValue, &status); break; case UNUM_MINIMUM_GROUPING_DIGITS: setMinimumGroupingDigits(newValue); break; case UNUM_PARSE_CASE_SENSITIVE: setParseCaseSensitive(static_cast(newValue)); break; case UNUM_SIGN_ALWAYS_SHOWN: setSignAlwaysShown(static_cast(newValue)); break; default: status = U_UNSUPPORTED_ERROR; break; } // TODO: UNUM_SCALE? // TODO: UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS? return *this; } int32_t DecimalFormat::getAttribute(UNumberFormatAttribute attr, UErrorCode& status) const { if (U_FAILURE(status)) { return -1; } switch (attr) { case UNUM_LENIENT_PARSE: return isLenient(); case UNUM_PARSE_INT_ONLY: return isParseIntegerOnly(); case UNUM_GROUPING_USED: return isGroupingUsed(); case UNUM_DECIMAL_ALWAYS_SHOWN: return isDecimalSeparatorAlwaysShown(); case UNUM_MAX_INTEGER_DIGITS: return getMaximumIntegerDigits(); case UNUM_MIN_INTEGER_DIGITS: return getMinimumIntegerDigits(); case UNUM_INTEGER_DIGITS: // TBD: what should this return? return getMinimumIntegerDigits(); case UNUM_MAX_FRACTION_DIGITS: return getMaximumFractionDigits(); case UNUM_MIN_FRACTION_DIGITS: return getMinimumFractionDigits(); case UNUM_FRACTION_DIGITS: // TBD: what should this return? return getMinimumFractionDigits(); case UNUM_SIGNIFICANT_DIGITS_USED: return areSignificantDigitsUsed(); case UNUM_MAX_SIGNIFICANT_DIGITS: return getMaximumSignificantDigits(); case UNUM_MIN_SIGNIFICANT_DIGITS: return getMinimumSignificantDigits(); case UNUM_MULTIPLIER: return getMultiplier(); case UNUM_GROUPING_SIZE: return getGroupingSize(); case UNUM_ROUNDING_MODE: return getRoundingMode(); case UNUM_FORMAT_WIDTH: return getFormatWidth(); case UNUM_PADDING_POSITION: return getPadPosition(); case UNUM_SECONDARY_GROUPING_SIZE: return getSecondaryGroupingSize(); case UNUM_PARSE_NO_EXPONENT: return isParseNoExponent(); case UNUM_PARSE_DECIMAL_MARK_REQUIRED: return isDecimalPatternMatchRequired(); case UNUM_CURRENCY_USAGE: return getCurrencyUsage(); case UNUM_MINIMUM_GROUPING_DIGITS: return getMinimumGroupingDigits(); case UNUM_PARSE_CASE_SENSITIVE: return isParseCaseSensitive(); case UNUM_SIGN_ALWAYS_SHOWN: return isSignAlwaysShown(); default: status = U_UNSUPPORTED_ERROR; break; } // TODO: UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS? // TODO: UNUM_SCALE? return -1; /* undefined */ } void DecimalFormat::setGroupingUsed(UBool enabled) { NumberFormat::setGroupingUsed(enabled); // to set field for compatibility if (enabled) { // Set to a reasonable default value fProperties->groupingSize = 3; fProperties->secondaryGroupingSize = -1; } else { fProperties->groupingSize = 0; fProperties->secondaryGroupingSize = 0; } refreshFormatterNoError(); } void DecimalFormat::setParseIntegerOnly(UBool value) { NumberFormat::setParseIntegerOnly(value); // to set field for compatibility fProperties->parseIntegerOnly = value; refreshFormatterNoError(); } void DecimalFormat::setLenient(UBool enable) { NumberFormat::setLenient(enable); // to set field for compatibility fProperties->parseMode = enable ? PARSE_MODE_LENIENT : PARSE_MODE_STRICT; refreshFormatterNoError(); } DecimalFormat::DecimalFormat(const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt, UParseError&, UErrorCode& status) : DecimalFormat(symbolsToAdopt, status) { // TODO: What is parseError for? setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status); refreshFormatter(status); } DecimalFormat::DecimalFormat(const UnicodeString& pattern, const DecimalFormatSymbols& symbols, UErrorCode& status) : DecimalFormat(new DecimalFormatSymbols(symbols), status) { setPropertiesFromPattern(pattern, IGNORE_ROUNDING_IF_CURRENCY, status); refreshFormatter(status); } DecimalFormat::DecimalFormat(const DecimalFormat& source) { fProperties.adoptInstead(new DecimalFormatProperties(*source.fProperties)); fExportedProperties.adoptInstead(new DecimalFormatProperties()); fWarehouse.adoptInstead(new DecimalFormatWarehouse()); fSymbols.adoptInstead(new DecimalFormatSymbols(*source.fSymbols)); if (fProperties == nullptr || fExportedProperties == nullptr || fWarehouse == nullptr || fSymbols == nullptr) { return; } refreshFormatterNoError(); } DecimalFormat& DecimalFormat::operator=(const DecimalFormat& rhs) { *fProperties = *rhs.fProperties; fExportedProperties->clear(); fSymbols.adoptInstead(new DecimalFormatSymbols(*rhs.fSymbols)); refreshFormatterNoError(); return *this; } DecimalFormat::~DecimalFormat() = default; Format* DecimalFormat::clone() const { return new DecimalFormat(*this); } UBool DecimalFormat::operator==(const Format& other) const { auto* otherDF = dynamic_cast(&other); if (otherDF == nullptr) { return false; } return *fProperties == *otherDF->fProperties && *fSymbols == *otherDF->fSymbols; } UnicodeString& DecimalFormat::format(double number, UnicodeString& appendTo, FieldPosition& pos) const { ErrorCode localStatus; FormattedNumber output = fFormatter->formatDouble(number, localStatus); output.populateFieldPosition(pos, localStatus); auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(double number, UnicodeString& appendTo, FieldPosition& pos, UErrorCode& status) const { FormattedNumber output = fFormatter->formatDouble(number, status); output.populateFieldPosition(pos, status); auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(double number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { FormattedNumber output = fFormatter->formatDouble(number, status); if (posIter != nullptr) { output.populateFieldPositionIterator(*posIter, status); } auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPosition& pos) const { return format(static_cast (number), appendTo, pos); } UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPosition& pos, UErrorCode& status) const { return format(static_cast (number), appendTo, pos, status); } UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { return format(static_cast (number), appendTo, posIter, status); } UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPosition& pos) const { ErrorCode localStatus; FormattedNumber output = fFormatter->formatInt(number, localStatus); output.populateFieldPosition(pos, localStatus); auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPosition& pos, UErrorCode& status) const { FormattedNumber output = fFormatter->formatInt(number, status); output.populateFieldPosition(pos, status); auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { FormattedNumber output = fFormatter->formatInt(number, status); if (posIter != nullptr) { output.populateFieldPositionIterator(*posIter, status); } auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(StringPiece number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { ErrorCode localStatus; FormattedNumber output = fFormatter->formatDecimal(number, localStatus); if (posIter != nullptr) { output.populateFieldPositionIterator(*posIter, status); } auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(const DecimalQuantity& number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { FormattedNumber output = fFormatter->formatDecimalQuantity(number, status); if (posIter != nullptr) { output.populateFieldPositionIterator(*posIter, status); } auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } UnicodeString& DecimalFormat::format(const DecimalQuantity& number, UnicodeString& appendTo, FieldPosition& pos, UErrorCode& status) const { FormattedNumber output = fFormatter->formatDecimalQuantity(number, status); output.populateFieldPosition(pos, status); auto appendable = UnicodeStringAppendable(appendTo); output.appendTo(appendable); return appendTo; } void DecimalFormat::parse(const UnicodeString& text, Formattable& output, ParsePosition& parsePosition) const { if (parsePosition.getIndex() < 0 || parsePosition.getIndex() >= text.length()) { return; } ErrorCode status; ParsedNumber result; // Note: if this is a currency instance, currencies will be matched despite the fact that we are not in the // parseCurrency method (backwards compatibility) int32_t startIndex = parsePosition.getIndex(); fParser->parse(text, startIndex, true, result, status); if (result.success()) { parsePosition.setIndex(result.charEnd); result.populateFormattable(output); } else { parsePosition.setErrorIndex(startIndex + result.charEnd); } } CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text, ParsePosition& parsePosition) const { if (parsePosition.getIndex() < 0 || parsePosition.getIndex() >= text.length()) { return nullptr; } ErrorCode status; ParsedNumber result; // Note: if this is a currency instance, currencies will be matched despite the fact that we are not in the // parseCurrency method (backwards compatibility) int32_t startIndex = parsePosition.getIndex(); fParserWithCurrency->parse(text, startIndex, true, result, status); if (result.success()) { parsePosition.setIndex(result.charEnd); Formattable formattable; result.populateFormattable(formattable); return new CurrencyAmount(formattable, result.currencyCode, status); } else { parsePosition.setErrorIndex(startIndex + result.charEnd); return nullptr; } } const DecimalFormatSymbols* DecimalFormat::getDecimalFormatSymbols(void) const { return fSymbols.getAlias(); } void DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt) { if (symbolsToAdopt == nullptr) { return; // do not allow caller to set fSymbols to NULL } fSymbols.adoptInstead(symbolsToAdopt); refreshFormatterNoError(); } void DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols) { fSymbols.adoptInstead(new DecimalFormatSymbols(symbols)); refreshFormatterNoError(); } const CurrencyPluralInfo* DecimalFormat::getCurrencyPluralInfo(void) const { return fProperties->currencyPluralInfo.fPtr.getAlias(); } void DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt) { fProperties->currencyPluralInfo.fPtr.adoptInstead(toAdopt); refreshFormatterNoError(); } void DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info) { *fProperties->currencyPluralInfo.fPtr = info; // copy-assignment operator refreshFormatterNoError(); } UnicodeString& DecimalFormat::getPositivePrefix(UnicodeString& result) const { ErrorCode localStatus; fFormatter->getAffix(true, false, result, localStatus); return result; } void DecimalFormat::setPositivePrefix(const UnicodeString& newValue) { fProperties->positivePrefix = newValue; refreshFormatterNoError(); } UnicodeString& DecimalFormat::getNegativePrefix(UnicodeString& result) const { ErrorCode localStatus; fFormatter->getAffix(true, true, result, localStatus); return result; } void DecimalFormat::setNegativePrefix(const UnicodeString& newValue) { fProperties->negativePrefix = newValue; refreshFormatterNoError(); } UnicodeString& DecimalFormat::getPositiveSuffix(UnicodeString& result) const { ErrorCode localStatus; fFormatter->getAffix(false, false, result, localStatus); return result; } void DecimalFormat::setPositiveSuffix(const UnicodeString& newValue) { fProperties->positiveSuffix = newValue; refreshFormatterNoError(); } UnicodeString& DecimalFormat::getNegativeSuffix(UnicodeString& result) const { ErrorCode localStatus; fFormatter->getAffix(false, true, result, localStatus); return result; } void DecimalFormat::setNegativeSuffix(const UnicodeString& newValue) { fProperties->negativeSuffix = newValue; refreshFormatterNoError(); } UBool DecimalFormat::isSignAlwaysShown() const { return fProperties->signAlwaysShown; } void DecimalFormat::setSignAlwaysShown(UBool value) { fProperties->signAlwaysShown = value; refreshFormatterNoError(); } int32_t DecimalFormat::getMultiplier(void) const { if (fProperties->multiplier != 1) { return fProperties->multiplier; } else if (fProperties->magnitudeMultiplier != 0) { return static_cast(uprv_pow10(fProperties->magnitudeMultiplier)); } else { return 1; } } void DecimalFormat::setMultiplier(int32_t multiplier) { if (multiplier == 0) { multiplier = 1; // one being the benign default value for a multiplier. } // Try to convert to a magnitude multiplier first int delta = 0; int value = multiplier; while (value != 1) { delta++; int temp = value / 10; if (temp * 10 != value) { delta = -1; break; } value = temp; } if (delta != -1) { fProperties->magnitudeMultiplier = delta; fProperties->multiplier = 1; } else { fProperties->magnitudeMultiplier = 0; fProperties->multiplier = multiplier; } refreshFormatterNoError(); } double DecimalFormat::getRoundingIncrement(void) const { return fExportedProperties->roundingIncrement; } void DecimalFormat::setRoundingIncrement(double newValue) { fProperties->roundingIncrement = newValue; refreshFormatterNoError(); } ERoundingMode DecimalFormat::getRoundingMode(void) const { // UNumberFormatRoundingMode and ERoundingMode have the same values. return static_cast(fExportedProperties->roundingMode.getNoError()); } void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) { NumberFormat::setMaximumIntegerDigits(roundingMode); // to set field for compatibility fProperties->roundingMode = static_cast(roundingMode); refreshFormatterNoError(); } int32_t DecimalFormat::getFormatWidth(void) const { return fProperties->formatWidth; } void DecimalFormat::setFormatWidth(int32_t width) { fProperties->formatWidth = width; refreshFormatterNoError(); } UnicodeString DecimalFormat::getPadCharacterString() const { if (fProperties->padString.isBogus()) { // Readonly-alias the static string kFallbackPaddingString return {TRUE, kFallbackPaddingString, -1}; } else { return fProperties->padString; } } void DecimalFormat::setPadCharacter(const UnicodeString& padChar) { if (padChar.length() > 0) { fProperties->padString = UnicodeString(padChar.char32At(0)); } else { fProperties->padString.setToBogus(); } refreshFormatterNoError(); } EPadPosition DecimalFormat::getPadPosition(void) const { if (fProperties->padPosition.isNull()) { return EPadPosition::kPadBeforePrefix; } else { // UNumberFormatPadPosition and EPadPosition have the same values. return static_cast(fProperties->padPosition.getNoError()); } } void DecimalFormat::setPadPosition(EPadPosition padPos) { fProperties->padPosition = static_cast(padPos); refreshFormatterNoError(); } UBool DecimalFormat::isScientificNotation(void) const { return fProperties->minimumExponentDigits != -1; } void DecimalFormat::setScientificNotation(UBool useScientific) { if (useScientific) { fProperties->minimumExponentDigits = 1; } else { fProperties->minimumExponentDigits = -1; } refreshFormatterNoError(); } int8_t DecimalFormat::getMinimumExponentDigits(void) const { return static_cast(fProperties->minimumExponentDigits); } void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) { fProperties->minimumExponentDigits = minExpDig; refreshFormatterNoError(); } UBool DecimalFormat::isExponentSignAlwaysShown(void) const { return fProperties->exponentSignAlwaysShown; } void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) { fProperties->exponentSignAlwaysShown = expSignAlways; refreshFormatterNoError(); } int32_t DecimalFormat::getGroupingSize(void) const { return fProperties->groupingSize; } void DecimalFormat::setGroupingSize(int32_t newValue) { fProperties->groupingSize = newValue; refreshFormatterNoError(); } int32_t DecimalFormat::getSecondaryGroupingSize(void) const { int grouping1 = fProperties->groupingSize; int grouping2 = fProperties->secondaryGroupingSize; if (grouping1 == grouping2 || grouping2 < 0) { return 0; } return grouping2; } void DecimalFormat::setSecondaryGroupingSize(int32_t newValue) { fProperties->secondaryGroupingSize = newValue; refreshFormatterNoError(); } int32_t DecimalFormat::getMinimumGroupingDigits() const { return fProperties->minimumGroupingDigits; } void DecimalFormat::setMinimumGroupingDigits(int32_t newValue) { fProperties->minimumGroupingDigits = newValue; refreshFormatterNoError(); } UBool DecimalFormat::isDecimalSeparatorAlwaysShown(void) const { return fProperties->decimalSeparatorAlwaysShown; } void DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue) { fProperties->decimalSeparatorAlwaysShown = newValue; refreshFormatterNoError(); } UBool DecimalFormat::isDecimalPatternMatchRequired(void) const { return fProperties->decimalPatternMatchRequired; } void DecimalFormat::setDecimalPatternMatchRequired(UBool newValue) { fProperties->decimalPatternMatchRequired = newValue; refreshFormatterNoError(); } UBool DecimalFormat::isParseNoExponent() const { return fProperties->parseNoExponent; } void DecimalFormat::setParseNoExponent(UBool value) { fProperties->parseNoExponent = value; refreshFormatterNoError(); } UBool DecimalFormat::isParseCaseSensitive() const { return fProperties->parseCaseSensitive; } void DecimalFormat::setParseCaseSensitive(UBool value) { fProperties->parseCaseSensitive = value; refreshFormatterNoError(); } UnicodeString& DecimalFormat::toPattern(UnicodeString& result) const { // Pull some properties from exportedProperties and others from properties // to keep affix patterns intact. In particular, pull rounding properties // so that CurrencyUsage is reflected properly. // TODO: Consider putting this logic in number_patternstring.cpp instead. ErrorCode localStatus; DecimalFormatProperties tprops(*fProperties); bool useCurrency = ((!tprops.currency.isNull()) || !tprops.currencyPluralInfo.fPtr.isNull() || !tprops.currencyUsage.isNull() || AffixUtils::hasCurrencySymbols( UnicodeStringCharSequence(tprops.positivePrefixPattern), localStatus) || AffixUtils::hasCurrencySymbols( UnicodeStringCharSequence(tprops.positiveSuffixPattern), localStatus) || AffixUtils::hasCurrencySymbols( UnicodeStringCharSequence(tprops.negativePrefixPattern), localStatus) || AffixUtils::hasCurrencySymbols( UnicodeStringCharSequence(tprops.negativeSuffixPattern), localStatus)); if (useCurrency) { tprops.minimumFractionDigits = fExportedProperties->minimumFractionDigits; tprops.maximumFractionDigits = fExportedProperties->maximumFractionDigits; tprops.roundingIncrement = fExportedProperties->roundingIncrement; } result = PatternStringUtils::propertiesToPatternString(tprops, localStatus); return result; } UnicodeString& DecimalFormat::toLocalizedPattern(UnicodeString& result) const { ErrorCode localStatus; result = toPattern(result); result = PatternStringUtils::convertLocalized(result, *fSymbols, true, localStatus); return result; } void DecimalFormat::applyPattern(const UnicodeString& pattern, UParseError&, UErrorCode& status) { // TODO: What is parseError for? applyPattern(pattern, status); } void DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status) { setPropertiesFromPattern(pattern, IGNORE_ROUNDING_NEVER, status); refreshFormatter(status); } void DecimalFormat::applyLocalizedPattern(const UnicodeString& localizedPattern, UParseError&, UErrorCode& status) { // TODO: What is parseError for? applyLocalizedPattern(localizedPattern, status); } void DecimalFormat::applyLocalizedPattern(const UnicodeString& localizedPattern, UErrorCode& status) { UnicodeString pattern = PatternStringUtils::convertLocalized( localizedPattern, *fSymbols, false, status); applyPattern(pattern, status); } void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) { // For backwards compatibility, conflicting min/max need to keep the most recent setting. int32_t min = fProperties->minimumIntegerDigits; if (min >= 0 && min > newValue) { fProperties->minimumIntegerDigits = newValue; } fProperties->maximumIntegerDigits = newValue; refreshFormatterNoError(); } void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) { // For backwards compatibility, conflicting min/max need to keep the most recent setting. int32_t max = fProperties->maximumIntegerDigits; if (max >= 0 && max < newValue) { fProperties->maximumIntegerDigits = newValue; } fProperties->minimumIntegerDigits = newValue; refreshFormatterNoError(); } void DecimalFormat::setMaximumFractionDigits(int32_t newValue) { // For backwards compatibility, conflicting min/max need to keep the most recent setting. int32_t min = fProperties->minimumFractionDigits; if (min >= 0 && min > newValue) { fProperties->minimumFractionDigits = newValue; } fProperties->maximumFractionDigits = newValue; refreshFormatterNoError(); } void DecimalFormat::setMinimumFractionDigits(int32_t newValue) { // For backwards compatibility, conflicting min/max need to keep the most recent setting. int32_t max = fProperties->maximumFractionDigits; if (max >= 0 && max < newValue) { fProperties->maximumFractionDigits = newValue; } fProperties->minimumFractionDigits = newValue; refreshFormatterNoError(); } int32_t DecimalFormat::getMinimumSignificantDigits() const { return fExportedProperties->minimumSignificantDigits; } int32_t DecimalFormat::getMaximumSignificantDigits() const { return fExportedProperties->maximumSignificantDigits; } void DecimalFormat::setMinimumSignificantDigits(int32_t value) { int32_t max = fProperties->maximumSignificantDigits; if (max >= 0 && max < value) { fProperties->maximumSignificantDigits = value; } fProperties->minimumSignificantDigits = value; refreshFormatterNoError(); } void DecimalFormat::setMaximumSignificantDigits(int32_t value) { int32_t min = fProperties->minimumSignificantDigits; if (min >= 0 && min > value) { fProperties->minimumSignificantDigits = value; } fProperties->maximumSignificantDigits = value; refreshFormatterNoError(); } UBool DecimalFormat::areSignificantDigitsUsed() const { return fProperties->minimumSignificantDigits != -1 || fProperties->maximumSignificantDigits != -1; } void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) { if (useSignificantDigits) { // These are the default values from the old implementation. fProperties->minimumSignificantDigits = 1; fProperties->maximumSignificantDigits = 6; } else { fProperties->minimumSignificantDigits = -1; fProperties->maximumSignificantDigits = -1; } refreshFormatterNoError(); } void DecimalFormat::setCurrency(const char16_t* theCurrency, UErrorCode& ec) { NumberFormat::setCurrency(theCurrency, ec); // to set field for compatibility fProperties->currency = CurrencyUnit(theCurrency, ec); // TODO: Set values in fSymbols, too? refreshFormatterNoError(); } void DecimalFormat::setCurrency(const char16_t* theCurrency) { ErrorCode localStatus; NumberFormat::setCurrency(theCurrency, localStatus); // to set field for compatibility setCurrency(theCurrency, localStatus); } void DecimalFormat::setCurrencyUsage(UCurrencyUsage newUsage, UErrorCode* ec) { fProperties->currencyUsage = newUsage; refreshFormatter(*ec); } UCurrencyUsage DecimalFormat::getCurrencyUsage() const { // CurrencyUsage is not exported, so we have to get it from the input property bag. // TODO: Should we export CurrencyUsage instead? if (fProperties->currencyUsage.isNull()) { return UCURR_USAGE_STANDARD; } return fProperties->currencyUsage.getNoError(); } void DecimalFormat::formatToDecimalQuantity(double number, DecimalQuantity& output, UErrorCode& status) const { fFormatter->formatDouble(number, status).getDecimalQuantity(output, status); } void DecimalFormat::formatToDecimalQuantity(const Formattable& number, DecimalQuantity& output, UErrorCode& status) const { // Check if the Formattable is a DecimalQuantity DecimalQuantity* dq = number.getDecimalQuantity(); if (dq != nullptr) { fFormatter->formatDecimalQuantity(*dq, status).getDecimalQuantity(output, status); return; } // If not, it must be Double, Long (int32_t), or Int64: switch (number.getType()) { case Formattable::kDouble: fFormatter->formatDouble(number.getDouble(), status).getDecimalQuantity(output, status); break; case Formattable::kLong: fFormatter->formatInt(number.getLong(), status).getDecimalQuantity(output, status); break; case Formattable::kInt64: default: fFormatter->formatInt(number.getInt64(), status).getDecimalQuantity(output, status); } } const number::LocalizedNumberFormatter& DecimalFormat::toNumberFormatter() const { return *fFormatter; } /** Rebuilds the formatter object from the property bag. */ void DecimalFormat::refreshFormatter(UErrorCode& status) { if (fExportedProperties == nullptr) { // fExportedProperties is null only when the formatter is not ready yet. // The only time when this happens is during legacy deserialization. return; } // In C++, fSymbols is the source of truth for the locale. Locale locale = fSymbols->getLocale(); fFormatter.adoptInsteadAndCheckErrorCode( new LocalizedNumberFormatter( NumberPropertyMapper::create( *fProperties, *fSymbols, *fWarehouse, *fExportedProperties, status).locale( locale)), status); fParser.adoptInsteadAndCheckErrorCode( NumberParserImpl::createParserFromProperties( *fProperties, *fSymbols, false, status), status); fParserWithCurrency.adoptInsteadAndCheckErrorCode( NumberParserImpl::createParserFromProperties( *fProperties, *fSymbols, true, status), status); // In order for the getters to work, we need to populate some fields in NumberFormat. NumberFormat::setCurrency(fExportedProperties->currency.get(status).getISOCurrency(), status); NumberFormat::setMaximumIntegerDigits(fExportedProperties->maximumIntegerDigits); NumberFormat::setMinimumIntegerDigits(fExportedProperties->minimumIntegerDigits); NumberFormat::setMaximumFractionDigits(fExportedProperties->maximumFractionDigits); NumberFormat::setMinimumFractionDigits(fExportedProperties->minimumFractionDigits); } void DecimalFormat::refreshFormatterNoError() { ErrorCode localStatus; refreshFormatter(localStatus); } void DecimalFormat::setPropertiesFromPattern(const UnicodeString& pattern, int32_t ignoreRounding, UErrorCode& status) { // Cast workaround to get around putting the enum in the public header file auto actualIgnoreRounding = static_cast(ignoreRounding); PatternParser::parseToExistingProperties(pattern, *fProperties, actualIgnoreRounding, status); } #endif /* #if !UCONFIG_NO_FORMATTING */