/* ****************************************************************************** * Copyright (c) 1996-2003, International Business Machines * Corporation and others. All Rights Reserved. ****************************************************************************** * File unorm.cpp * * Created by: Vladimir Weinstein 12052000 * * Modification history : * * Date Name Description * 02/01/01 synwee Added normalization quickcheck enum and method. * 02/12/01 synwee Commented out quickcheck util api has been approved * Added private method for doing FCD checks * 02/23/01 synwee Modified quickcheck and checkFCE to run through * string for codepoints < 0x300 for the normalization * mode NFC. * 05/25/01+ Markus Scherer total rewrite, implement all normalization here * instead of just wrappers around normlzr.cpp, * load unorm.dat, support Unicode 3.1 with * supplementary code points, etc. */ #include "unicode/utypes.h" // moved up to make unorm_cmpEquivFold work without normalization #include "unicode/ustring.h" #include "unormimp.h" #include "ustr_imp.h" #if !UCONFIG_NO_NORMALIZATION #include "unicode/udata.h" #include "unicode/uchar.h" #include "unicode/uiter.h" #include "unicode/uniset.h" #include "unicode/usetiter.h" #include "unicode/unorm.h" #include "cmemory.h" #include "umutex.h" #include "utrie.h" #include "unicode/uset.h" /* * Status of tailored normalization * * This was done initially for investigation on Unicode public review issue 7 * (http://www.unicode.org/review/). See Jitterbug 2481. * While the UTC at meeting #94 (2003mar) did not take up the issue, this is * a permanent feature in ICU 2.6 in support of IDNA which requires true * Unicode 3.2 normalization. * (NormalizationCorrections are rolled into IDNA mapping tables.) * * Tailored normalization as implemented here allows to "normalize less" * than full Unicode normalization would. * Based internally on a UnicodeSet of code points that are * "excluded from normalization", the normalization functions leave those * code points alone ("inert"). This means that tailored normalization * still transforms text into a canonically equivalent form. * It does not add decompositions to code points that do not have any or * change decomposition results. * * Any function that searches for a safe boundary has not been touched, * which means that these functions will be over-pessimistic when * exclusions are applied. * This should not matter because subsequent checks and normalizations * do apply the exclusions; only a little more of the text may be processed * than necessary under exclusions. * * Normalization exclusions have the following effect on excluded code points c: * - c is not decomposed * - c is not a composition target * - c does not combine forward or backward for composition * except that this is not implemented for Jamo * - c is treated as having a combining class of 0 */ #define LENGTHOF(array) (sizeof(array)/sizeof((array)[0])) /* * This new implementation of the normalization code loads its data from * unorm.dat, which is generated with the gennorm tool. * The format of that file is described in unormimp.h . */ /* -------------------------------------------------------------------------- */ enum { _STACK_BUFFER_CAPACITY=100 }; /* * Constants for the bit fields in the options bit set parameter. * These need not be public. * A user only needs to know the currently assigned values. * The number and positions of reserved bits per field can remain private * and may change in future implementations. */ enum { _NORM_OPTIONS_NX_MASK=0x1f, _NORM_OPTIONS_UNICODE_MASK=0xe0, _NORM_OPTIONS_SETS_MASK=0xff, _NORM_OPTIONS_UNICODE_SHIFT=5 }; static inline UBool isHangulWithoutJamoT(UChar c) { c-=HANGUL_BASE; return c=_NORM_MIN_HANGUL; } /* * Given isNorm32HangulOrJamo(), * is this a Hangul syllable or a Jamo? */ static inline UBool isHangulJamoNorm32HangulOrJamoL(uint32_t norm32) { return norm32<_NORM_MIN_JAMO_V; } /* * Given norm32 for Jamo V or T, * is this a Jamo V? */ static inline UBool isJamoVTNorm32JamoV(uint32_t norm32) { return norm32<_NORM_JAMO_V_TOP; } /* some prototypes ---------------------------------------------------------- */ static const UChar * _findPreviousStarter(const UChar *start, const UChar *src, uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe); static const UChar * _findNextStarter(const UChar *src, const UChar *limit, uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe); static const UChar * _composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length, const UChar *prevStarter, const UChar *src, uint32_t qcMask, uint8_t &prevCC, const UnicodeSet *nx, UErrorCode *pErrorCode); /* load unorm.dat ----------------------------------------------------------- */ #define DATA_NAME "unorm" #define DATA_TYPE "icu" static UDataMemory *normData=NULL; static UErrorCode dataErrorCode=U_ZERO_ERROR; static int8_t haveNormData=0; static int32_t indexes[_NORM_INDEX_TOP]={ 0 }; static UTrie normTrie={ 0,0,0,0,0,0,0 }, fcdTrie={ 0,0,0,0,0,0,0 }, auxTrie={ 0,0,0,0,0,0,0 }; /* * pointers into the memory-mapped unorm.icu */ static const uint16_t *extraData=NULL, *combiningTable=NULL, *canonStartSets=NULL; static uint8_t formatVersion[4]={ 0, 0, 0, 0 }; static UBool formatVersion_2_1=FALSE, formatVersion_2_2=FALSE; /* the Unicode version of the normalization data */ static UVersionInfo dataVersion={ 3, 1, 0, 0 }; /* cache UnicodeSets for each combination of exclusion flags */ static UnicodeSet *nxCache[_NORM_OPTIONS_SETS_MASK+1]={ NULL }; U_CDECL_BEGIN UBool unorm_cleanup() { int32_t i; if(normData!=NULL) { udata_close(normData); normData=NULL; } dataErrorCode=U_ZERO_ERROR; haveNormData=0; for(i=0; i>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))& (0x3ff<size>=20 && pInfo->isBigEndian==U_IS_BIG_ENDIAN && pInfo->charsetFamily==U_CHARSET_FAMILY && pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */ pInfo->dataFormat[1]==0x6f && pInfo->dataFormat[2]==0x72 && pInfo->dataFormat[3]==0x6d && pInfo->formatVersion[0]==2 && pInfo->formatVersion[2]==UTRIE_SHIFT && pInfo->formatVersion[3]==UTRIE_INDEX_SHIFT ) { uprv_memcpy(formatVersion, pInfo->formatVersion, 4); uprv_memcpy(dataVersion, pInfo->dataVersion, 4); return TRUE; } else { return FALSE; } } static UBool U_CALLCONV _enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*limit*/, uint32_t /*value*/) { /* add the start code point to the USet */ uset_add((USet *)context, start); return TRUE; } U_CDECL_END static int8_t loadNormData(UErrorCode &errorCode) { /* load Unicode normalization data from file */ /* * This lazy intialization with double-checked locking (without mutex protection for * haveNormData==0) is transiently unsafe under certain circumstances. * Check the readme and use u_init() if necessary. * * While u_init() initializes the main normalization data via this functions, * it does not do so for exclusion sets (which are fully mutexed). * This is because * - there can be many exclusion sets * - they are rarely used * - they are not usually used in execution paths that are * as performance-sensitive as others * (e.g., IDNA takes more time than unorm_quickCheck() anyway) */ if(haveNormData==0) { UTrie _normTrie={ 0,0,0,0,0,0,0 }, _fcdTrie={ 0,0,0,0,0,0,0 }, _auxTrie={ 0,0,0,0,0,0,0 }; UDataMemory *data; const int32_t *p=NULL; const uint8_t *pb; if(&errorCode==NULL || U_FAILURE(errorCode)) { return 0; } /* open the data outside the mutex block */ data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errorCode); dataErrorCode=errorCode; if(U_FAILURE(errorCode)) { return haveNormData=-1; } p=(const int32_t *)udata_getMemory(data); pb=(const uint8_t *)(p+_NORM_INDEX_TOP); utrie_unserialize(&_normTrie, pb, p[_NORM_INDEX_TRIE_SIZE], &errorCode); _normTrie.getFoldingOffset=getFoldingNormOffset; pb+=p[_NORM_INDEX_TRIE_SIZE]+p[_NORM_INDEX_UCHAR_COUNT]*2+p[_NORM_INDEX_COMBINE_DATA_COUNT]*2; utrie_unserialize(&_fcdTrie, pb, p[_NORM_INDEX_FCD_TRIE_SIZE], &errorCode); _fcdTrie.getFoldingOffset=getFoldingFCDOffset; if(p[_NORM_INDEX_FCD_TRIE_SIZE]!=0) { pb+=p[_NORM_INDEX_FCD_TRIE_SIZE]; utrie_unserialize(&_auxTrie, pb, p[_NORM_INDEX_AUX_TRIE_SIZE], &errorCode); _auxTrie.getFoldingOffset=getFoldingAuxOffset; } if(U_FAILURE(errorCode)) { dataErrorCode=errorCode; udata_close(data); return haveNormData=-1; } /* in the mutex block, set the data for this process */ umtx_lock(NULL); if(normData==NULL) { normData=data; data=NULL; uprv_memcpy(&indexes, p, sizeof(indexes)); uprv_memcpy(&normTrie, &_normTrie, sizeof(UTrie)); uprv_memcpy(&fcdTrie, &_fcdTrie, sizeof(UTrie)); uprv_memcpy(&auxTrie, &_auxTrie, sizeof(UTrie)); } else { p=(const int32_t *)udata_getMemory(normData); } umtx_unlock(NULL); /* initialize some variables */ extraData=(uint16_t *)((uint8_t *)(p+_NORM_INDEX_TOP)+indexes[_NORM_INDEX_TRIE_SIZE]); combiningTable=extraData+indexes[_NORM_INDEX_UCHAR_COUNT]; formatVersion_2_1=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=1); formatVersion_2_2=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=2); if(formatVersion_2_1) { canonStartSets=combiningTable+ indexes[_NORM_INDEX_COMBINE_DATA_COUNT]+ (indexes[_NORM_INDEX_FCD_TRIE_SIZE]+indexes[_NORM_INDEX_AUX_TRIE_SIZE])/2; } haveNormData=1; /* if a different thread set it first, then close the extra data */ if(data!=NULL) { udata_close(data); /* NULL if it was set correctly */ } } return haveNormData; } static inline UBool _haveData(UErrorCode &errorCode) { if(haveNormData!=0) { errorCode=dataErrorCode; return (UBool)(haveNormData>0); } else { return (UBool)(loadNormData(errorCode)>0); } } U_CAPI UBool U_EXPORT2 unorm_haveData(UErrorCode *pErrorCode) { return _haveData(*pErrorCode); } U_CAPI const uint16_t * U_EXPORT2 unorm_getFCDTrie(UErrorCode *pErrorCode) { if(_haveData(*pErrorCode)) { return fcdTrie.index; } else { return NULL; } } /* data access primitives --------------------------------------------------- */ static inline uint32_t _getNorm32(UChar c) { return UTRIE_GET32_FROM_LEAD(&normTrie, c); } static inline uint32_t _getNorm32FromSurrogatePair(uint32_t norm32, UChar c2) { /* * the surrogate index in norm32 stores only the number of the surrogate index block * see gennorm/store.c/getFoldedNormValue() */ norm32= UTRIE_BMP_INDEX_LENGTH+ ((norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))& (0x3ff<>_NORM_EXTRA_SHIFT); } /* normalization exclusion sets --------------------------------------------- */ /* * Normalization exclusion UnicodeSets are used for tailored normalization; * see the comment near the beginning of this file. * * By specifying one or several sets of code points, * those code points become inert for normalization. */ static const UnicodeSet * internalGetNXHangul(UErrorCode &errorCode) { /* internal function, does not check for incoming U_FAILURE */ UBool isCached; /* do this because double-checked locking is broken */ umtx_lock(NULL); isCached=nxCache[UNORM_NX_HANGUL]!=NULL; umtx_unlock(NULL); if(!isCached) { UnicodeSet *set=new UnicodeSet(0xac00, 0xd7a3); if(set==NULL) { errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } umtx_lock(NULL); if(nxCache[UNORM_NX_HANGUL]==NULL) { nxCache[UNORM_NX_HANGUL]=set; set=NULL; } umtx_unlock(NULL); delete set; } return nxCache[UNORM_NX_HANGUL]; } static const UnicodeSet * internalGetNXCJKCompat(UErrorCode &errorCode) { /* internal function, does not check for incoming U_FAILURE */ UBool isCached; /* do this because double-checked locking is broken */ umtx_lock(NULL); isCached=nxCache[UNORM_NX_CJK_COMPAT]!=NULL; umtx_unlock(NULL); if(!isCached) { /* build a set from [CJK Ideographs]&[has canonical decomposition] */ UnicodeSet *set, *hasDecomp; set=new UnicodeSet(UNICODE_STRING("[:Ideographic:]", 15), errorCode); if(set==NULL) { errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } if(U_FAILURE(errorCode)) { delete set; return NULL; } /* start with an empty set for [has canonical decomposition] */ hasDecomp=new UnicodeSet(); if(hasDecomp==NULL) { delete set; errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } /* iterate over all ideographs and remember which canonically decompose */ UnicodeSetIterator it(*set); UChar32 start, end; uint32_t norm32; while(it.nextRange() && !it.isString()) { start=it.getCodepoint(); end=it.getCodepointEnd(); while(start<=end) { UTRIE_GET32(&normTrie, start, norm32); if(norm32&_NORM_QC_NFD) { hasDecomp->add(start); } ++start; } } /* hasDecomp now contains all ideographs that decompose canonically */ umtx_lock(NULL); if(nxCache[UNORM_NX_CJK_COMPAT]==NULL) { nxCache[UNORM_NX_CJK_COMPAT]=hasDecomp; hasDecomp=NULL; } umtx_unlock(NULL); delete hasDecomp; delete set; } return nxCache[UNORM_NX_CJK_COMPAT]; } static const UnicodeSet * internalGetNXUnicode(uint32_t options, UErrorCode &errorCode) { /* internal function, does not check for incoming U_FAILURE */ options&=_NORM_OPTIONS_UNICODE_MASK; if(options==0) { return NULL; } UBool isCached; /* do this because double-checked locking is broken */ umtx_lock(NULL); isCached=nxCache[options]!=NULL; umtx_unlock(NULL); if(!isCached) { /* build a set with all code points that were not designated by the specified Unicode version */ UnicodeSet *set; switch(options) { case UNORM_UNICODE_3_2: set=new UnicodeSet(UNICODE_STRING("[:^Age=3.2:]", 12), errorCode); break; default: errorCode=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } if(set==NULL) { errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } if(U_FAILURE(errorCode)) { delete set; return NULL; } umtx_lock(NULL); if(nxCache[options]==NULL) { nxCache[options]=set; set=NULL; } umtx_unlock(NULL); delete set; } return nxCache[options]; } /* Get a decomposition exclusion set. The data must be loaded. */ static const UnicodeSet * internalGetNX(int32_t options, UErrorCode &errorCode) { options&=_NORM_OPTIONS_SETS_MASK; UBool isCached; /* do this because double-checked locking is broken */ umtx_lock(NULL); isCached=nxCache[options]!=NULL; umtx_unlock(NULL); if(!isCached) { /* return basic sets */ if(options==UNORM_NX_HANGUL) { return internalGetNXHangul(errorCode); } if(options==UNORM_NX_CJK_COMPAT) { return internalGetNXCJKCompat(errorCode); } if((options&_NORM_OPTIONS_UNICODE_MASK)!=0 && (options&_NORM_OPTIONS_NX_MASK)==0) { return internalGetNXUnicode(options, errorCode); } /* build a set from multiple subsets */ UnicodeSet *set; const UnicodeSet *other; set=new UnicodeSet(); if(set==NULL) { errorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } if((options&UNORM_NX_HANGUL)!=0 && NULL!=(other=internalGetNXHangul(errorCode))) { set->addAll(*other); } if((options&UNORM_NX_CJK_COMPAT)!=0 && NULL!=(other=internalGetNXCJKCompat(errorCode))) { set->addAll(*other); } if((options&_NORM_OPTIONS_UNICODE_MASK)!=0 && NULL!=(other=internalGetNXUnicode(options, errorCode))) { set->addAll(*other); } if(U_FAILURE(errorCode)) { delete set; return NULL; } umtx_lock(NULL); if(nxCache[options]==NULL) { nxCache[options]=set; set=NULL; } umtx_unlock(NULL); delete set; } return nxCache[options]; } static inline const UnicodeSet * getNX(int32_t options, UErrorCode &errorCode) { if(U_FAILURE(errorCode) || (options&=_NORM_OPTIONS_SETS_MASK)==0) { /* incoming failure, or no decomposition exclusions requested */ return NULL; } else { return internalGetNX(options, errorCode); } } static inline UBool nx_contains(const UnicodeSet *nx, UChar32 c) { return nx!=NULL && nx->contains(c); } static inline UBool nx_contains(const UnicodeSet *nx, UChar c, UChar c2) { return nx!=NULL && nx->contains(c2==0 ? c : U16_GET_SUPPLEMENTARY(c, c2)); } /* other normalization primitives ------------------------------------------- */ /* get the canonical or compatibility decomposition for one character */ static inline const UChar * _decompose(uint32_t norm32, uint32_t qcMask, int32_t &length, uint8_t &cc, uint8_t &trailCC) { const UChar *p=(const UChar *)_getExtraData(norm32); length=*p++; if((norm32&qcMask&_NORM_QC_NFKD)!=0 && length>=0x100) { /* use compatibility decomposition, skip canonical data */ p+=((length>>7)&1)+(length&_NORM_DECOMP_LENGTH_MASK); length>>=8; } if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) { /* get the lead and trail cc's */ UChar bothCCs=*p++; cc=(uint8_t)(bothCCs>>8); trailCC=(uint8_t)bothCCs; } else { /* lead and trail cc's are both 0 */ cc=trailCC=0; } length&=_NORM_DECOMP_LENGTH_MASK; return p; } /* get the canonical decomposition for one character */ static inline const UChar * _decompose(uint32_t norm32, int32_t &length, uint8_t &cc, uint8_t &trailCC) { const UChar *p=(const UChar *)_getExtraData(norm32); length=*p++; if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) { /* get the lead and trail cc's */ UChar bothCCs=*p++; cc=(uint8_t)(bothCCs>>8); trailCC=(uint8_t)bothCCs; } else { /* lead and trail cc's are both 0 */ cc=trailCC=0; } length&=_NORM_DECOMP_LENGTH_MASK; return p; } /** * Get the canonical decomposition for one code point. * @param c code point * @param buffer out-only buffer for algorithmic decompositions of Hangul * @param length out-only, takes the length of the decomposition, if any * @return pointer to decomposition, or 0 if none * @internal */ static const UChar * _decompose(UChar32 c, UChar buffer[4], int32_t &length) { uint32_t norm32; UTRIE_GET32(&normTrie, c, norm32); if(norm32&_NORM_QC_NFD) { if(isNorm32HangulOrJamo(norm32)) { /* Hangul syllable: decompose algorithmically */ UChar c2; c-=HANGUL_BASE; c2=(UChar)(c%JAMO_T_COUNT); c/=JAMO_T_COUNT; if(c2>0) { buffer[2]=(UChar)(JAMO_T_BASE+c2); length=3; } else { length=2; } buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); return buffer; } else { /* normal decomposition */ uint8_t cc, trailCC; return _decompose(norm32, length, cc, trailCC); } } else { return 0; } } /* * get the combining class of (c, c2)=*p++ * before: p>_NORM_CC_SHIFT); } } /* * read backwards and get norm32 * return 0 if the character is >_NORM_CC_SHIFT); } /* * is this a safe boundary character for NF*D? * (lead cc==0) */ static inline UBool _isNFDSafe(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) { if((norm32&ccOrQCMask)==0) { return TRUE; /* cc==0 and no decomposition: this is NF*D safe */ } /* inspect its decomposition - maybe a Hangul but not a surrogate here */ if(isNorm32Regular(norm32) && (norm32&decompQCMask)!=0) { int32_t length; uint8_t cc, trailCC; /* decomposes, get everything from the variable-length extra data */ _decompose(norm32, decompQCMask, length, cc, trailCC); return cc==0; } else { /* no decomposition (or Hangul), test the cc directly */ return (norm32&_NORM_CC_MASK)==0; } } /* * is this (or does its decomposition begin with) a "true starter"? * (cc==0 and NF*C_YES) */ static inline UBool _isTrueStarter(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) { if((norm32&ccOrQCMask)==0) { return TRUE; /* this is a true starter (could be Hangul or Jamo L) */ } /* inspect its decomposition - not a Hangul or a surrogate here */ if((norm32&decompQCMask)!=0) { const UChar *p; int32_t length; uint8_t cc, trailCC; /* decomposes, get everything from the variable-length extra data */ p=_decompose(norm32, decompQCMask, length, cc, trailCC); if(cc==0) { uint32_t qcMask=ccOrQCMask&_NORM_QC_MASK; /* does it begin with NFC_YES? */ if((_getNorm32(p, qcMask)&qcMask)==0) { /* yes, the decomposition begins with a true starter */ return TRUE; } } } return FALSE; } /* uchar.h */ U_CAPI uint8_t U_EXPORT2 u_getCombiningClass(UChar32 c) { UErrorCode errorCode=U_ZERO_ERROR; if(_haveData(errorCode)) { uint32_t norm32; UTRIE_GET32(&normTrie, c, norm32); return (uint8_t)(norm32>>_NORM_CC_SHIFT); } else { return 0; } } U_CAPI UBool U_EXPORT2 unorm_internalIsFullCompositionExclusion(UChar32 c) { UErrorCode errorCode=U_ZERO_ERROR; if(_haveData(errorCode) && formatVersion_2_1) { uint16_t aux; UTRIE_GET16(&auxTrie, c, aux); return (UBool)((aux&_NORM_AUX_COMP_EX_MASK)!=0); } else { return FALSE; } } U_CAPI UBool U_EXPORT2 unorm_isCanonSafeStart(UChar32 c) { UErrorCode errorCode=U_ZERO_ERROR; if(_haveData(errorCode) && formatVersion_2_1) { uint16_t aux; UTRIE_GET16(&auxTrie, c, aux); return (UBool)((aux&_NORM_AUX_UNSAFE_MASK)==0); } else { return FALSE; } } U_CAPI UBool U_EXPORT2 unorm_getCanonStartSet(UChar32 c, USerializedSet *fillSet) { UErrorCode errorCode=U_ZERO_ERROR; if( fillSet!=NULL && (uint32_t)c<=0x10ffff && _haveData(errorCode) && canonStartSets!=NULL ) { const uint16_t *table; int32_t i, start, limit; /* * binary search for c * * There are two search tables, * one for BMP code points and one for supplementary ones. * See unormimp.h for details. */ if(c<=0xffff) { table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]; start=0; limit=canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]; /* each entry is a pair { c, result } */ while(start>16); low=(uint16_t)c; /* each entry is a triplet { high(c), low(c), result } */ while(start0)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(!_haveData(*pErrorCode) || !formatVersion_2_1) { return 0; } UTRIE_GET16(&auxTrie, c, aux); aux&=_NORM_AUX_FNC_MASK; if(aux!=0) { const UChar *s; int32_t length; s=(const UChar *)(extraData+aux); if(*s<0xff00) { /* s points to the single-unit string */ length=1; } else { length=*s&0xff; ++s; } if(0-skippable code point? See unormimp.h. */ U_CAPI UBool U_EXPORT2 unorm_isNFSkippable(UChar32 c, UNormalizationMode mode) { UErrorCode errorCode; uint32_t norm32, mask; uint16_t aux, fcd; errorCode=U_ZERO_ERROR; if(!_haveData(errorCode)) { return FALSE; } /* handle trivial cases; set the comparison mask for the normal ones */ switch(mode) { case UNORM_NONE: return TRUE; case UNORM_NFD: mask=_NORM_CC_MASK|_NORM_QC_NFD; break; case UNORM_NFKD: mask=_NORM_CC_MASK|_NORM_QC_NFKD; break; case UNORM_NFC: /* case UNORM_FCC: */ mask=_NORM_CC_MASK|_NORM_COMBINES_ANY|(_NORM_QC_NFC&_NORM_QC_ANY_NO); break; case UNORM_NFKC: mask=_NORM_CC_MASK|_NORM_COMBINES_ANY|(_NORM_QC_NFKC&_NORM_QC_ANY_NO); break; case UNORM_FCD: /* FCD: skippable if lead cc==0 and trail cc<=1 */ UTRIE_GET16(&fcdTrie, c, fcd); return fcd<=1; default: return FALSE; } /* check conditions (a)..(e), see unormimp.h */ UTRIE_GET32(&normTrie, c, norm32); if((norm32&mask)!=0) { return FALSE; /* fails (a)..(e), not skippable */ } if(mode=prevCC */ pPreBack=pBack=current; prevCC=_getPrevCC(start, pPreBack); if(cc=prevCC) { break; } pBack=pPreBack; } /* * this is where we are right now with all these pointers: * [start..pPreBack[ 0..? code points that we can ignore * [pPreBack..pBack[ 0..1 code points with prevCC<=cc * [pBack..current[ 0..n code points with >cc, move up to insert (c, c2) * [current..p[ 1 code point (c, c2) with cc */ /* move the code units in between up */ r=p; do { *--r=*--current; } while(pBack!=current); } } /* insert (c, c2) */ *current=c; if(c2!=0) { *(current+1)=c2; } /* we know the cc of the last code point */ return trailCC; } /* * merge two UTF-16 string parts together * to canonically order (order by combining classes) their concatenation * * the two strings may already be adjacent, so that the merging is done in-place * if the two strings are not adjacent, then the buffer holding the first one * must be large enough * the second string may or may not be ordered in itself * * before: [start..current[ is already ordered, and * [next..limit[ may be ordered in itself, but * is not in relation to [start..current[ * after: [start..current+(limit-next)[ is ordered * * the algorithm is a simple bubble-sort that takes the characters from *next++ * and inserts them in correct combining class order into the preceding part * of the string * * since this function is called much less often than the single-code point * _insertOrdered(), it just uses that for easier maintenance * (see file version from before 2001aug31 for a more optimized version) * * returns the trailing combining class */ static uint8_t _mergeOrdered(UChar *start, UChar *current, const UChar *next, const UChar *limit, UBool isOrdered=TRUE) { UChar *r; UChar c, c2; uint8_t cc, trailCC=0; UBool adjacent; adjacent= current==next; if(start!=current || !isOrdered) { while(next=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* skip a run of code units below the minimum or with irrelevant data for the FCD check */ if(limit==NULL) { for(;;) { c=*src++; if(c<_NORM_MIN_WITH_LEAD_CC) { if(c==0) { return TRUE; } /* * delay _getFCD16(c) for any character <_NORM_MIN_WITH_LEAD_CC * because chances are good that the next one will have * a leading cc of 0; * _getFCD16(-prevCC) is later called when necessary - * -c fits into int16_t because it is <_NORM_MIN_WITH_LEAD_CC==0x300 */ prevCC=(int16_t)-c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } } } else { for(;;) { if(src==limit) { return TRUE; } else if((c=*src++)<_NORM_MIN_WITH_LEAD_CC) { prevCC=(int16_t)-c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } } } /* check one above-minimum, relevant code unit */ if(UTF_IS_FIRST_SURROGATE(c)) { /* c is a lead surrogate, get the real fcd16 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; fcd16=_getFCD16FromSurrogatePair(fcd16, c2); } else { c2=0; fcd16=0; } } else { c2=0; } if(nx_contains(nx, c, c2)) { prevCC=0; /* excluded: fcd16==0 */ continue; } /* * prevCC has values from the following ranges: * 0..0xff - the previous trail combining class * <0 - the negative value of the previous code unit; * that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16() * was deferred so that average text is checked faster */ /* check the combining order */ cc=(int16_t)(fcd16>>8); if(cc!=0) { if(prevCC<0) { /* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */ if(!nx_contains(nx, (UChar32)-prevCC)) { prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff); } else { prevCC=0; /* excluded: fcd16==0 */ } } if(cc=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* skip a run of code units below the minimum or with irrelevant data for the quick check */ if(limit==NULL) { for(;;) { c=*src++; if(c=minNoMaybe && ((norm32=_getNorm32(c))&ccOrQCMask)!=0) { break; } prevCC=0; } } /* check one above-minimum, relevant code unit */ if(isNorm32LeadSurrogate(norm32)) { /* c is a lead surrogate, get the real norm32 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { c2=0; norm32=0; } } else { c2=0; } if(nx_contains(nx, c, c2)) { /* excluded: norm32==0 */ norm32=0; } /* check the combining order */ cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); if(cc!=0 && cc0) || destCapacity==0) ) { uint32_t norm32, qcMask; UChar32 minNoMaybe; int32_t length; /* initialize */ if(!compat) { minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]; qcMask=_NORM_QC_NFD; } else { minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]; qcMask=_NORM_QC_NFKD; } if(c0) { dest[0]=(UChar)c; } return -1; } /* data lookup */ UTRIE_GET32(&normTrie, c, norm32); if((norm32&qcMask)==0) { /* simple case: no decomposition */ if(c<=0xffff) { if(destCapacity>0) { dest[0]=(UChar)c; } return -1; } else { if(destCapacity>=2) { dest[0]=UTF16_LEAD(c); dest[1]=UTF16_TRAIL(c); } return -2; } } else if(isNorm32HangulOrJamo(norm32)) { /* Hangul syllable: decompose algorithmically */ UChar c2; c-=HANGUL_BASE; c2=(UChar)(c%JAMO_T_COUNT); c/=JAMO_T_COUNT; if(c2>0) { if(destCapacity>=3) { dest[2]=(UChar)(JAMO_T_BASE+c2); } length=3; } else { length=2; } if(destCapacity>=2) { dest[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); dest[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); } return length; } else { /* c decomposes, get everything from the variable-length extra data */ const UChar *p, *limit; uint8_t cc, trailCC; p=_decompose(norm32, qcMask, length, cc, trailCC); if(length<=destCapacity) { limit=p+length; do { *dest++=*p++; } while(p=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* count code units below the minimum or with irrelevant data for the quick check */ prevSrc=src; if(limit==NULL) { while((c=*src)0) { buffer[2]=(UChar)(JAMO_T_BASE+c2); length=3; } else { length=2; } buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); } } else { if(isNorm32Regular(norm32)) { c2=0; length=1; } else { /* c is a lead surrogate, get the real norm32 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; length=2; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { c2=0; length=1; norm32=0; } } /* get the decomposition and the lead and trail cc's */ if(nx_contains(nx, c, c2)) { /* excluded: norm32==0 */ cc=trailCC=0; p=NULL; } else if((norm32&qcMask)==0) { /* c does not decompose */ cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT); p=NULL; } else { /* c decomposes, get everything from the variable-length extra data */ p=_decompose(norm32, qcMask, length, cc, trailCC); if(length==1) { /* fastpath a single code unit from decomposition */ c=*p; c2=0; p=NULL; } } } /* append the decomposition to the destination buffer, assume length>0 */ if((destIndex+length)<=destCapacity) { UChar *reorderSplit=dest+destIndex; if(p==NULL) { /* fastpath: single code point */ if(cc!=0 && cc0); } } } else { /* buffer overflow */ /* keep incrementing the destIndex for preflighting */ destIndex+=length; } prevCC=trailCC; if(prevCC==0) { reorderStartIndex=destIndex; } } outTrailCC=prevCC; return destIndex; } U_CAPI int32_t U_EXPORT2 unorm_decompose(UChar *dest, int32_t destCapacity, const UChar *src, int32_t srcLength, UBool compat, int32_t options, UErrorCode *pErrorCode) { const UnicodeSet *nx; int32_t destIndex; uint8_t trailCC; if(!_haveData(*pErrorCode)) { return 0; } nx=getNX(options, *pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } destIndex=_decompose(dest, destCapacity, src, srcLength, compat, nx, trailCC); return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode); } /* make FCD ----------------------------------------------------------------- */ static const UChar * _findSafeFCD(const UChar *src, const UChar *limit, uint16_t fcd16) { UChar c, c2; /* * find the first position in [src..limit[ after some cc==0 according to FCD data * * at the beginning of the loop, we have fcd16 from before src * * stop at positions: * - after trail cc==0 * - at the end of the source * - before lead cc==0 */ for(;;) { /* stop if trail cc==0 for the previous character */ if((fcd16&0xff)==0) { break; } /* get c=*src - stop at end of string */ if(src==limit) { break; } c=*src; /* stop if lead cc==0 for this character */ if(c<_NORM_MIN_WITH_LEAD_CC || (fcd16=_getFCD16(c))==0) { break; /* catches terminating NUL, too */ } if(!UTF_IS_FIRST_SURROGATE(c)) { if(fcd16<=0xff) { break; } ++src; } else if((src+1)!=limit && (c2=*(src+1), UTF_IS_SECOND_SURROGATE(c2))) { /* c is a lead surrogate, get the real fcd16 */ fcd16=_getFCD16FromSurrogatePair(fcd16, c2); if(fcd16<=0xff) { break; } src+=2; } else { /* c is an unpaired first surrogate, lead cc==0 */ break; } } return src; } static uint8_t _decomposeFCD(const UChar *src, const UChar *decompLimit, UChar *dest, int32_t &destIndex, int32_t destCapacity, const UnicodeSet *nx) { const UChar *p; uint32_t norm32; int32_t reorderStartIndex, length; UChar c, c2; uint8_t cc, prevCC, trailCC; /* * canonically decompose [src..decompLimit[ * * all characters in this range have some non-zero cc, * directly or in decomposition, * so that we do not need to check in the following for quick-check limits etc. * * there _are_ _no_ Hangul syllables or Jamos in here because they are FCD-safe (cc==0)! * * we also do not need to check for c==0 because we have an established decompLimit */ reorderStartIndex=destIndex; prevCC=0; while(src>_NORM_CC_SHIFT); p=NULL; } else { /* c decomposes, get everything from the variable-length extra data */ p=_decompose(norm32, length, cc, trailCC); if(length==1) { /* fastpath a single code unit from decomposition */ c=*p; c2=0; p=NULL; } } /* append the decomposition to the destination buffer, assume length>0 */ if((destIndex+length)<=destCapacity) { UChar *reorderSplit=dest+destIndex; if(p==NULL) { /* fastpath: single code point */ if(cc!=0 && cc0); } } } else { /* buffer overflow */ /* keep incrementing the destIndex for preflighting */ destIndex+=length; } prevCC=trailCC; if(prevCC==0) { reorderStartIndex=destIndex; } } return prevCC; } static int32_t unorm_makeFCD(UChar *dest, int32_t destCapacity, const UChar *src, int32_t srcLength, const UnicodeSet *nx, UErrorCode *pErrorCode) { const UChar *limit, *prevSrc, *decompStart; int32_t destIndex, length; UChar c, c2; uint16_t fcd16; int16_t prevCC, cc; if(!_haveData(*pErrorCode)) { return 0; } /* initialize */ decompStart=src; destIndex=0; prevCC=0; /* avoid compiler warnings */ c=0; fcd16=0; if(srcLength>=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* skip a run of code units below the minimum or with irrelevant data for the FCD check */ prevSrc=src; if(limit==NULL) { for(;;) { c=*src; if(c<_NORM_MIN_WITH_LEAD_CC) { if(c==0) { break; } prevCC=(int16_t)-c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } ++src; } } else { for(;;) { if(src==limit) { break; } else if((c=*src)<_NORM_MIN_WITH_LEAD_CC) { prevCC=(int16_t)-c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } ++src; } } /* * prevCC has values from the following ranges: * 0..0xff - the previous trail combining class * <0 - the negative value of the previous code unit; * that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16() * was deferred so that average text is checked faster */ /* copy these code units all at once */ if(src!=prevSrc) { length=(int32_t)(src-prevSrc); if((destIndex+length)<=destCapacity) { uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR); } destIndex+=length; prevSrc=src; /* prevCC<0 is only possible from the above loop, i.e., only if prevSrc=0 */ /* end of source reached? */ if(limit==NULL ? c==0 : src==limit) { break; } /* set a pointer to after the last source position where prevCC==0 */ if(prevCC==0) { decompStart=prevSrc; } /* c already contains *src and fcd16 is set for it, increment src */ ++src; /* check one above-minimum, relevant code unit */ if(UTF_IS_FIRST_SURROGATE(c)) { /* c is a lead surrogate, get the real fcd16 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; fcd16=_getFCD16FromSurrogatePair(fcd16, c2); } else { c2=0; fcd16=0; } } else { c2=0; } /* we are looking at the character (c, c2) at [prevSrc..src[ */ if(nx_contains(nx, c, c2)) { fcd16=0; /* excluded: fcd16==0 */ } /* check the combining order, get the lead cc */ cc=(int16_t)(fcd16>>8); if(cc==0 || cc>=prevCC) { /* the order is ok */ if(cc==0) { decompStart=prevSrc; } prevCC=(int16_t)(fcd16&0xff); /* just append (c, c2) */ length= c2==0 ? 1 : 2; if((destIndex+length)<=destCapacity) { dest[destIndex++]=c; if(c2!=0) { dest[destIndex++]=c2; } } else { destIndex+=length; } } else { /* * back out the part of the source that we copied already but * is now going to be decomposed; * prevSrc is set to after what was copied */ destIndex-=(int32_t)(prevSrc-decompStart); /* * find the part of the source that needs to be decomposed; * to be safe and simple, decompose to before the next character with lead cc==0 */ src=_findSafeFCD(src, limit, fcd16); /* * the source text does not fulfill the conditions for FCD; * decompose and reorder a limited piece of the text */ prevCC=_decomposeFCD(decompStart, src, dest, destIndex, destCapacity, nx); decompStart=src; } } return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode); } /* make NFC & NFKC ---------------------------------------------------------- */ /* get the composition properties of the next character */ static inline uint32_t _getNextCombining(UChar *&p, const UChar *limit, UChar &c, UChar &c2, uint16_t &combiningIndex, uint8_t &cc, const UnicodeSet *nx) { uint32_t norm32, combineFlags; /* get properties */ c=*p++; norm32=_getNorm32(c); /* preset output values for most characters */ c2=0; combiningIndex=0; cc=0; if((norm32&(_NORM_CC_MASK|_NORM_COMBINES_ANY))==0) { return 0; } else { if(isNorm32Regular(norm32)) { /* set cc etc. below */ } else if(isNorm32HangulOrJamo(norm32)) { /* a compatibility decomposition contained Jamos */ combiningIndex=(uint16_t)(0xfff0|(norm32>>_NORM_EXTRA_SHIFT)); return norm32&_NORM_COMBINES_ANY; } else { /* c is a lead surrogate, get the real norm32 */ if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) { ++p; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { c2=0; return 0; } } if(nx_contains(nx, c, c2)) { return 0; /* excluded: norm32==0 */ } cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); combineFlags=norm32&_NORM_COMBINES_ANY; if(combineFlags!=0) { combiningIndex=*(_getExtraData(norm32)-1); } return combineFlags; } } /* * given a composition-result starter (c, c2) - which means its cc==0, * it combines forward, it has extra data, its norm32!=0, * it is not a Hangul or Jamo, * get just its combineFwdIndex * * norm32(c) is special if and only if c2!=0 */ static inline uint16_t _getCombiningIndexFromStarter(UChar c, UChar c2) { uint32_t norm32; norm32=_getNorm32(c); if(c2!=0) { norm32=_getNorm32FromSurrogatePair(norm32, c2); } return *(_getExtraData(norm32)-1); } /* * Find the recomposition result for * a forward-combining character * (specified with a pointer to its part of the combiningTable[]) * and a backward-combining character * (specified with its combineBackIndex). * * If these two characters combine, then set (value, value2) * with the code unit(s) of the composition character. * * Return value: * 0 do not combine * 1 combine * >1 combine, and the composition is a forward-combining starter * * See unormimp.h for a description of the composition table format. */ static inline uint16_t _combine(const uint16_t *table, uint16_t combineBackIndex, uint16_t &value, uint16_t &value2) { uint16_t key; /* search in the starter's composition table */ for(;;) { key=*table++; if(key>=combineBackIndex) { break; } table+= *table&0x8000 ? 2 : 1; } /* mask off bit 15, the last-entry-in-the-list flag */ if((key&0x7fff)==combineBackIndex) { /* found! combine! */ value=*table; /* is the composition a starter that combines forward? */ key=(uint16_t)((value&0x2000)+1); /* get the composition result code point from the variable-length result value */ if(value&0x8000) { if(value&0x4000) { /* surrogate pair composition result */ value=(uint16_t)((value&0x3ff)|0xd800); value2=*(table+1); } else { /* BMP composition result U+2000..U+ffff */ value=*(table+1); value2=0; } } else { /* BMP composition result U+0000..U+1fff */ value&=0x1fff; value2=0; } return key; } else { /* not found */ return 0; } } /* * recompose the characters in [p..limit[ * (which is in NFD - decomposed and canonically ordered), * adjust limit, and return the trailing cc * * since for NFKC we may get Jamos in decompositions, we need to * recompose those too * * note that recomposition never lengthens the text: * any character consists of either one or two code units; * a composition may contain at most one more code unit than the original starter, * while the combining mark that is removed has at least one code unit */ static uint8_t _recompose(UChar *p, UChar *&limit, const UnicodeSet *nx) { UChar *starter, *pRemove, *q, *r; uint32_t combineFlags; UChar c, c2; uint16_t combineFwdIndex, combineBackIndex; uint16_t result, value, value2; uint8_t cc, prevCC; UBool starterIsSupplementary; starter=NULL; /* no starter */ combineFwdIndex=0; /* will not be used until starter!=NULL - avoid compiler warnings */ combineBackIndex=0; /* will always be set if combineFlags!=0 - avoid compiler warnings */ value=value2=0; /* always set by _combine() before used - avoid compiler warnings */ starterIsSupplementary=FALSE; /* will not be used until starter!=NULL - avoid compiler warnings */ prevCC=0; for(;;) { combineFlags=_getNextCombining(p, limit, c, c2, combineBackIndex, cc, nx); if((combineFlags&_NORM_COMBINES_BACK) && starter!=NULL) { if(combineBackIndex&0x8000) { /* c is a Jamo V/T, see if we can compose it with the previous character */ pRemove=NULL; /* NULL while no Hangul composition */ c2=*starter; if(combineBackIndex==0xfff2) { /* Jamo V, compose with previous Jamo L and following Jamo T */ c2=(UChar)(c2-JAMO_L_BASE); if(c2 * the rest of the loop body will reset starter to NULL; * technically, a composed Hangul syllable is a starter, but it * does not combine forward now that we have consumed all eligible Jamos; * for Jamo V/T, combineFlags does not contain _NORM_COMBINES_FWD */ } else if( /* the starter is not a Jamo V/T and */ !(combineFwdIndex&0x8000) && /* the combining mark is not blocked and */ (prevCC1) { combineFwdIndex=_getCombiningIndexFromStarter((UChar)value, (UChar)value2); } else { starter=NULL; } /* we combined and set prevCC, continue with looking for compositions */ continue; } } /* no combination this time */ prevCC=cc; if(p==limit) { return prevCC; } /* if (c, c2) did not combine, then check if it is a starter */ if(cc==0) { /* found a new starter; combineFlags==0 if (c, c2) is excluded */ if(combineFlags&_NORM_COMBINES_FWD) { /* it may combine with something, prepare for it */ if(c2==0) { starterIsSupplementary=FALSE; starter=p-1; } else { starterIsSupplementary=TRUE; starter=p-2; } combineFwdIndex=combineBackIndex; } else { /* it will not combine with anything */ starter=NULL; } } } } /* find the last true starter in [start..src[ and return the pointer to it */ static const UChar * _findPreviousStarter(const UChar *start, const UChar *src, uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe) { uint32_t norm32; UChar c, c2; while(startbufferCapacity) { if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*length, 0)) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return NULL; } length=_decompose(buffer, bufferCapacity, prevStarter, src-prevStarter, compat, nx, trailCC); } /* recompose the decomposition */ recomposeLimit=buffer+length; if(length>=2) { prevCC=_recompose(buffer, recomposeLimit, nx); } /* return with a pointer to the recomposition and its length */ length=recomposeLimit-buffer; return buffer; } static inline UBool _composeHangul(UChar prev, UChar c, uint32_t norm32, const UChar *&src, const UChar *limit, UBool compat, UChar *dest, const UnicodeSet *nx) { if(isJamoVTNorm32JamoV(norm32)) { /* c is a Jamo V, compose with previous Jamo L and following Jamo T */ prev=(UChar)(prev-JAMO_L_BASE); if(prev=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* count code units below the minimum or with irrelevant data for the quick check */ prevSrc=src; if(limit==NULL) { while((c=*src)0 && _composeHangul( *(prevSrc-1), c, norm32, src, limit, compat, destIndex<=destCapacity ? dest+(destIndex-1) : 0, nx) ) { prevStarter=src; continue; } /* the Jamo V/T did not compose into a Hangul syllable, just append to dest */ c2=0; length=1; prevStarter=prevSrc; } else { if(isNorm32Regular(norm32)) { c2=0; length=1; } else { /* c is a lead surrogate, get the real norm32 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; length=2; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { /* c is an unpaired lead surrogate, nothing to do */ c2=0; length=1; norm32=0; } } /* we are looking at the character (c, c2) at [prevSrc..src[ */ if(nx_contains(nx, c, c2)) { /* excluded: norm32==0 */ cc=0; } else if((norm32&qcMask)==0) { cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); } else { const UChar *p; uint32_t decompQCMask; /* * find appropriate boundaries around this character, * decompose the source text from between the boundaries, * and recompose it * * this puts the intermediate text into the side buffer because * it might be longer than the recomposition end result, * or the destination buffer may be too short or missing * * note that destIndex may be adjusted backwards to account * for source text that passed the quick check but needed to * take part in the recomposition */ decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */ /* * find the last true starter in [prevStarter..src[ * it is either the decomposition of the current character (at prevSrc), * or prevStarter */ if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) { prevStarter=prevSrc; } else { /* adjust destIndex: back out what had been copied with qc "yes" */ destIndex-=(int32_t)(prevSrc-prevStarter); } /* find the next true starter in [src..limit[ - modifies src to point to the next starter */ src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe); /* compose [prevStarter..src[ */ p=_composePart(stackBuffer, buffer, bufferCapacity, length, /* output */ prevStarter, src, qcMask, prevCC, /* output */ nx, pErrorCode); if(p==NULL) { destIndex=0; /* an error occurred (out of memory) */ break; } /* append the recomposed buffer contents to the destination buffer */ if((destIndex+length)<=destCapacity) { while(length>0) { dest[destIndex++]=*p++; --length; } } else { /* buffer overflow */ /* keep incrementing the destIndex for preflighting */ destIndex+=length; } /* set the next starter */ prevStarter=src; continue; } } /* append the single code point (c, c2) to the destination buffer */ if((destIndex+length)<=destCapacity) { if(cc!=0 && cc0 && srcLength<=destCapacity) { uprv_memcpy(dest, src, srcLength*U_SIZEOF_UCHAR); } destLength=srcLength; break; default: *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); } /** * Internal API for normalizing. * Does not check for bad input. * @internal */ U_CAPI int32_t U_EXPORT2 unorm_internalNormalize(UChar *dest, int32_t destCapacity, const UChar *src, int32_t srcLength, UNormalizationMode mode, int32_t options, UErrorCode *pErrorCode) { const UnicodeSet *nx; if(!_haveData(*pErrorCode)) { return 0; } nx=getNX(options, *pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } return unorm_internalNormalize(dest, destCapacity, src, srcLength, mode, nx, pErrorCode); } /** Public API for normalizing. */ U_CAPI int32_t U_EXPORT2 unorm_normalize(const UChar *src, int32_t srcLength, UNormalizationMode mode, int32_t options, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) { /* check argument values */ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if( destCapacity<0 || (dest==NULL && destCapacity>0) || src==NULL || srcLength<-1 ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* check for overlapping src and destination */ if( dest!=NULL && ((src>=dest && src<(dest+destCapacity)) || (srcLength>0 && dest>=src && dest<(src+srcLength))) ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } return unorm_internalNormalize(dest, destCapacity, src, srcLength, mode, options, pErrorCode); } /* iteration functions ------------------------------------------------------ */ /* * These iteration functions are the core implementations of the * Normalizer class iteration API. * They read from a UCharIterator into their own buffer * and normalize into the Normalizer iteration buffer. * Normalizer itself then iterates over its buffer until that needs to be * filled again. */ /* * ### TODO: * Now that UCharIterator.next/previous return (int32_t)-1 not (UChar)0xffff * if iteration bounds are reached, * try to not call hasNext/hasPrevious and instead check for >=0. */ /* backward iteration ------------------------------------------------------- */ /* * read backwards and get norm32 * return 0 if the character is 0) || src==NULL ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(!_haveData(*pErrorCode)) { return 0; } if(pNeededToNormalize!=NULL) { *pNeededToNormalize=FALSE; } switch(mode) { case UNORM_NFD: case UNORM_FCD: isPreviousBoundary=_isPrevNFDSafe; minC=_NORM_MIN_WITH_LEAD_CC; mask=_NORM_CC_MASK|_NORM_QC_NFD; break; case UNORM_NFKD: isPreviousBoundary=_isPrevNFDSafe; minC=_NORM_MIN_WITH_LEAD_CC; mask=_NORM_CC_MASK|_NORM_QC_NFKD; break; case UNORM_NFC: isPreviousBoundary=_isPrevTrueStarter; minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; mask=_NORM_CC_MASK|_NORM_QC_NFC; break; case UNORM_NFKC: isPreviousBoundary=_isPrevTrueStarter; minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; mask=_NORM_CC_MASK|_NORM_QC_NFKC; break; case UNORM_NONE: destLength=0; if((c=src->previous(src))>=0) { destLength=1; if(UTF_IS_TRAIL(c) && (c2=src->previous(src))>=0) { if(UTF_IS_LEAD(c2)) { if(destCapacity>=2) { dest[1]=(UChar)c; /* trail surrogate */ destLength=2; } c=c2; /* lead surrogate to be written below */ } else { src->move(src, 1, UITER_CURRENT); } } if(destCapacity>0) { dest[0]=(UChar)c; } } return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); default: *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } buffer=stackBuffer; bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR); bufferLength=_findPreviousIterationBoundary(*src, isPreviousBoundary, minC, mask, buffer, bufferCapacity, startIndex, pErrorCode); if(bufferLength>0) { if(doNormalize) { destLength=unorm_internalNormalize(dest, destCapacity, buffer+startIndex, bufferLength, mode, options, pErrorCode); if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) { *pNeededToNormalize= (UBool)(destLength!=bufferLength || 0!=uprv_memcmp(dest, buffer+startIndex, destLength*U_SIZEOF_UCHAR)); } } else { /* just copy the source characters */ if(destCapacity>0) { uprv_memcpy(dest, buffer+startIndex, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR); } destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode); } } else { destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode); } /* cleanup */ if(buffer!=stackBuffer) { uprv_free(buffer); } return destLength; } /* forward iteration -------------------------------------------------------- */ /* * read forward and get norm32 * return 0 if the character is 0) || src==NULL ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(!_haveData(*pErrorCode)) { return 0; } if(pNeededToNormalize!=NULL) { *pNeededToNormalize=FALSE; } switch(mode) { case UNORM_NFD: case UNORM_FCD: isNextBoundary=_isNextNFDSafe; minC=_NORM_MIN_WITH_LEAD_CC; mask=_NORM_CC_MASK|_NORM_QC_NFD; break; case UNORM_NFKD: isNextBoundary=_isNextNFDSafe; minC=_NORM_MIN_WITH_LEAD_CC; mask=_NORM_CC_MASK|_NORM_QC_NFKD; break; case UNORM_NFC: isNextBoundary=_isNextTrueStarter; minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; mask=_NORM_CC_MASK|_NORM_QC_NFC; break; case UNORM_NFKC: isNextBoundary=_isNextTrueStarter; minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; mask=_NORM_CC_MASK|_NORM_QC_NFKC; break; case UNORM_NONE: destLength=0; if((c=src->next(src))>=0) { destLength=1; if(UTF_IS_LEAD(c) && (c2=src->next(src))>=0) { if(UTF_IS_TRAIL(c2)) { if(destCapacity>=2) { dest[1]=(UChar)c2; /* trail surrogate */ destLength=2; } /* lead surrogate to be written below */ } else { src->move(src, -1, UITER_CURRENT); } } if(destCapacity>0) { dest[0]=(UChar)c; } } return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); default: *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } buffer=stackBuffer; bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR); bufferLength=_findNextIterationBoundary(*src, isNextBoundary, minC, mask, buffer, bufferCapacity, pErrorCode); if(bufferLength>0) { if(doNormalize) { destLength=unorm_internalNormalize(dest, destCapacity, buffer, bufferLength, mode, options, pErrorCode); if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) { *pNeededToNormalize= (UBool)(destLength!=bufferLength || 0!=uprv_memcmp(dest, buffer, destLength*U_SIZEOF_UCHAR)); } } else { /* just copy the source characters */ if(destCapacity>0) { uprv_memcpy(dest, buffer, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR); } destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode); } } else { destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode); } /* cleanup */ if(buffer!=stackBuffer) { uprv_free(buffer); } return destLength; } /* * ### TODO: check if NF*D and FCD iteration finds optimal boundaries * and if not, how hard it would be to improve it. * For example, see _findSafeFCD(). */ /* Concatenation of normalized strings -------------------------------------- */ U_CAPI int32_t U_EXPORT2 unorm_concatenate(const UChar *left, int32_t leftLength, const UChar *right, int32_t rightLength, UChar *dest, int32_t destCapacity, UNormalizationMode mode, int32_t options, UErrorCode *pErrorCode) { UChar stackBuffer[100]; UChar *buffer; int32_t bufferLength, bufferCapacity; UCharIterator iter; int32_t leftBoundary, rightBoundary, destLength; /* check argument values */ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if( destCapacity<0 || (dest==NULL && destCapacity>0) || left==NULL || leftLength<-1 || right==NULL || rightLength<-1 ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* check for overlapping right and destination */ if( dest!=NULL && ((right>=dest && right<(dest+destCapacity)) || (rightLength>0 && dest>=right && dest<(right+rightLength))) ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* allow left==dest */ /* set up intermediate buffer */ buffer=stackBuffer; bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR); /* * Input: left[0..leftLength[ + right[0..rightLength[ * * Find normalization-safe boundaries leftBoundary and rightBoundary * and copy the end parts together: * buffer=left[leftBoundary..leftLength[ + right[0..rightBoundary[ * * dest=left[0..leftBoundary[ + * normalize(buffer) + * right[rightBoundary..rightLength[ */ /* * find a normalization boundary at the end of the left string * and copy the end part into the buffer */ uiter_setString(&iter, left, leftLength); iter.index=leftLength=iter.length; /* end of left string */ bufferLength=unorm_previous(&iter, buffer, bufferCapacity, mode, options, FALSE, NULL, pErrorCode); leftBoundary=iter.index; if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { *pErrorCode=U_ZERO_ERROR; if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferLength, 0)) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; /* dont need to cleanup here since * u_growBufferFromStatic frees buffer if(buffer!=stackBuffer) */ return 0; } /* just copy from the left string: we know the boundary already */ uprv_memcpy(buffer, left+leftBoundary, bufferLength*U_SIZEOF_UCHAR); } /* * find a normalization boundary at the beginning of the right string * and concatenate the beginning part to the buffer */ uiter_setString(&iter, right, rightLength); rightLength=iter.length; /* in case it was -1 */ rightBoundary=unorm_next(&iter, buffer+bufferLength, bufferCapacity-bufferLength, mode, options, FALSE, NULL, pErrorCode); if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { *pErrorCode=U_ZERO_ERROR; if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, bufferLength+rightBoundary, 0)) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; /* dont need to cleanup here since * u_growBufferFromStatic frees buffer if(buffer!=stackBuffer) */ return 0; } /* just copy from the right string: we know the boundary already */ uprv_memcpy(buffer+bufferLength, right, rightBoundary*U_SIZEOF_UCHAR); } bufferLength+=rightBoundary; /* copy left[0..leftBoundary[ to dest */ if(left!=dest && leftBoundary>0 && destCapacity>0) { uprv_memcpy(dest, left, uprv_min(leftBoundary, destCapacity)*U_SIZEOF_UCHAR); } destLength=leftBoundary; /* concatenate the normalization of the buffer to dest */ if(destCapacity>destLength) { destLength+=unorm_internalNormalize(dest+destLength, destCapacity-destLength, buffer, bufferLength, mode, options, pErrorCode); } else { destLength+=unorm_internalNormalize(NULL, 0, buffer, bufferLength, mode, options, pErrorCode); } /* * only errorCode that is expected is a U_BUFFER_OVERFLOW_ERROR * so we dont check for the error code here..just let it pass through */ /* concatenate right[rightBoundary..rightLength[ to dest */ right+=rightBoundary; rightLength-=rightBoundary; if(rightLength>0 && destCapacity>destLength) { uprv_memcpy(dest+destLength, right, uprv_min(rightLength, destCapacity-destLength)*U_SIZEOF_UCHAR); } destLength+=rightLength; /* cleanup */ if(buffer!=stackBuffer) { uprv_free(buffer); } return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); } /* compare canonically equivalent ------------------------------------------- */ #else /* * Normalization is not built into the ICU library, but case-insensitive * comparisons are possible using unorm_cmpEquivFold(). * The following simply disables the decomposition part. */ static inline UBool _haveData(UErrorCode &errorCode) { if(U_SUCCESS(errorCode)) { errorCode=U_INTERNAL_PROGRAM_ERROR; } return FALSE; } static inline const UChar * _decompose(UChar32 /*c*/, UChar /*buffer*/[4], int32_t &/*length*/) { return NULL; } #endif /* #if !UCONFIG_NO_NORMALIZATION */ /* * Compare two strings for canonical equivalence. * Further options include case-insensitive comparison and * code point order (as opposed to code unit order). * * In this function, canonical equivalence is optional as well. * If canonical equivalence is tested, then both strings must fulfill * the FCD check. * * Semantically, this is equivalent to * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) * where code point order, NFD and foldCase are all optional. * * String comparisons almost always yield results before processing both strings * completely. * They are generally more efficient working incrementally instead of * performing the sub-processing (strlen, normalization, case-folding) * on the entire strings first. * * It is also unnecessary to not normalize identical characters. * * This function works in principle as follows: * * loop { * get one code unit c1 from s1 (-1 if end of source) * get one code unit c2 from s2 (-1 if end of source) * * if(either string finished) { * return result; * } * if(c1==c2) { * continue; * } * * // c1!=c2 * try to decompose/case-fold c1/c2, and continue if one does; * * // still c1!=c2 and neither decomposes/case-folds, return result * return c1-c2; * } * * When a character decomposes, then the pointer for that source changes to * the decomposition, pushing the previous pointer onto a stack. * When the end of the decomposition is reached, then the code unit reader * pops the previous source from the stack. * (Same for case-folding.) * * This is complicated further by operating on variable-width UTF-16. * The top part of the loop works on code units, while lookups for decomposition * and case-folding need code points. * Code points are assembled after the equality/end-of-source part. * The source pointer is only advanced beyond all code units when the code point * actually decomposes/case-folds. * * If we were on a trail surrogate unit when assembling a code point, * and the code point decomposes/case-folds, then the decomposition/folding * result must be compared with the part of the other string that corresponds to * this string's lead surrogate. * Since we only assemble a code point when hitting a trail unit when the * preceding lead units were identical, we back up the other string by one unit * in such a case. * * The optional code point order comparison at the end works with * the same fix-up as the other code point order comparison functions. * See ustring.c and the comment near the end of this function. * * Assumption: A decomposition or case-folding result string never contains * a single surrogate. This is a safe assumption in the Unicode Standard. * Therefore, we do not need to check for surrogate pairs across * decomposition/case-folding boundaries. * * Further assumptions (see verifications tstnorm.cpp): * The API function checks for FCD first, while the core function * first case-folds and then decomposes. This requires that case-folding does not * un-FCD any strings. * * The API function may also NFD the input and turn off decomposition. * This requires that case-folding does not un-NFD strings either. * * TODO If any of the above two assumptions is violated, * then this entire code must be re-thought. * If this happens, then a simple solution is to case-fold both strings up front * and to turn off UNORM_INPUT_IS_FCD. * We already do this when not both strings are in FCD because makeFCD * would be a partial NFD before the case folding, which does not work. * Note that all of this is only a problem when case-folding _and_ * canonical equivalence come together. * * This function could be moved to a different source file, at increased cost * for calling the decomposition access function. */ // stack element for previous-level source/decomposition pointers struct CmpEquivLevel { const UChar *start, *s, *limit; }; typedef struct CmpEquivLevel CmpEquivLevel; // internal function U_CAPI int32_t U_EXPORT2 unorm_cmpEquivFold(const UChar *s1, int32_t length1, const UChar *s2, int32_t length2, uint32_t options, UErrorCode *pErrorCode) { // current-level start/limit - s1/s2 as current const UChar *start1, *start2, *limit1, *limit2; // decomposition variables const UChar *p; int32_t length; // stacks of previous-level start/current/limit CmpEquivLevel stack1[2], stack2[2]; // decomposition buffers for Hangul UChar decomp1[4], decomp2[4]; // case folding buffers, only use current-level start/limit UChar fold1[32], fold2[32]; // track which is the current level per string int32_t level1, level2; // current code units, and code points for lookups int32_t c1, c2, cp1, cp2; // no argument error checking because this itself is not an API // assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set // otherwise this function must behave exactly as uprv_strCompare() // not checking for that here makes testing this function easier // normalization/properties data loaded? if( ((options&_COMPARE_EQUIV)!=0 && !_haveData(*pErrorCode)) || ((options&U_COMPARE_IGNORE_CASE)!=0 && !uprv_haveProperties(pErrorCode)) ) { return 0; } // initialize start1=s1; if(length1==-1) { limit1=NULL; } else { limit1=s1+length1; } start2=s2; if(length2==-1) { limit2=NULL; } else { limit2=s2+length2; } level1=level2=0; c1=c2=-1; // comparison loop for(;;) { // here a code unit value of -1 means "get another code unit" // below it will mean "this source is finished" if(c1<0) { // get next code unit from string 1, post-increment for(;;) { if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) { if(level1==0) { c1=-1; break; } } else { ++s1; break; } // reached end of level buffer, pop one level do { --level1; start1=stack1[level1].start; } while(start1==NULL); s1=stack1[level1].s; limit1=stack1[level1].limit; } } if(c2<0) { // get next code unit from string 2, post-increment for(;;) { if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) { if(level2==0) { c2=-1; break; } } else { ++s2; break; } // reached end of level buffer, pop one level do { --level2; start2=stack2[level2].start; } while(start2==NULL); s2=stack2[level2].s; limit2=stack2[level2].limit; } } // compare c1 and c2 // either variable c1, c2 is -1 only if the corresponding string is finished if(c1==c2) { if(c1<0) { return 0; // c1==c2==-1 indicating end of strings } c1=c2=-1; // make us fetch new code units continue; } else if(c1<0) { return -1; // string 1 ends before string 2 } else if(c2<0) { return 1; // string 2 ends before string 1 } // c1!=c2 && c1>=0 && c2>=0 // get complete code points for c1, c2 for lookups if either is a surrogate cp1=c1; if(UTF_IS_SURROGATE(c1)) { UChar c; if(UTF_IS_SURROGATE_FIRST(c1)) { if(s1!=limit1 && UTF_IS_TRAIL(c=*s1)) { // advance ++s1; only below if cp1 decomposes/case-folds cp1=UTF16_GET_PAIR_VALUE(c1, c); } } else /* isTrail(c1) */ { if(start1<=(s1-2) && UTF_IS_LEAD(c=*(s1-2))) { cp1=UTF16_GET_PAIR_VALUE(c, c1); } } } cp2=c2; if(UTF_IS_SURROGATE(c2)) { UChar c; if(UTF_IS_SURROGATE_FIRST(c2)) { if(s2!=limit2 && UTF_IS_TRAIL(c=*s2)) { // advance ++s2; only below if cp2 decomposes/case-folds cp2=UTF16_GET_PAIR_VALUE(c2, c); } } else /* isTrail(c2) */ { if(start2<=(s2-2) && UTF_IS_LEAD(c=*(s2-2))) { cp2=UTF16_GET_PAIR_VALUE(c, c2); } } } // go down one level for each string // continue with the main loop as soon as there is a real change if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && (length=u_internalFoldCase((UChar32)cp1, fold1, 32, options))>=0 ) { // cp1 case-folds to fold1[length] if(UTF_IS_SURROGATE(c1)) { if(UTF_IS_SURROGATE_FIRST(c1)) { // advance beyond source surrogate pair if it case-folds ++s1; } else /* isTrail(c1) */ { // we got a supplementary code point when hitting its trail surrogate, // therefore the lead surrogate must have been the same as in the other string; // compare this decomposition with the lead surrogate in the other string // remember that this simulates bulk text replacement: // the decomposition would replace the entire code point --s2; c2=*(s2-1); } } // push current level pointers stack1[0].start=start1; stack1[0].s=s1; stack1[0].limit=limit1; ++level1; // set next level pointers to case folding start1=s1=fold1; limit1=fold1+length; // get ready to read from decomposition, continue with loop c1=-1; continue; } if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && (length=u_internalFoldCase((UChar32)cp2, fold2, 32, options))>=0 ) { // cp2 case-folds to fold2[length] if(UTF_IS_SURROGATE(c2)) { if(UTF_IS_SURROGATE_FIRST(c2)) { // advance beyond source surrogate pair if it case-folds ++s2; } else /* isTrail(c2) */ { // we got a supplementary code point when hitting its trail surrogate, // therefore the lead surrogate must have been the same as in the other string; // compare this decomposition with the lead surrogate in the other string // remember that this simulates bulk text replacement: // the decomposition would replace the entire code point --s1; c1=*(s1-1); } } // push current level pointers stack2[0].start=start2; stack2[0].s=s2; stack2[0].limit=limit2; ++level2; // set next level pointers to case folding start2=s2=fold2; limit2=fold2+length; // get ready to read from decomposition, continue with loop c2=-1; continue; } if( level1<2 && (options&_COMPARE_EQUIV) && 0!=(p=_decompose((UChar32)cp1, decomp1, length)) ) { // cp1 decomposes into p[length] if(UTF_IS_SURROGATE(c1)) { if(UTF_IS_SURROGATE_FIRST(c1)) { // advance beyond source surrogate pair if it decomposes ++s1; } else /* isTrail(c1) */ { // we got a supplementary code point when hitting its trail surrogate, // therefore the lead surrogate must have been the same as in the other string; // compare this decomposition with the lead surrogate in the other string // remember that this simulates bulk text replacement: // the decomposition would replace the entire code point --s2; c2=*(s2-1); } } // push current level pointers stack1[level1].start=start1; stack1[level1].s=s1; stack1[level1].limit=limit1; ++level1; // set empty intermediate level if skipped if(level1<2) { stack1[level1++].start=NULL; } // set next level pointers to decomposition start1=s1=p; limit1=p+length; // get ready to read from decomposition, continue with loop c1=-1; continue; } if( level2<2 && (options&_COMPARE_EQUIV) && 0!=(p=_decompose((UChar32)cp2, decomp2, length)) ) { // cp2 decomposes into p[length] if(UTF_IS_SURROGATE(c2)) { if(UTF_IS_SURROGATE_FIRST(c2)) { // advance beyond source surrogate pair if it decomposes ++s2; } else /* isTrail(c2) */ { // we got a supplementary code point when hitting its trail surrogate, // therefore the lead surrogate must have been the same as in the other string; // compare this decomposition with the lead surrogate in the other string // remember that this simulates bulk text replacement: // the decomposition would replace the entire code point --s1; c1=*(s1-1); } } // push current level pointers stack2[level2].start=start2; stack2[level2].s=s2; stack2[level2].limit=limit2; ++level2; // set empty intermediate level if skipped if(level2<2) { stack2[level2++].start=NULL; } // set next level pointers to decomposition start2=s2=p; limit2=p+length; // get ready to read from decomposition, continue with loop c2=-1; continue; } // no decomposition/case folding, max level for both sides: // return difference result // code point order comparison must not just return cp1-cp2 // because when single surrogates are present then the surrogate pairs // that formed cp1 and cp2 may be from different string indexes // example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units // c1=d800 cp1=10001 c2=dc00 cp2=10000 // cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } // therefore, use same fix-up as in ustring.c/uprv_strCompare() // except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ // so we have slightly different pointer/start/limit comparisons here if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ if( (c1<=0xdbff && s1!=limit1 && UTF_IS_TRAIL(*s1)) || (UTF_IS_TRAIL(c1) && start1!=(s1-1) && UTF_IS_LEAD(*(s1-2))) ) { /* part of a surrogate pair, leave >=d800 */ } else { /* BMP code point - may be surrogate code point - make =d800 */ } else { /* BMP code point - may be surrogate code point - make >UNORM_COMPARE_NORM_OPTIONS_SHIFT), *pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } d1=d2=0; options|=_COMPARE_EQUIV; result=0; /* * UAX #21 Case Mappings, as fixed for Unicode version 4 * (see Jitterbug 2021), defines a canonical caseless match as * * A string X is a canonical caseless match * for a string Y if and only if * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) * * For better performance, we check for FCD (or let the caller tell us that * both strings are in FCD) for the inner normalization. * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that * case-folding preserves the FCD-ness of a string. * The outer normalization is then only performed by unorm_cmpEquivFold() * when there is a difference. * * Exception: When using the Turkic case-folding option, we do perform * full NFD first. This is because in the Turkic case precomposed characters * with 0049 capital I or 0069 small i fold differently whether they * are first decomposed or not, so an FCD check - a check only for * canonical order - is not sufficient. */ if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { mode=UNORM_NFD; options&=~UNORM_INPUT_IS_FCD; } else { mode=UNORM_FCD; } if(!(options&UNORM_INPUT_IS_FCD)) { int32_t _len1, _len2; UBool isFCD1, isFCD2; // check if s1 and/or s2 fulfill the FCD conditions isFCD1= UNORM_YES==_quickCheck(s1, length1, mode, TRUE, nx, pErrorCode); isFCD2= UNORM_YES==_quickCheck(s2, length2, mode, TRUE, nx, pErrorCode); if(U_FAILURE(*pErrorCode)) { return 0; } /* * ICU 2.4 had a further optimization: * If both strings were not in FCD, then they were both NFD'ed, * and the _COMPARE_EQUIV option was turned off. * It is not entirely clear that this is valid with the current * definition of the canonical caseless match. * Therefore, ICU 2.6 removes that optimization. */ if(!isFCD1) { _len1=unorm_internalNormalize(fcd1, LENGTHOF(fcd1), s1, length1, mode, nx, pErrorCode); if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) { s1=fcd1; } else { d1=(UChar *)uprv_malloc(_len1*U_SIZEOF_UCHAR); if(d1==0) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; goto cleanup; } *pErrorCode=U_ZERO_ERROR; _len1=unorm_internalNormalize(d1, _len1, s1, length1, mode, nx, pErrorCode); if(U_FAILURE(*pErrorCode)) { goto cleanup; } s1=d1; } length1=_len1; } if(!isFCD2) { _len2=unorm_internalNormalize(fcd2, LENGTHOF(fcd2), s2, length2, mode, nx, pErrorCode); if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) { s2=fcd2; } else { d2=(UChar *)uprv_malloc(_len2*U_SIZEOF_UCHAR); if(d2==0) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; goto cleanup; } *pErrorCode=U_ZERO_ERROR; _len2=unorm_internalNormalize(d2, _len2, s2, length2, mode, nx, pErrorCode); if(U_FAILURE(*pErrorCode)) { goto cleanup; } s2=d2; } length2=_len2; } } if(U_SUCCESS(*pErrorCode)) { result=unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); } cleanup: if(d1!=0) { uprv_free(d1); } if(d2!=0) { uprv_free(d2); } return result; } #endif /* #if !UCONFIG_NO_NORMALIZATION */