/* ******************************************************************************* * * Copyright (C) 2000-2010, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: genuca.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created at the end of XX century * created by: Vladimir Weinstein * * This program reads the Franctional UCA table and generates * internal format for UCA table as well as inverse UCA table. * It then writes binary files containing the data: ucadata.dat * & invuca.dat * Change history: * 02/23/2001 grhoten Made it into a tool * 02/23/2001 weiv Moved element & table handling code to i18n * 05/09/2001 weiv Case bits are now in the CEs, not in front * 10/26/2010 sgill Support for reordering codes */ #include "unicode/utypes.h" #include "unicode/putil.h" #include "unicode/udata.h" #include "unicode/uclean.h" #include "unicode/uscript.h" #include "unicode/ustring.h" #include "ucol_bld.h" #include "ucol_imp.h" #include "genuca.h" #include "uoptions.h" #include "uparse.h" #include "toolutil.h" #include "unewdata.h" #include "cstring.h" #include "cmemory.h" #include #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) // script reordering structures typedef struct { uint16_t reorderCode; uint16_t offset; } ReorderIndex; typedef struct { uint16_t LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH; uint16_t* LEAD_BYTE_TO_SCRIPTS_INDEX; uint16_t LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH; uint16_t* LEAD_BYTE_TO_SCRIPTS_DATA; uint16_t LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET; uint16_t SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH; ReorderIndex* SCRIPT_TO_LEAD_BYTES_INDEX; uint16_t SCRIPT_TO_LEAD_BYTES_INDEX_COUNT; uint16_t SCRIPT_TO_LEAD_BYTES_DATA_LENGTH; uint16_t* SCRIPT_TO_LEAD_BYTES_DATA; uint16_t SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; } LeadByteConstants; int ReorderIndexComparer(const void *a, const void *b) { return reinterpret_cast(a)->reorderCode - reinterpret_cast(b)->reorderCode; } /* * Global - verbosity */ UBool VERBOSE = FALSE; static UVersionInfo UCAVersion; #if UCONFIG_NO_COLLATION /* dummy UDataInfo cf. udata.h */ static UDataInfo dummyDataInfo = { sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, U_SIZEOF_UCHAR, 0, { 0, 0, 0, 0 }, /* dummy dataFormat */ { 0, 0, 0, 0 }, /* dummy formatVersion */ { 0, 0, 0, 0 } /* dummy dataVersion */ }; #else static const UDataInfo ucaDataInfo={ sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, sizeof(UChar), 0, {UCA_DATA_FORMAT_0, UCA_DATA_FORMAT_1, UCA_DATA_FORMAT_2, UCA_DATA_FORMAT_3}, /* dataFormat="UCol" */ /* 03/26/2002 bumped up version since format has changed */ /* 09/16/2002 bumped up version since we went from UColAttributeValue */ /* to int32_t in UColOptionSet */ /* 05/13/2003 This one also updated since we added UCA and UCD versions */ /* to header */ /* 09/11/2003 Adding information required by data swapper */ {UCA_FORMAT_VERSION_0, UCA_FORMAT_VERSION_1, UCA_FORMAT_VERSION_2, UCA_FORMAT_VERSION_3}, /* formatVersion */ {0, 0, 0, 0} /* dataVersion = Unicode Version*/ }; static const UDataInfo invUcaDataInfo={ sizeof(UDataInfo), 0, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, sizeof(UChar), 0, {INVUCA_DATA_FORMAT_0, INVUCA_DATA_FORMAT_1, INVUCA_DATA_FORMAT_2, INVUCA_DATA_FORMAT_3}, /* dataFormat="InvC" */ /* 03/26/2002 bumped up version since format has changed */ /* 04/29/2003 2.1 format - we have added UCA version to header */ {INVUCA_FORMAT_VERSION_0, INVUCA_FORMAT_VERSION_1, INVUCA_FORMAT_VERSION_2, INVUCA_FORMAT_VERSION_3}, /* formatVersion */ {0, 0, 0, 0} /* dataVersion = Unicode Version*/ }; UCAElements le; // returns number of characters read int32_t readElement(char **from, char *to, char separator, UErrorCode *status) { if(U_FAILURE(*status)) { return 0; } char buffer[1024]; int32_t i = 0; while(**from != separator) { if (**from == '\0') { return 0; } if(**from != ' ') { *(buffer+i++) = **from; } (*from)++; } (*from)++; *(buffer + i) = 0; //*to = (char *)malloc(strlen(buffer)+1); strcpy(to, buffer); return i; } int32_t skipUntilWhiteSpace(char **from, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } int32_t count = 0; while (**from != ' ' && **from != '\t' && **from != '\0') { (*from)++; count++; } return count; } int32_t skipWhiteSpace(char **from, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } int32_t count = 0; while (**from == ' ' || **from == '\t') { (*from)++; count++; } return count; } uint32_t getSingleCEValue(char *primary, char *secondary, char *tertiary, UErrorCode *status) { if(U_FAILURE(*status)) { return 0; } uint32_t value = 0; char primsave = '\0'; char secsave = '\0'; char tersave = '\0'; char *primend = primary+4; if(strlen(primary) > 4) { primsave = *primend; *primend = '\0'; } char *secend = secondary+2; if(strlen(secondary) > 2) { secsave = *secend; *secend = '\0'; } char *terend = tertiary+2; if(strlen(tertiary) > 2) { tersave = *terend; *terend = '\0'; } uint32_t primvalue = (uint32_t)((*primary!='\0')?strtoul(primary, &primend, 16):0); uint32_t secvalue = (uint32_t)((*secondary!='\0')?strtoul(secondary, &secend, 16):0); uint32_t tervalue = (uint32_t)((*tertiary!='\0')?strtoul(tertiary, &terend, 16):0); if(primvalue <= 0xFF) { primvalue <<= 8; } value = ((primvalue<CEs[1])) { //fprintf(stdout, "+"); } inversePos++; inverseTable[inversePos][0] = element->CEs[0]; if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) { inverseTable[inversePos][1] = element->CEs[1]; } else { inverseTable[inversePos][1] = 0; } if(element->cSize < 2) { inverseTable[inversePos][2] = element->cPoints[0]; } else { /* add a new store of cruft */ inverseTable[inversePos][2] = ((element->cSize+1) << UCOL_INV_SHIFTVALUE) | sContPos; memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize+1; } } static void insertInverse(UCAElements *element, uint32_t position, UErrorCode *status) { if(U_FAILURE(*status)) { return; } if(VERBOSE && isContinuation(element->CEs[1])) { //fprintf(stdout, "+"); } if(position <= inversePos) { /*move stuff around */ uint32_t amountToMove = (inversePos - position+1)*sizeof(inverseTable[0]); uprv_memmove(inverseTable[position+1], inverseTable[position], amountToMove); } inverseTable[position][0] = element->CEs[0]; if(element->noOfCEs > 1 && isContinuation(element->CEs[1])) { inverseTable[position][1] = element->CEs[1]; } else { inverseTable[position][1] = 0; } if(element->cSize < 2) { inverseTable[position][2] = element->cPoints[0]; } else { /* add a new store of cruft */ inverseTable[position][2] = ((element->cSize+1) << UCOL_INV_SHIFTVALUE) | sContPos; memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize+1; } inversePos++; } static void addToExistingInverse(UCAElements *element, uint32_t position, UErrorCode *status) { if(U_FAILURE(*status)) { return; } if((inverseTable[position][2] & UCOL_INV_SIZEMASK) == 0) { /* single element, have to make new extension place and put both guys there */ stringContinue[sContPos] = (UChar)inverseTable[position][2]; inverseTable[position][2] = ((element->cSize+3) << UCOL_INV_SHIFTVALUE) | sContPos; sContPos++; stringContinue[sContPos++] = 0xFFFF; memcpy(stringContinue+sContPos, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize; stringContinue[sContPos++] = 0xFFFE; } else { /* adding to the already existing continuing table */ uint32_t contIndex = inverseTable[position][2] & UCOL_INV_OFFSETMASK; uint32_t contSize = (inverseTable[position][2] & UCOL_INV_SIZEMASK) >> UCOL_INV_SHIFTVALUE; if(contIndex+contSize < sContPos) { /*fprintf(stderr, ".", sContPos, contIndex+contSize);*/ memcpy(stringContinue+contIndex+contSize+element->cSize+1, stringContinue+contIndex+contSize, (element->cSize+1)*sizeof(UChar)); } stringContinue[contIndex+contSize-1] = 0xFFFF; memcpy(stringContinue+contIndex+contSize, element->cPoints, element->cSize*sizeof(UChar)); sContPos += element->cSize+1; stringContinue[contIndex+contSize+element->cSize] = 0xFFFE; inverseTable[position][2] = ((contSize+element->cSize+1) << UCOL_INV_SHIFTVALUE) | contIndex; } } /* * Takes two CEs (lead and continuation) and * compares them as CEs should be compared: * primary vs. primary, secondary vs. secondary * tertiary vs. tertiary */ static int32_t compareCEs(uint32_t *source, uint32_t *target) { uint32_t s1 = source[0], s2, t1 = target[0], t2; if(isContinuation(source[1])) { s2 = source[1]; } else { s2 = 0; } if(isContinuation(target[1])) { t2 = target[1]; } else { t2 = 0; } uint32_t s = 0, t = 0; if(s1 == t1 && s2 == t2) { return 0; } s = (s1 & 0xFFFF0000)|((s2 & 0xFFFF0000)>>16); t = (t1 & 0xFFFF0000)|((t2 & 0xFFFF0000)>>16); if(s < t) { return -1; } else if(s > t) { return 1; } else { s = (s1 & 0x0000FF00) | (s2 & 0x0000FF00)>>8; t = (t1 & 0x0000FF00) | (t2 & 0x0000FF00)>>8; if(s < t) { return -1; } else if(s > t) { return 1; } else { s = (s1 & 0x000000FF)<<8 | (s2 & 0x000000FF); t = (t1 & 0x000000FF)<<8 | (t2 & 0x000000FF); if(s < t) { return -1; } else { return 1; } } } } static uint32_t addToInverse(UCAElements *element, UErrorCode *status) { uint32_t position = inversePos; uint32_t saveElement = element->CEs[0]; int32_t compResult = 0; element->CEs[0] &= 0xFFFFFF3F; if(element->noOfCEs == 1) { element->CEs[1] = 0; } if(inversePos == 0) { inverseTable[0][0] = inverseTable[0][1] = inverseTable[0][2] = 0; addNewInverse(element, status); } else if(compareCEs(inverseTable[inversePos], element->CEs) > 0) { while((compResult = compareCEs(inverseTable[--position], element->CEs)) > 0); if(VERBOSE) { fprintf(stdout, "p:%u ", (int)position); } if(compResult == 0) { addToExistingInverse(element, position, status); } else { insertInverse(element, position+1, status); } } else if(compareCEs(inverseTable[inversePos], element->CEs) == 0) { addToExistingInverse(element, inversePos, status); } else { addNewInverse(element, status); } element->CEs[0] = saveElement; if(VERBOSE) { fprintf(stdout, "+"); } return inversePos; } static InverseUCATableHeader *assembleInverseTable(UErrorCode *status) { InverseUCATableHeader *result = NULL; uint32_t headerByteSize = paddedsize(sizeof(InverseUCATableHeader)); uint32_t inverseTableByteSize = (inversePos+2)*sizeof(uint32_t)*3; uint32_t contsByteSize = sContPos * sizeof(UChar); uint32_t i = 0; result = (InverseUCATableHeader *)uprv_malloc(headerByteSize + inverseTableByteSize + contsByteSize); uprv_memset(result, 0, headerByteSize + inverseTableByteSize + contsByteSize); if(result != NULL) { result->byteSize = headerByteSize + inverseTableByteSize + contsByteSize; inversePos++; inverseTable[inversePos][0] = 0xFFFFFFFF; inverseTable[inversePos][1] = 0xFFFFFFFF; inverseTable[inversePos][2] = 0x0000FFFF; inversePos++; for(i = 2; i 0) { fprintf(stderr, "Error at %i: %08X & %08X\n", (int)i, (int)inverseTable[i-1][0], (int)inverseTable[i][0]); } else if(inverseTable[i-1][0] == inverseTable[i][0] && !(inverseTable[i-1][1] < inverseTable[i][1])) { fprintf(stderr, "Continuation error at %i: %08X %08X & %08X %08X\n", (int)i, (int)inverseTable[i-1][0], (int)inverseTable[i-1][1], (int)inverseTable[i][0], (int)inverseTable[i][1]); } } result->tableSize = inversePos; result->contsSize = sContPos; result->table = headerByteSize; result->conts = headerByteSize + inverseTableByteSize; memcpy((uint8_t *)result + result->table, inverseTable, inverseTableByteSize); memcpy((uint8_t *)result + result->conts, stringContinue, contsByteSize); } else { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } return result; } static void writeOutInverseData(InverseUCATableHeader *data, const char *outputDir, const char *copyright, UErrorCode *status) { UNewDataMemory *pData; long dataLength; UDataInfo invUcaInfo; uprv_memcpy(&invUcaInfo, &invUcaDataInfo, sizeof(UDataInfo)); u_getUnicodeVersion(invUcaInfo.dataVersion); pData=udata_create(outputDir, INVC_DATA_TYPE, INVC_DATA_NAME, &invUcaInfo, copyright, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: unable to create %s"INVC_DATA_NAME", error %s\n", outputDir, u_errorName(*status)); return; } /* write the data to the file */ if (VERBOSE) { fprintf(stdout, "Writing out inverse UCA table: %s%c%s.%s\n", outputDir, U_FILE_SEP_CHAR, INVC_DATA_NAME, INVC_DATA_TYPE); } udata_writeBlock(pData, data, data->byteSize); /* finish up */ dataLength=udata_finish(pData, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: error %d writing the output file\n", *status); return; } } static int32_t hex2num(char hex) { if(hex>='0' && hex <='9') { return hex-'0'; } else if(hex>='a' && hex<='f') { return hex-'a'+10; } else if(hex>='A' && hex<='F') { return hex-'A'+10; } else { return 0; } } // static char* CHARACTER_CATEGORY_REORDER_CODES[] = { // "Zs", "Nd", "Sc" // }; // static const uint16_t CHARACTER_CATEGORY_REORDER_CODE_OFFSET = 0x1000; // static uint16_t CHARACTER_CATEGORY_REORDER_CODES_VALUE[] = { // U_SPACE_SEPARATOR + CHARACTER_CATEGORY_REORDER_CODE_OFFSET, // U_DECIMAL_DIGIT_NUMBER + CHARACTER_CATEGORY_REORDER_CODE_OFFSET, // U_CURRENCY_SYMBOL + CHARACTER_CATEGORY_REORDER_CODE_OFFSET // }; int32_t getReorderCode(const char* name, int32_t* fillIn, int32_t capacity, UErrorCode *err) { if(U_FAILURE(*err)) { return 0; } if (capacity < 1) { return 0; } int32_t code = ucol_findReorderingEntry(name); if (code != USCRIPT_INVALID_CODE) { *fillIn = code; return 1; } int32_t length = uscript_getCode(name, reinterpret_cast(fillIn), capacity, err); return length; } UCAElements *readAnElement(FILE *data, tempUCATable *t, UCAConstants *consts, LeadByteConstants *leadByteConstants, UErrorCode *status) { static int itemsToDataBlock = 0; static int scriptDataWritten = 0; char buffer[2048], primary[100], secondary[100], tertiary[100]; UChar uBuffer[2048]; UChar uBuffer2[2048]; UChar leadByte[100], scriptCode[100]; int32_t i = 0; unsigned int theValue; char *pointer = NULL; char *commentStart = NULL; char *startCodePoint = NULL; char *endCodePoint = NULL; char *result = fgets(buffer, 2048, data); int32_t buflen = (int32_t)uprv_strlen(buffer); if(U_FAILURE(*status)) { return 0; } *primary = *secondary = *tertiary = '\0'; *leadByte = *scriptCode = '\0'; if(result == NULL) { if(feof(data)) { return NULL; } else { fprintf(stderr, "empty line but no EOF!\n"); *status = U_INVALID_FORMAT_ERROR; return NULL; } } while(buflen>0 && (buffer[buflen-1] == '\r' || buffer[buflen-1] == '\n')) { buffer[--buflen] = 0; } if(buffer[0] == 0 || buffer[0] == '#') { return NULL; // just a comment, skip whole line } UCAElements *element = ≤ memset(element, 0, sizeof(*element)); enum ActionType { READCE, READHEX1, READHEX2, READUCAVERSION, READLEADBYTETOSCRIPTS, READSCRIPTTOLEADBYTES, IGNORE, }; // Directives. if(buffer[0] == '[') { uint32_t cnt = 0; static const struct { char name[128]; uint32_t *what; ActionType what_to_do; } vt[] = { {"[first tertiary ignorable", consts->UCA_FIRST_TERTIARY_IGNORABLE, READCE}, {"[last tertiary ignorable", consts->UCA_LAST_TERTIARY_IGNORABLE, READCE}, {"[first secondary ignorable", consts->UCA_FIRST_SECONDARY_IGNORABLE, READCE}, {"[last secondary ignorable", consts->UCA_LAST_SECONDARY_IGNORABLE, READCE}, {"[first primary ignorable", consts->UCA_FIRST_PRIMARY_IGNORABLE, READCE}, {"[last primary ignorable", consts->UCA_LAST_PRIMARY_IGNORABLE, READCE}, {"[first variable", consts->UCA_FIRST_VARIABLE, READCE}, {"[last variable", consts->UCA_LAST_VARIABLE, READCE}, {"[first regular", consts->UCA_FIRST_NON_VARIABLE, READCE}, {"[last regular", consts->UCA_LAST_NON_VARIABLE, READCE}, {"[first implicit", consts->UCA_FIRST_IMPLICIT, READCE}, {"[last implicit", consts->UCA_LAST_IMPLICIT, READCE}, {"[first trailing", consts->UCA_FIRST_TRAILING, READCE}, {"[last trailing", consts->UCA_LAST_TRAILING, READCE}, {"[fixed top", &consts->UCA_PRIMARY_TOP_MIN, READHEX1}, {"[fixed first implicit byte", &consts->UCA_PRIMARY_IMPLICIT_MIN, READHEX1}, {"[fixed last implicit byte", &consts->UCA_PRIMARY_IMPLICIT_MAX, READHEX1}, {"[fixed first trail byte", &consts->UCA_PRIMARY_TRAILING_MIN, READHEX1}, {"[fixed last trail byte", &consts->UCA_PRIMARY_TRAILING_MAX, READHEX1}, {"[fixed first special byte", &consts->UCA_PRIMARY_SPECIAL_MIN, READHEX1}, {"[fixed last special byte", &consts->UCA_PRIMARY_SPECIAL_MAX, READHEX1}, {"[variable top = ", &t->options->variableTopValue, READHEX2}, {"[UCA version = ", NULL, READUCAVERSION}, {"[top_byte\t", NULL, READLEADBYTETOSCRIPTS}, {"[reorderingTokens\t", NULL, READSCRIPTTOLEADBYTES}, {"[categories\t", NULL, IGNORE}, {"[first tertiary in secondary non-ignorable", NULL, IGNORE}, {"[last tertiary in secondary non-ignorable", NULL, IGNORE}, {"[first secondary in primary non-ignorable", NULL, IGNORE}, {"[last secondary in primary non-ignorable", NULL, IGNORE}, }; for (cnt = 0; cntsizePrim[0]=readElement(&pointer, primary, ',', status) / 2; element->sizeSec[0]=readElement(&pointer, secondary, ',', status) / 2; element->sizeTer[0]=readElement(&pointer, tertiary, ']', status) / 2; vt[cnt].what[0] = getSingleCEValue(primary, secondary, tertiary, status); if(element->sizePrim[0] > 2 || element->sizeSec[0] > 1 || element->sizeTer[0] > 1) { uint32_t CEi = 1; uint32_t value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ if(2*CEisizePrim[i]) { value |= ((hex2num(*(primary+4*CEi))&0xF)<<28); value |= ((hex2num(*(primary+4*CEi+1))&0xF)<<24); } if(2*CEi+1sizePrim[i]) { value |= ((hex2num(*(primary+4*CEi+2))&0xF)<<20); value |= ((hex2num(*(primary+4*CEi+3))&0xF)<<16); } if(CEisizeSec[i]) { value |= ((hex2num(*(secondary+2*CEi))&0xF)<<12); value |= ((hex2num(*(secondary+2*CEi+1))&0xF)<<8); } if(CEisizeTer[i]) { value |= ((hex2num(*(tertiary+2*CEi))&0x3)<<4); value |= (hex2num(*(tertiary+2*CEi+1))&0xF); } CEi++; vt[cnt].what[1] = value; //element->CEs[CEindex++] = value; } else { vt[cnt].what[1] = 0; } } else { fprintf(stderr, "Failed to read a CE from line %s\n", buffer); } } else if (what_to_do == READUCAVERSION) { //vt[cnt].what_to_do == READUCAVERSION u_versionFromString(UCAVersion, buffer+vtLen); if(VERBOSE) { fprintf(stdout, "UCA version [%hu.%hu.%hu.%hu]\n", UCAVersion[0], UCAVersion[1], UCAVersion[2], UCAVersion[3]); } } else if (what_to_do == READLEADBYTETOSCRIPTS) { //vt[cnt].what_to_do == READLEADBYTETOSCRIPTS pointer = buffer + vtLen; uint16_t leadByte = (hex2num(*pointer++) * 16) + hex2num(*pointer++); //fprintf(stdout, "~~~~ processing lead byte = %02x\n", leadByte); if (leadByte >= leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH) { fprintf(stderr, "Lead byte larger than allocated table!"); // set status and return *status = U_INTERNAL_PROGRAM_ERROR; return NULL; } skipWhiteSpace(&pointer, status); int32_t reorderCodeArray[100]; uint32_t reorderCodeArrayCount = 0; char scriptName[100]; int32_t elementLength = 0; while ((elementLength = readElement(&pointer, scriptName, ' ', status)) > 0) { if (scriptName[0] == ']') { break; } // TODO: fix the FractionalUCA data and then the parsing code if (strcmp(scriptName, "IMPLICIT") == 0) { strcpy(scriptName, "Hani"); } int32_t reorderCodeCount = getReorderCode(scriptName, &reorderCodeArray[reorderCodeArrayCount], sizeof(reorderCodeArray) / sizeof(reorderCodeArray[0]) - reorderCodeArrayCount, status); //fprintf(stdout, "\treorderCodeCount = %d, status = %x\n", reorderCodeCount, status); reorderCodeArrayCount += reorderCodeCount; if (reorderCodeArrayCount > sizeof(reorderCodeArray) / sizeof(reorderCodeArray[0])) { fprintf(stdout, "reorder code array count is greater than allocated size!"); *status = U_INTERNAL_PROGRAM_ERROR; return NULL; } } //fprintf(stdout, "reorderCodeArrayCount = %d\n", reorderCodeArrayCount); switch (reorderCodeArrayCount) { case 0: leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte] = 0; break; case 1: // TODO = move 0x8000 into defined constant leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte] = 0x8000 | reorderCodeArray[0]; break; default: if (reorderCodeArrayCount + leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET > leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH) { // Error condition } leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte] = leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET; leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA[leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET++] = reorderCodeArrayCount; for (int reorderCodeIndex = 0; reorderCodeIndex < reorderCodeArrayCount; reorderCodeIndex++) { leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA[leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET++] = reorderCodeArray[reorderCodeIndex]; } } } else if (what_to_do == READSCRIPTTOLEADBYTES) { //vt[cnt].what_to_do == READSCRIPTTOLEADBYTES uint16_t leadByteArray[100]; uint32_t leadByteArrayCount = 0; int32_t reorderCodeArray[100]; uint32_t reorderCodeArrayCount = 0; char scriptName[100]; pointer = buffer + vtLen; uint32_t scriptNameLength = readElement(&pointer, scriptName, '\t', status); int32_t reorderCodeCount = getReorderCode(scriptName, &reorderCodeArray[reorderCodeArrayCount], sizeof(reorderCodeArray) / sizeof(reorderCodeArray[0]), status); if (reorderCodeCount > 0 && reorderCodeArray[0] != USCRIPT_INVALID_CODE) { //fprintf(stdout, "^^^ processing reorder code = %04x (%s)\n", reorderCodeArray[0], scriptName); skipWhiteSpace(&pointer, status); int32_t elementLength = 0; char leadByteString[100]; while ((elementLength = readElement(&pointer, leadByteString, '=', status)) == 2) { //fprintf(stdout, "\tleadByteArrayCount = %d, elementLength = %d, leadByteString = %s\n", leadByteArrayCount, elementLength, leadByteString); uint32_t leadByte = (hex2num(leadByteString[0]) * 16) + hex2num(leadByteString[1]); leadByteArray[leadByteArrayCount++] = (uint16_t) leadByte; skipUntilWhiteSpace(&pointer, status); } if (leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT >= leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH) { //fprintf(stdout, "\tError condition\n"); //fprintf(stdout, "\tindex count = %d, total index size = %d\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT, sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX) / sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0])); // Error condition *status = U_INTERNAL_PROGRAM_ERROR; return NULL; } leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].reorderCode = reorderCodeArray[0]; //fprintf(stdout, "\tlead byte count = %d\n", leadByteArrayCount); //fprintf(stdout, "\tlead byte array = "); //for (int i = 0; i < leadByteArrayCount; i++) { // fprintf(stdout, "%02x, ", leadByteArray[i]); //} //fprintf(stdout, "\n"); switch (leadByteArrayCount) { case 0: leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset = 0; break; case 1: // TODO = move 0x8000 into defined constant //fprintf(stdout, "\t+++++ lead byte = &x\n", leadByteArray[0]); leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset = 0x8000 | leadByteArray[0]; break; default: //fprintf(stdout, "\t+++++ lead bytes written to data block - %d\n", itemsToDataBlock++); //fprintf(stdout, "\tlead bytes = "); //for (int i = 0; i < leadByteArrayCount; i++) { // fprintf(stdout, "%02x, ", leadByteArray[i]); //} //fprintf(stdout, "\n"); //fprintf(stdout, "\tBEFORE data bytes = "); //for (int i = 0; i < leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; i++) { // fprintf(stdout, "%02x, ", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[i]); //} //fprintf(stdout, "\n"); //fprintf(stdout, "\tdata offset = %d, data length = %d\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_LENGTH); if ((leadByteArrayCount + leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET) > leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_LENGTH) { //fprintf(stdout, "\tError condition\n"); // Error condition *status = U_INTERNAL_PROGRAM_ERROR; return NULL; } leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset = leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET++] = leadByteArrayCount; scriptDataWritten++; memcpy(&leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET], leadByteArray, leadByteArrayCount * sizeof(leadByteArray[0])); scriptDataWritten += leadByteArrayCount; //fprintf(stdout, "\tlead byte data written = %d\n", scriptDataWritten); //fprintf(stdout, "\tcurrentIndex.reorderCode = %04x, currentIndex.offset = %04x\n", // leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT.reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT.offset); leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET += leadByteArrayCount; //fprintf(stdout, "\tdata offset = %d\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET); //fprintf(stdout, "\tAFTER data bytes = "); //for (int i = 0; i < leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; i++) { // fprintf(stdout, "%02x, ", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[i]); //} //fprintf(stdout, "\n"); } //if (reorderCodeArray[0] >= 0x1000) { // fprintf(stdout, "@@@@ reorderCode = %x, offset = %x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT].offset); // for (int i = 0; i < leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET; i++) { // fprintf(stdout, "%02x, ", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[i]); // } // fprintf(stdout, "\n"); // } leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT++; } } return NULL; } } fprintf(stderr, "Warning: unrecognized option: %s\n", buffer); //*status = U_INVALID_FORMAT_ERROR; return NULL; } startCodePoint = buffer; endCodePoint = strchr(startCodePoint, ';'); if(endCodePoint == 0) { fprintf(stderr, "error - line with no code point!\n"); *status = U_INVALID_FORMAT_ERROR; /* No code point - could be an error, but probably only an empty line */ return NULL; } else { *(endCodePoint) = 0; } char *pipePointer = strchr(buffer, '|'); if (pipePointer != NULL) { // Read the prefix string which precedes the actual string. *pipePointer = 0; element->prefixSize = u_parseString(startCodePoint, element->prefixChars, LENGTHOF(element->prefixChars), NULL, status); if(U_FAILURE(*status)) { fprintf(stderr, "error - parsing of prefix \"%s\" failed: %s\n", startCodePoint, u_errorName(*status)); *status = U_INVALID_FORMAT_ERROR; return NULL; } element->prefix = element->prefixChars; startCodePoint = pipePointer + 1; } // Read the string which gets the CE(s) assigned. element->cSize = u_parseString(startCodePoint, element->uchars, LENGTHOF(element->uchars), NULL, status); if(U_FAILURE(*status)) { fprintf(stderr, "error - parsing of code point(s) \"%s\" failed: %s\n", startCodePoint, u_errorName(*status)); *status = U_INVALID_FORMAT_ERROR; return NULL; } element->cPoints = element->uchars; startCodePoint = endCodePoint+1; commentStart = strchr(startCodePoint, '#'); if(commentStart == NULL) { commentStart = strlen(startCodePoint) + startCodePoint; } i = 0; uint32_t CEindex = 0; element->noOfCEs = 0; for(;;) { endCodePoint = strchr(startCodePoint, ']'); if(endCodePoint == NULL || endCodePoint >= commentStart) { break; } pointer = strchr(startCodePoint, '['); pointer++; element->sizePrim[i]=readElement(&pointer, primary, ',', status) / 2; element->sizeSec[i]=readElement(&pointer, secondary, ',', status) / 2; element->sizeTer[i]=readElement(&pointer, tertiary, ']', status) / 2; /* I want to get the CEs entered right here, including continuation */ element->CEs[CEindex++] = getSingleCEValue(primary, secondary, tertiary, status); uint32_t CEi = 1; while(2*CEisizePrim[i] || CEisizeSec[i] || CEisizeTer[i]) { uint32_t value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ if(2*CEisizePrim[i]) { value |= ((hex2num(*(primary+4*CEi))&0xF)<<28); value |= ((hex2num(*(primary+4*CEi+1))&0xF)<<24); } if(2*CEi+1sizePrim[i]) { value |= ((hex2num(*(primary+4*CEi+2))&0xF)<<20); value |= ((hex2num(*(primary+4*CEi+3))&0xF)<<16); } if(CEisizeSec[i]) { value |= ((hex2num(*(secondary+2*CEi))&0xF)<<12); value |= ((hex2num(*(secondary+2*CEi+1))&0xF)<<8); } if(CEisizeTer[i]) { value |= ((hex2num(*(tertiary+2*CEi))&0x3)<<4); value |= (hex2num(*(tertiary+2*CEi+1))&0xF); } CEi++; element->CEs[CEindex++] = value; } startCodePoint = endCodePoint+1; i++; } element->noOfCEs = CEindex; #if 0 element->isThai = UCOL_ISTHAIPREVOWEL(element->cPoints[0]); #endif // we don't want any strange stuff after useful data! if (pointer == NULL) { /* huh? Did we get ']' without the '['? Pair your brackets! */ *status=U_INVALID_FORMAT_ERROR; } else { while(pointer < commentStart) { if(*pointer != ' ' && *pointer != '\t') { *status=U_INVALID_FORMAT_ERROR; break; } pointer++; } } if(element->cSize == 1 && element->cPoints[0] == 0xfffe) { // UCA 6.0 gives U+FFFE a special minimum weight using the // byte 02 which is the merge-sort-key separator and illegal for any // other characters. } else { // Rudimentary check for valid bytes in CE weights. // For a more comprehensive check see cintltst /tscoll/citertst/TestCEValidity for (i = 0; i < (int32_t)CEindex; ++i) { uint32_t value = element->CEs[i]; uint8_t bytes[4] = { (uint8_t)(value >> 24), (uint8_t)(value >> 16), (uint8_t)(value >> 8), (uint8_t)(value & UCOL_NEW_TERTIARYORDERMASK) }; for (int j = 0; j < 4; ++j) { if (0 != bytes[j] && bytes[j] < 3) { fprintf(stderr, "Warning: invalid UCA weight byte %02X for %s\n", bytes[j], buffer); return NULL; } } // Primary second bytes 03 and FF are compression terminators. if (!isContinuation(value) && (bytes[1] == 3 || bytes[1] == 0xFF)) { fprintf(stderr, "Warning: invalid UCA primary second weight byte %02X for %s\n", bytes[1], buffer); return NULL; } } } if(U_FAILURE(*status)) { fprintf(stderr, "problem putting stuff in hash table %s\n", u_errorName(*status)); *status = U_INTERNAL_PROGRAM_ERROR; return NULL; } return element; } void writeOutData(UCATableHeader *data, UCAConstants *consts, LeadByteConstants *leadByteConstants, UChar contractions[][3], uint32_t noOfcontractions, const char *outputDir, const char *copyright, UErrorCode *status) { if(U_FAILURE(*status)) { return; } uint32_t size = data->size; data->UCAConsts = data->size; data->size += paddedsize(sizeof(UCAConstants)); if(noOfcontractions != 0) { contractions[noOfcontractions][0] = 0; contractions[noOfcontractions][1] = 0; contractions[noOfcontractions][2] = 0; noOfcontractions++; data->contractionUCACombos = data->size; data->contractionUCACombosWidth = 3; data->contractionUCACombosSize = noOfcontractions; data->size += paddedsize((noOfcontractions*3*sizeof(UChar))); } data->scriptToLeadByte = data->size; //fprintf(stdout, "@@@@ script to lead byte offset = 0x%x (%d)\n", data->size, data->size); data->size += sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT) + // index table header leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT * sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0]) + // index table sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET) + // data table header leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET * sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA[0]); // data table data->leadByteToScript = data->size; //fprintf(stdout, "@@@@ lead byte to script offset = 0x%x (%d)\n", data->size, data->size); data->size += sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH) + // index table header leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[0]) + // index table sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET) + // data table header leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET * sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA[0]); // data table UNewDataMemory *pData; long dataLength; UDataInfo ucaInfo; uprv_memcpy(&ucaInfo, &ucaDataInfo, sizeof(UDataInfo)); u_getUnicodeVersion(ucaInfo.dataVersion); pData=udata_create(outputDir, UCA_DATA_TYPE, UCA_DATA_NAME, &ucaInfo, copyright, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: unable to create %s"UCA_DATA_NAME", error %s\n", outputDir, u_errorName(*status)); return; } /* write the data to the file */ if (VERBOSE) { fprintf(stdout, "Writing out UCA table: %s%c%s.%s\n", outputDir, U_FILE_SEP_CHAR, U_ICUDATA_NAME "_" UCA_DATA_NAME, UCA_DATA_TYPE); } udata_writeBlock(pData, data, size); // output the constants here udata_writeBlock(pData, consts, sizeof(UCAConstants)); if (VERBOSE) { fprintf(stdout, "first tertiary ignorable = %x %x\n", consts->UCA_FIRST_TERTIARY_IGNORABLE[0], consts->UCA_FIRST_TERTIARY_IGNORABLE[1]); fprintf(stdout, "last tertiary ignorable = %x %x\n", consts->UCA_LAST_TERTIARY_IGNORABLE[0], consts->UCA_LAST_TERTIARY_IGNORABLE[1]); fprintf(stdout, "first secondary ignorable = %x %x\n", consts->UCA_FIRST_SECONDARY_IGNORABLE[0], consts->UCA_FIRST_SECONDARY_IGNORABLE[1]); fprintf(stdout, "contractionUCACombosSize = %d\n", data->contractionUCACombosSize); fprintf(stdout, "contractionSize = %d\n", data->contractionSize); fprintf(stdout, "number of UCA contractions = %d\n", noOfcontractions); } if(noOfcontractions != 0) { udata_writeBlock(pData, contractions, noOfcontractions*3*sizeof(UChar)); udata_writePadding(pData, paddedsize((noOfcontractions*3*sizeof(UChar))) - noOfcontractions*3*sizeof(uint16_t)); } // output the script to lead bytes table here if (VERBOSE) { fprintf(stdout, "Writing Script to Lead Byte Data\n"); fprintf(stdout, "\tindex table size = %x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT); fprintf(stdout, "\tdata block size = %x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET); } udata_write16(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT); udata_write16(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET); // fprintf(stdout, "#### Script to Lead Byte Index Before Sort\n"); // for (int reorderCodeIndex = 0; reorderCodeIndex < leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT; reorderCodeIndex++) { // fprintf(stdout, "\t%04x = %04x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].offset); // } qsort(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT, sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0]), ReorderIndexComparer); udata_writeBlock(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT * sizeof(leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[0])); // fprintf(stdout, "#### Script to Lead Byte Index After Sort\n"); // for (int reorderCodeIndex = 0; reorderCodeIndex < leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX_COUNT; reorderCodeIndex++) { // fprintf(stdout, "\t%04x = %04x\n", leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].reorderCode, leadByteConstants->SCRIPT_TO_LEAD_BYTES_INDEX[reorderCodeIndex].offset); // } // write out the script to lead bytes data block udata_writeBlock(pData, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA, leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA_OFFSET * sizeof(*leadByteConstants->SCRIPT_TO_LEAD_BYTES_DATA)); if (VERBOSE) { fprintf(stdout, "Writing Lead Byte To Script Data\n"); fprintf(stdout, "\tindex table size = %x\n", leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH); fprintf(stdout, "\tdata block size = %x\n", leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET); } // output the header info udata_write16(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH); udata_write16(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET); // output the index table udata_writeBlock(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX)[0]); // for (int leadByte = 0; leadByte < leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH; leadByte++) { // fprintf(stdout, "\t%02x = %04x\n", leadByte, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_INDEX[leadByte]); // } // output the data udata_writeBlock(pData, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA, leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET * sizeof(*leadByteConstants->LEAD_BYTE_TO_SCRIPTS_DATA)); /* finish up */ dataLength=udata_finish(pData, status); if(U_FAILURE(*status)) { fprintf(stderr, "Error: error %d writing the output file\n", *status); return; } } enum { /* * Maximum number of UCA contractions we can store. * May need to be increased for a new Unicode version. */ MAX_UCA_CONTRACTION_CES=2048 }; static int32_t write_uca_table(const char *filename, const char *outputDir, const char *copyright, UErrorCode *status) { FILE *data = fopen(filename, "r"); if(data == NULL) { fprintf(stderr, "Couldn't open file: %s\n", filename); return -1; } uint32_t line = 0; UCAElements *element = NULL; UCATableHeader *myD = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader)); /* test for NULL */ if(myD == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; fclose(data); return 0; } uprv_memset(myD, 0, sizeof(UCATableHeader)); UColOptionSet *opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet)); /* test for NULL */ if(opts == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; uprv_free(myD); fclose(data); return 0; } uprv_memset(opts, 0, sizeof(UColOptionSet)); UChar contractionCEs[MAX_UCA_CONTRACTION_CES][3]; uprv_memset(contractionCEs, 0, sizeof(contractionCEs)); uint32_t noOfContractions = 0; UCAConstants consts; uprv_memset(&consts, 0, sizeof(consts)); #if 0 UCAConstants consts = { UCOL_RESET_TOP_VALUE, UCOL_FIRST_PRIMARY_IGNORABLE, UCOL_LAST_PRIMARY_IGNORABLE, UCOL_LAST_PRIMARY_IGNORABLE_CONT, UCOL_FIRST_SECONDARY_IGNORABLE, UCOL_LAST_SECONDARY_IGNORABLE, UCOL_FIRST_TERTIARY_IGNORABLE, UCOL_LAST_TERTIARY_IGNORABLE, UCOL_FIRST_VARIABLE, UCOL_LAST_VARIABLE, UCOL_FIRST_NON_VARIABLE, UCOL_LAST_NON_VARIABLE, UCOL_NEXT_TOP_VALUE, /* UCOL_NEXT_FIRST_PRIMARY_IGNORABLE, UCOL_NEXT_LAST_PRIMARY_IGNORABLE, UCOL_NEXT_FIRST_SECONDARY_IGNORABLE, UCOL_NEXT_LAST_SECONDARY_IGNORABLE, UCOL_NEXT_FIRST_TERTIARY_IGNORABLE, UCOL_NEXT_LAST_TERTIARY_IGNORABLE, UCOL_NEXT_FIRST_VARIABLE, UCOL_NEXT_LAST_VARIABLE, */ PRIMARY_IMPLICIT_MIN, PRIMARY_IMPLICIT_MAX }; #endif //fprintf(stdout, "Allocating LeadByteConstants\n"); LeadByteConstants leadByteConstants; uprv_memset(&leadByteConstants, 0x00, sizeof(LeadByteConstants)); leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH = 256; leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX = (ReorderIndex*) uprv_malloc(leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH * sizeof(ReorderIndex)); uprv_memset(leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX, 0x00, leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX_LENGTH * sizeof(ReorderIndex)); leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA_LENGTH = 1024; leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA = (uint16_t*) uprv_malloc(leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA_LENGTH * sizeof(uint16_t)); uprv_memset(leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA, 0x00, leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA_LENGTH * sizeof(uint16_t)); //fprintf(stdout, "\tFinished Allocating LeadByteConstants\n"); leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH = 256; leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX = (uint16_t*) uprv_malloc(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(uint16_t)); uprv_memset(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX, 0x8000 | USCRIPT_INVALID_CODE, leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX_LENGTH * sizeof(uint16_t)); leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH = 1024; leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_OFFSET = 1; // offset by 1 to leave zero location for those lead bytes with no reorder codes leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA = (uint16_t*) uprv_malloc(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH * sizeof(uint16_t)); uprv_memset(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA, 0x00, leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA_LENGTH * sizeof(uint16_t)); uprv_memset(inverseTable, 0xDA, sizeof(int32_t)*3*0xFFFF); opts->variableTopValue = 0; opts->strength = UCOL_TERTIARY; opts->frenchCollation = UCOL_OFF; opts->alternateHandling = UCOL_NON_IGNORABLE; /* attribute for handling variable elements*/ opts->caseFirst = UCOL_OFF; /* who goes first, lower case or uppercase */ opts->caseLevel = UCOL_OFF; /* do we have an extra case level */ opts->normalizationMode = UCOL_OFF; /* attribute for normalization */ opts->hiraganaQ = UCOL_OFF; /* attribute for JIS X 4061, used only in Japanese */ opts->numericCollation = UCOL_OFF; myD->jamoSpecial = FALSE; tempUCATable *t = uprv_uca_initTempTable(myD, opts, NULL, IMPLICIT_TAG, LEAD_SURROGATE_TAG, status); if(U_FAILURE(*status)) { fprintf(stderr, "Failed to init UCA temp table: %s\n", u_errorName(*status)); uprv_free(opts); uprv_free(myD); fclose(data); return -1; } // * set to zero struct { UChar32 start; UChar32 end; int32_t value; } ranges[] = { {0xAC00, 0xD7B0, UCOL_SPECIAL_FLAG | (HANGUL_SYLLABLE_TAG << 24) }, //0 HANGUL_SYLLABLE_TAG,/* AC00-D7AF*/ //{0xD800, 0xDC00, UCOL_SPECIAL_FLAG | (LEAD_SURROGATE_TAG << 24) }, //1 LEAD_SURROGATE_TAG, already set in utrie_open() /* D800-DBFF*/ {0xDC00, 0xE000, UCOL_SPECIAL_FLAG | (TRAIL_SURROGATE_TAG << 24) }, //2 TRAIL_SURROGATE DC00-DFFF // Now directly handled in the collation code by the swapCJK function. //{0x3400, 0x4DB6, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //3 CJK_IMPLICIT_TAG, /* 0x3400-0x4DB5*/ //{0x4E00, 0x9FA6, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //4 CJK_IMPLICIT_TAG, /* 0x4E00-0x9FA5*/ //{0xF900, 0xFA2E, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //5 CJK_IMPLICIT_TAG, /* 0xF900-0xFA2D*/ //{0x20000, 0x2A6D7, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //6 CJK_IMPLICIT_TAG, /* 0x20000-0x2A6D6*/ //{0x2F800, 0x2FA1E, UCOL_SPECIAL_FLAG | (CJK_IMPLICIT_TAG << 24) }, //7 CJK_IMPLICIT_TAG, /* 0x2F800-0x2FA1D*/ }; uint32_t i = 0; for(i = 0; imapping, ranges[i].start, ranges[i].end, ranges[i].value); */ utrie_setRange32(t->mapping, ranges[i].start, ranges[i].end, ranges[i].value, TRUE); } int32_t surrogateCount = 0; while(!feof(data)) { if(U_FAILURE(*status)) { fprintf(stderr, "Something returned an error %i (%s) while processing line %u of %s. Exiting...\n", *status, u_errorName(*status), (int)line, filename); exit(*status); } line++; if(VERBOSE) { fprintf(stdout, "%u ", (int)line); } element = readAnElement(data, t, &consts, &leadByteConstants, status); if(element != NULL) { // we have read the line, now do something sensible with the read data! // if element is a contraction, we want to add it to contractions if(element->cSize > 1 && element->cPoints[0] != 0xFDD0) { // this is a contraction if(UTF_IS_LEAD(element->cPoints[0]) && UTF_IS_TRAIL(element->cPoints[1]) && element->cSize == 2) { surrogateCount++; } else { if(noOfContractions>=MAX_UCA_CONTRACTION_CES) { fprintf(stderr, "\nMore than %d contractions. Please increase MAX_UCA_CONTRACTION_CES in genuca.cpp. " "Exiting...\n", (int)MAX_UCA_CONTRACTION_CES); exit(*status); } contractionCEs[noOfContractions][0] = element->cPoints[0]; contractionCEs[noOfContractions][1] = element->cPoints[1]; if(element->cSize > 2) { // the third one contractionCEs[noOfContractions][2] = element->cPoints[2]; } else { contractionCEs[noOfContractions][2] = 0; } noOfContractions++; } } else { // TODO (claireho): does this work? Need more tests // The following code is to handle the UCA pre-context rules // for L/l with middle dot. We share the structures for contractionCombos. // The format for pre-context character is // contractionCEs[0]: codepoint in element->cPoints[0] // contractionCEs[1]: '\0' to differentiate with contractions. // contractionCEs[2]: prefix char if (element->prefixSize>0) { if(element->cSize > 1 || element->prefixSize > 1) { fprintf(stderr, "\nCharacter with prefix, " "either too many characters or prefix too long.\n"); exit(*status); } if(noOfContractions>=MAX_UCA_CONTRACTION_CES) { fprintf(stderr, "\nMore than %d contractions. Please increase MAX_UCA_CONTRACTION_CES in genuca.cpp. " "Exiting...\n", (int)MAX_UCA_CONTRACTION_CES); exit(*status); } contractionCEs[noOfContractions][0]=element->cPoints[0]; contractionCEs[noOfContractions][1]='\0'; contractionCEs[noOfContractions][2]=element->prefixChars[0]; noOfContractions++; } } /* we're first adding to inverse, because addAnElement will reverse the order */ /* of code points and stuff... we don't want that to happen */ if((element->CEs[0] >> 24) != 2) { // Add every element except for the special minimum-weight character U+FFFE // which has 02 weights. // If we had 02 weights in the invuca table, then tailoring primary // after an ignorable would try to put a weight before 02 which is not valid. // We could fix this in a complicated way in the from-rule-string builder, // but omitting this special element from invuca is simple and effective. addToInverse(element, status); } if(!(element->cSize > 1 && element->cPoints[0] == 0xFDD0)) { uprv_uca_addAnElement(t, element, status); } } } if(UCAVersion[0] == 0 && UCAVersion[1] == 0 && UCAVersion[2] == 0 && UCAVersion[3] == 0) { fprintf(stderr, "UCA version not specified. Cannot create data file!\n"); uprv_uca_closeTempTable(t); uprv_free(opts); uprv_free(myD); fclose(data); return -1; } /* { uint32_t trieWord = utrie_get32(t->mapping, 0xDC01, NULL); }*/ if (VERBOSE) { fprintf(stdout, "\nLines read: %u\n", (int)line); fprintf(stdout, "Surrogate count: %i\n", (int)surrogateCount); fprintf(stdout, "Raw data breakdown:\n"); /*fprintf(stdout, "Compact array stage1 top: %i, stage2 top: %i\n", t->mapping->stage1Top, t->mapping->stage2Top);*/ fprintf(stdout, "Number of contractions: %u\n", (int)noOfContractions); fprintf(stdout, "Contraction image size: %u\n", (int)t->image->contractionSize); fprintf(stdout, "Expansions size: %i\n", (int)t->expansions->position); } /* produce canonical closure for table */ /* first set up constants for implicit calculation */ uprv_uca_initImplicitConstants(status); /* do the closure */ UnicodeSet closed; int32_t noOfClosures = uprv_uca_canonicalClosure(t, NULL, &closed, status); if(noOfClosures != 0) { fprintf(stderr, "Warning: %i canonical closures occured!\n", (int)noOfClosures); UnicodeString pattern; std::string utf8; closed.toPattern(pattern, TRUE).toUTF8String(utf8); fprintf(stderr, "UTF-8 pattern string: %s\n", utf8.c_str()); } /* test */ UCATableHeader *myData = uprv_uca_assembleTable(t, status); if (VERBOSE) { fprintf(stdout, "Compacted data breakdown:\n"); /*fprintf(stdout, "Compact array stage1 top: %i, stage2 top: %i\n", t->mapping->stage1Top, t->mapping->stage2Top);*/ fprintf(stdout, "Number of contractions: %u\n", (int)noOfContractions); fprintf(stdout, "Contraction image size: %u\n", (int)t->image->contractionSize); fprintf(stdout, "Expansions size: %i\n", (int)t->expansions->position); } if(U_FAILURE(*status)) { fprintf(stderr, "Error creating table: %s\n", u_errorName(*status)); uprv_uca_closeTempTable(t); uprv_free(opts); uprv_free(myD); fclose(data); return -1; } /* populate the version info struct with version info*/ myData->version[0] = UCOL_BUILDER_VERSION; myData->version[1] = UCAVersion[0]; myData->version[2] = UCAVersion[1]; myData->version[3] = UCAVersion[2]; /*TODO:The fractional rules version should be taken from FractionalUCA.txt*/ // Removed this macro. Instead, we use the fields below //myD->version[1] = UCOL_FRACTIONAL_UCA_VERSION; //myD->UCAVersion = UCAVersion; // out of FractionalUCA.txt uprv_memcpy(myData->UCAVersion, UCAVersion, sizeof(UVersionInfo)); u_getUnicodeVersion(myData->UCDVersion); writeOutData(myData, &consts, &leadByteConstants, contractionCEs, noOfContractions, outputDir, copyright, status); InverseUCATableHeader *inverse = assembleInverseTable(status); uprv_memcpy(inverse->UCAVersion, UCAVersion, sizeof(UVersionInfo)); writeOutInverseData(inverse, outputDir, copyright, status); uprv_uca_closeTempTable(t); uprv_free(myD); uprv_free(opts); uprv_free(myData); uprv_free(inverse); uprv_free(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_INDEX); uprv_free(leadByteConstants.LEAD_BYTE_TO_SCRIPTS_DATA); uprv_free(leadByteConstants.SCRIPT_TO_LEAD_BYTES_INDEX); uprv_free(leadByteConstants.SCRIPT_TO_LEAD_BYTES_DATA); fclose(data); return 0; } #endif /* #if !UCONFIG_NO_COLLATION */ static UOption options[]={ UOPTION_HELP_H, /* 0 Numbers for those who*/ UOPTION_HELP_QUESTION_MARK, /* 1 can't count. */ UOPTION_COPYRIGHT, /* 2 */ UOPTION_VERSION, /* 3 */ UOPTION_DESTDIR, /* 4 */ UOPTION_SOURCEDIR, /* 5 */ UOPTION_VERBOSE, /* 6 */ UOPTION_ICUDATADIR /* 7 */ /* weiv can't count :))))) */ }; int main(int argc, char* argv[]) { UErrorCode status = U_ZERO_ERROR; const char* destdir = NULL; const char* srcDir = NULL; char filename[300]; char *basename = NULL; const char *copyright = NULL; uprv_memset(&UCAVersion, 0, 4); U_MAIN_INIT_ARGS(argc, argv); /* preset then read command line options */ options[4].value=u_getDataDirectory(); options[5].value=""; argc=u_parseArgs(argc, argv, sizeof(options)/sizeof(options[0]), options); /* error handling, printing usage message */ if(argc<0) { fprintf(stderr, "error in command line argument \"%s\"\n", argv[-argc]); } else if(argc<2) { argc=-1; } if(options[0].doesOccur || options[1].doesOccur) { fprintf(stderr, "usage: %s [-options] file\n" "\tRead in UCA collation text data and write out the binary collation data\n" "options:\n" "\t-h or -? or --help this usage text\n" "\t-V or --version show a version message\n" "\t-c or --copyright include a copyright notice\n" "\t-d or --destdir destination directory, followed by the path\n" "\t-s or --sourcedir source directory, followed by the path\n" "\t-v or --verbose turn on verbose output\n" "\t-i or --icudatadir directory for locating any needed intermediate data files,\n" "\t followed by path, defaults to %s\n", argv[0], u_getDataDirectory()); return argc<0 ? U_ILLEGAL_ARGUMENT_ERROR : U_ZERO_ERROR; } if(options[3].doesOccur) { fprintf(stdout, "genuca version %hu.%hu, ICU tool to read UCA text data and create UCA data tables for collation.\n", #if UCONFIG_NO_COLLATION 0, 0 #else UCA_FORMAT_VERSION_0, UCA_FORMAT_VERSION_1 #endif ); fprintf(stdout, U_COPYRIGHT_STRING"\n"); exit(0); } /* get the options values */ destdir = options[4].value; srcDir = options[5].value; VERBOSE = options[6].doesOccur; if (options[2].doesOccur) { copyright = U_COPYRIGHT_STRING; } if (options[7].doesOccur) { u_setDataDirectory(options[7].value); } /* Initialize ICU */ u_init(&status); if (U_FAILURE(status) && status != U_FILE_ACCESS_ERROR) { fprintf(stderr, "%s: can not initialize ICU. status = %s\n", argv[0], u_errorName(status)); exit(1); } status = U_ZERO_ERROR; /* prepare the filename beginning with the source dir */ uprv_strcpy(filename, srcDir); basename=filename+uprv_strlen(filename); if(basename>filename && *(basename-1)!=U_FILE_SEP_CHAR) { *basename++ = U_FILE_SEP_CHAR; } if(argc < 0) { uprv_strcpy(basename, "FractionalUCA.txt"); } else { argv++; uprv_strcpy(basename, getLongPathname(*argv)); } #if 0 if(u_getCombiningClass(0x0053) == 0) { fprintf(stderr, "SEVERE ERROR: Normalization data is not functioning! Bailing out. Was not able to load unorm.dat.\n"); exit(1); } #endif #if UCONFIG_NO_COLLATION UNewDataMemory *pData; const char *msg; msg = "genuca writes dummy " UCA_DATA_NAME "." UCA_DATA_TYPE " because of UCONFIG_NO_COLLATION, see uconfig.h"; fprintf(stderr, "%s\n", msg); pData = udata_create(destdir, UCA_DATA_TYPE, UCA_DATA_NAME, &dummyDataInfo, NULL, &status); udata_writeBlock(pData, msg, strlen(msg)); udata_finish(pData, &status); msg = "genuca writes dummy " INVC_DATA_NAME "." INVC_DATA_TYPE " because of UCONFIG_NO_COLLATION, see uconfig.h"; fprintf(stderr, "%s\n", msg); pData = udata_create(destdir, INVC_DATA_TYPE, INVC_DATA_NAME, &dummyDataInfo, NULL, &status); udata_writeBlock(pData, msg, strlen(msg)); udata_finish(pData, &status); return (int)status; #else return write_uca_table(filename, destdir, copyright, &status); #endif } /* * Hey, Emacs, please set the following: * * Local Variables: * indent-tabs-mode: nil * End: * */