/* ****************************************************************************** * * Copyright (C) 1999-2006, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: ubidi.h * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999jul27 * created by: Markus W. Scherer */ #ifndef UBIDI_H #define UBIDI_H #include "unicode/utypes.h" #include "unicode/uchar.h" /* * javadoc-style comments are intended to be transformed into HTML * using DOC++ - see * http://www.zib.de/Visual/software/doc++/index.html . * * The HTML documentation is created with * doc++ -H ubidi.h * * The following #define trick allows us to do it all in one file * and still be able to compile it. */ /*#define DOCXX_TAG*/ /*#define BIDI_SAMPLE_CODE*/ /** *\file * \brief C API: BIDI algorithm * *
* * Note: Libraries that perform a bidirectional algorithm and * reorder strings accordingly are sometimes called "Storage Layout Engines". * ICU's BiDi and shaping (u_shapeArabic()) APIs can be used at the core of such * "Storage Layout Engines". * *
pErrorCode
pointer must be valid
* and the value that it points to must not indicate a failure before
* the function call. Otherwise, the function returns immediately.
* After the function call, the value indicates success or failure.* * The "limit" of a sequence of characters is the position just after their * last character, i.e., one more than that position.
* * Some of the API functions provide access to "runs". * Such a "run" is defined as a sequence of characters * that are at the same embedding level * after performing the BIDI algorithm.
* * @author Markus W. Scherer * @version 1.0 * * *
The basic assumptions are:
** \code *#include "unicode/ubidi.h" * *typedef enum { * styleNormal=0, styleSelected=1, * styleBold=2, styleItalics=4, * styleSuper=8, styleSub=16 *} Style; * *typedef struct { int32_t limit; Style style; } StyleRun; * *int getTextWidth(const UChar *text, int32_t start, int32_t limit, * const StyleRun *styleRuns, int styleRunCount); * * // set *pLimit and *pStyleRunLimit for a line * // from text[start] and from styleRuns[styleRunStart] * // using ubidi_getLogicalRun(para, ...) *void getLineBreak(const UChar *text, int32_t start, int32_t *pLimit, * UBiDi *para, * const StyleRun *styleRuns, int styleRunStart, int *pStyleRunLimit, * int *pLineWidth); * * // render runs on a line sequentially, always from left to right * * // prepare rendering a new line * void startLine(UBiDiDirection textDirection, int lineWidth); * * // render a run of text and advance to the right by the run width * // the text[start..limit-1] is always in logical order * void renderRun(const UChar *text, int32_t start, int32_t limit, * UBiDiDirection textDirection, Style style); * * // We could compute a cross-product * // from the style runs with the directional runs * // and then reorder it. * // Instead, here we iterate over each run type * // and render the intersections - * // with shortcuts in simple (and common) cases. * // renderParagraph() is the main function. * * // render a directional run with * // (possibly) multiple style runs intersecting with it * void renderDirectionalRun(const UChar *text, * int32_t start, int32_t limit, * UBiDiDirection direction, * const StyleRun *styleRuns, int styleRunCount) { * int i; * * // iterate over style runs * if(direction==UBIDI_LTR) { * int styleLimit; * * for(i=0; i*/ /*DOCXX_TAG*/ /*@{*/ /** * UBiDiLevel is the type of the level values in this * BiDi implementation. * It holds an embedding level and indicates the visual direction * by its bit 0 (even/odd value).limit) { styleLimit=limit; } * renderRun(text, start, styleLimit, * direction, styleRun[i].style); * if(styleLimit==limit) { break; } * start=styleLimit; * } * } * } else { * int styleStart; * * for(i=styleRunCount-1; i>=0; --i) { * if(i>0) { * styleStart=styleRun[i-1].limit; * } else { * styleStart=0; * } * if(limit>=styleStart) { * if(styleStart =length * * width=getTextWidth(text, 0, length, styleRuns, styleRunCount); * if(width<=lineWidth) { * // everything fits onto one line * * // prepare rendering a new line from either left or right * startLine(paraLevel, width); * * renderLine(para, text, 0, length, * styleRuns, styleRunCount); * } else { * UBiDi *line; * * // we need to render several lines * line=ubidi_openSized(length, 0, pErrorCode); * if(line!=NULL) { * int32_t start=0, limit; * int styleRunStart=0, styleRunLimit; * * for(;;) { * limit=length; * styleRunLimit=styleRunCount; * getLineBreak(text, start, &limit, para, * styleRuns, styleRunStart, &styleRunLimit, * &width); * ubidi_setLine(para, start, limit, line, pErrorCode); * if(U_SUCCESS(*pErrorCode)) { * // prepare rendering a new line * // from either left or right * startLine(paraLevel, width); * * renderLine(line, text, start, limit, * styleRuns+styleRunStart, * styleRunLimit-styleRunStart); * } * if(limit==length) { break; } * start=limit; * styleRunStart=styleRunLimit-1; * if(start>=styleRuns[styleRunStart].limit) { * ++styleRunStart; * } * } * * ubidi_close(line); * } * } * } * * ubidi_close(para); *} *\endcode *
*
* It can also hold non-level values for the
* paraLevel
and embeddingLevels
* arguments of ubidi_setPara()
; there:
*
embeddingLevels[]
* value indicates whether the using application is
* specifying the level of a character to override whatever the
* BiDi implementation would resolve it to.paraLevel
can be set to the
* pseudo-level values UBIDI_DEFAULT_LTR
* and UBIDI_DEFAULT_RTL
.The related constants are not real, valid level values.
* UBIDI_DEFAULT_XXX
can be used to specify
* a default for the paragraph level for
* when the ubidi_setPara()
function
* shall determine it but there is no
* strongly typed character in the input.
*
* Note that the value for UBIDI_DEFAULT_LTR
is even
* and the one for UBIDI_DEFAULT_RTL
is odd,
* just like with normal LTR and RTL level values -
* these special values are designed that way. Also, the implementation
* assumes that UBIDI_MAX_EXPLICIT_LEVEL is odd.
*
* @see UBIDI_DEFAULT_LTR
* @see UBIDI_DEFAULT_RTL
* @see UBIDI_LEVEL_OVERRIDE
* @see UBIDI_MAX_EXPLICIT_LEVEL
* @stable ICU 2.0
*/
typedef uint8_t UBiDiLevel;
/** Paragraph level setting.
* If there is no strong character, then set the paragraph level to 0 (left-to-right).
* @stable ICU 2.0
*/
#define UBIDI_DEFAULT_LTR 0xfe
/** Paragraph level setting.
* If there is no strong character, then set the paragraph level to 1 (right-to-left).
* @stable ICU 2.0
*/
#define UBIDI_DEFAULT_RTL 0xff
/**
* Maximum explicit embedding level.
* (The maximum resolved level can be up to UBIDI_MAX_EXPLICIT_LEVEL+1
).
* @stable ICU 2.0
*/
#define UBIDI_MAX_EXPLICIT_LEVEL 61
/** Bit flag for level input.
* Overrides directional properties.
* @stable ICU 2.0
*/
#define UBIDI_LEVEL_OVERRIDE 0x80
/**
* Special value which can be returned by the mapping functions when a logical
* index has no corresponding visual index or vice-versa. This may happen
* for the logical-to-visual mapping of a BiDi control when option
* UBIDI_OPTION_REMOVE_CONTROLS
is specified. This can also happen
* for the visual-to-logical mapping of a BiDi mark (LRM or RLM) inserted
* by option UBIDI_OPTION_INSERT_MARKS
.
* @see ubidi_getVisualIndex
* @see ubidi_getVisualMap
* @see ubidi_getLogicalIndex
* @see ubidi_getLogicalMap
* @draft ICU 3.6
*/
#define UBIDI_MAP_NOWHERE (-1)
/**
* UBiDiDirection
values indicate the text direction.
* @stable ICU 2.0
*/
enum UBiDiDirection {
/** All left-to-right text. This is a 0 value. @stable ICU 2.0 */
UBIDI_LTR,
/** All right-to-left text. This is a 1 value. @stable ICU 2.0 */
UBIDI_RTL,
/** Mixed-directional text. @stable ICU 2.0 */
UBIDI_MIXED
};
/** @stable ICU 2.0 */
typedef enum UBiDiDirection UBiDiDirection;
/**
* Forward declaration of the UBiDi
structure for the declaration of
* the API functions. Its fields are implementation-specific.
* This structure holds information about a paragraph (or multiple paragraphs) * of text with BiDi-algorithm-related details, or about one line of * such a paragraph.
* Reordering can be done on a line, or on one or more paragraphs which are
* then interpreted each as one single line.
* @stable ICU 2.0
*/
struct UBiDi;
/** @stable ICU 2.0 */
typedef struct UBiDi UBiDi;
/**
* Allocate a UBiDi
structure.
* Such an object is initially empty. It is assigned
* the BiDi properties of a piece of text containing one or more paragraphs
* by ubidi_setPara()
* or the BiDi properties of a line within a paragraph by
* ubidi_setLine()
.
* This object can be reused for as long as it is not deallocated
* by calling ubidi_close()
.
* ubidi_setPara()
and ubidi_setLine()
will allocate
* additional memory for internal structures as necessary.
*
* @return An empty UBiDi
object.
* @stable ICU 2.0
*/
U_STABLE UBiDi * U_EXPORT2
ubidi_open(void);
/**
* Allocate a UBiDi
structure with preallocated memory
* for internal structures.
* This function provides a UBiDi
object like ubidi_open()
* with no arguments, but it also preallocates memory for internal structures
* according to the sizings supplied by the caller.
* Subsequent functions will not allocate any more memory, and are thus * guaranteed not to fail because of lack of memory.
* The preallocation can be limited to some of the internal memory
* by setting some values to 0 here. That means that if, e.g.,
* maxRunCount
cannot be reasonably predetermined and should not
* be set to maxLength
(the only failproof value) to avoid
* wasting memory, then maxRunCount
could be set to 0 here
* and the internal structures that are associated with it will be allocated
* on demand, just like with ubidi_open()
.
*
* @param maxLength is the maximum text or line length that internal memory
* will be preallocated for. An attempt to associate this object with a
* longer text will fail, unless this value is 0, which leaves the allocation
* up to the implementation.
*
* @param maxRunCount is the maximum anticipated number of same-level runs
* that internal memory will be preallocated for. An attempt to access
* visual runs on an object that was not preallocated for as many runs
* as the text was actually resolved to will fail,
* unless this value is 0, which leaves the allocation up to the implementation.
* The number of runs depends on the actual text and maybe anywhere between
* 1 and maxLength
. It is typically small.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return An empty UBiDi
object with preallocated memory.
* @stable ICU 2.0
*/
U_STABLE UBiDi * U_EXPORT2
ubidi_openSized(int32_t maxLength, int32_t maxRunCount, UErrorCode *pErrorCode);
/**
* ubidi_close()
must be called to free the memory
* associated with a UBiDi object.
*
* Important:
* A parent UBiDi
object must not be destroyed or reused if
* it still has children.
* If a UBiDi
object is the child
* of another one (its parent), after calling
* ubidi_setLine()
, then the child object must
* be destroyed (closed) or reused (by calling
* ubidi_setPara()
or ubidi_setLine()
)
* before the parent object.
*
* @param pBiDi is a UBiDi
object.
*
* @see ubidi_setPara
* @see ubidi_setLine
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_close(UBiDi *pBiDi);
/**
* Modify the operation of the BiDi algorithm such that it
* approximates an "inverse BiDi" algorithm. This function
* must be called before ubidi_setPara()
.
*
*
The normal operation of the BiDi algorithm as described * in the Unicode Technical Report is to take text stored in logical * (keyboard, typing) order and to determine the reordering of it for visual * rendering. * Some legacy systems store text in visual order, and for operations * with standard, Unicode-based algorithms, the text needs to be transformed * to logical order. This is effectively the inverse algorithm of the * described BiDi algorithm. Note that there is no standard algorithm for * this "inverse BiDi" and that the current implementation provides only an * approximation of "inverse BiDi".
* *With isInverse
set to TRUE
,
* this function changes the behavior of some of the subsequent functions
* in a way that they can be used for the inverse BiDi algorithm.
* Specifically, runs of text with numeric characters will be treated in a
* special way and may need to be surrounded with LRM characters when they are
* written in reordered sequence.
Output runs should be retrieved using ubidi_getVisualRun()
.
* Since the actual input for "inverse BiDi" is visually ordered text and
* ubidi_getVisualRun()
gets the reordered runs, these are actually
* the runs of the logically ordered output.
Calling this function with argument isInverse
set to
* TRUE
is equivalent to calling
* ubidi_setReorderingMode
with argument
* reorderingMode
* set to UBIDI_REORDER_INVERSE_NUMBERS_AS_L
.
* Calling this function with argument isInverse
set to
* FALSE
is equivalent to calling
* ubidi_setReorderingMode
with argument
* reorderingMode
* set to UBIDI_REORDER_DEFAULT
.
*
* @param pBiDi is a UBiDi
object.
*
* @param isInverse specifies "forward" or "inverse" BiDi operation.
*
* @see ubidi_setPara
* @see ubidi_writeReordered
* @see ubidi_setReorderingMode
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_setInverse(UBiDi *pBiDi, UBool isInverse);
/**
* Is this BiDi object set to perform the inverse BiDi algorithm?
*
Note: calling this function after setting the reordering mode with
* ubidi_setReorderingMode
will return TRUE
if the
* reordering mode was set to UBIDI_REORDER_INVERSE_NUMBERS_AS_L
,
*
FALSE
for all other values.
UBiDi
object.
* @return TRUE if the BiDi object is set to perform the inverse BiDi algorithm
* by handling numbers as L.
*
* @see ubidi_setInverse
* @see ubidi_setReorderingMode
* @stable ICU 2.0
*/
U_STABLE UBool U_EXPORT2
ubidi_isInverse(UBiDi *pBiDi);
/**
* Specify whether block separators must be allocated level zero,
* so that successive paragraphs will progress from left to right.
* This function must be called before ubidi_setPara()
.
* Paragraph separators (B) may appear in the text. Setting them to level zero
* means that all paragraph separators (including one possibly appearing
* in the last text position) are kept in the reordered text after the text
* that they follow in the source text.
* When this feature is not enabled, a paragraph separator at the last
* position of the text before reordering will go to the first position
* of the reordered text when the paragraph level is odd.
*
* @param pBiDi is a UBiDi
object.
*
* @param orderParagraphsLTR specifies whether paragraph separators (B) must
* receive level 0, so that successive paragraphs progress from left to right.
*
* @see ubidi_setPara
* @stable ICU 3.4
*/
U_STABLE void U_EXPORT2
ubidi_orderParagraphsLTR(UBiDi *pBiDi, UBool orderParagraphsLTR);
/**
* Is this BiDi object set to allocate level 0 to block separators so that
* successive paragraphs progress from left to right?
*
* @param pBiDi is a UBiDi
object.
* @return TRUE if the BiDi object is set to allocate level 0 to block
* separators.
*
* @see ubidi_orderParagraphsLTR
* @stable ICU 3.4
*/
U_STABLE UBool U_EXPORT2
ubidi_isOrderParagraphsLTR(UBiDi *pBiDi);
/**
* UBiDiReorderingMode
values indicate which variant of the BiDi
* algorithm to use.
*
* @see ubidi_setReorderingMode
* @draft ICU 3.6
*/
typedef enum UBiDiReorderingMode {
/** Regular Logical to Visual BiDi algorithm according to Unicode.
* This is a 0 value. @draft ICU 3.6 */
UBIDI_REORDER_DEFAULT = 0,
/** Logical to Visual algorithm which handles numbers in a way which
* mimicks the behavior of Windows XP.
* @draft ICU 3.6 */
UBIDI_REORDER_NUMBERS_SPECIAL,
/** Logical to Visual grouping numbers with adjacent R characters
* (reversible algorithm).
* @draft ICU 3.6 */
UBIDI_REORDER_GROUP_NUMBERS_WITH_R,
/** Reorder runs only to transform a Logical LTR string to the Logical RTL
* string with the same display, or vice-versa.
* @draft ICU 3.6 */
UBIDI_REORDER_RUNS_ONLY,
/** Visual to Logical algorithm which handles numbers like L
* (same algorithm as selected by ubidi_setInverse(TRUE)
.
* @see ubidi_setInverse
* @draft ICU 3.6 */
UBIDI_REORDER_INVERSE_NUMBERS_AS_L,
/** Visual to Logical algorithm equivalent to the regular Logical to Visual
* algorithm. @draft ICU 3.6 */
UBIDI_REORDER_INVERSE_LIKE_DIRECT,
/** Inverse BiDi (Visual to Logical) algorithm for the
* UBIDI_REORDER_NUMBERS_SPECIAL
BiDi algorithm.
* @draft ICU 3.6 */
UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL,
/** Number of values for reordering mode.
* @draft ICU 3.6 */
UBIDI_REORDER_COUNT
} UBiDiReorderingMode;
/**
* Modify the operation of the BiDi algorithm such that it implements some
* variant to the basic BiDi algorithm or approximates an "inverse BiDi"
* algorithm, depending on different values of the "reordering mode".
* This function must be called before ubidi_setPara()
, and stays
* in effect until called again with a different argument.
*
* The normal operation of the BiDi algorithm as described * in the Unicode Standard Annex #9 is to take text stored in logical * (keyboard, typing) order and to determine how to reorder it for visual * rendering.
* *With the reordering mode set to a value other than
* UBIDI_REORDER_DEFAULT
, this function changes the behavior of
* some of the subsequent functions in a way such that they implement an
* inverse BiDi algorithm or some other algorithm variants.
Some legacy systems store text in visual order, and for operations * with standard, Unicode-based algorithms, the text needs to be transformed * into logical order. This is effectively the inverse algorithm of the * described BiDi algorithm. Note that there is no standard algorithm for * this "inverse BiDi", so a number of variants are implemented here.
* *In other cases, it may be desirable to emulate some variant of the * Logical to Visual algorithm (e.g. one used in MS Windows), or perform a * Logical to Logical transformation.
* *When the reordering mode is set to UBIDI_REORDER_DEFAULT
,
* the standard BiDi Logical to Visual algorithm is applied.
When the reordering mode is set to
* UBIDI_REORDER_NUMBERS_SPECIAL
,
* the algorithm used to perform BiDi transformations when calling
* ubidi_setPara
should approximate the algorithm used in
* Microsoft Windows XP rather than strictly conform to the Unicode BiDi
* algorithm.
*
* The differences between the basic algorithm and the algorithm addressed
* by this option are as follows:
*
When the reordering mode is set to
* UBIDI_REORDER_GROUP_NUMBERS_WITH_R
,
* numbers located between LTR text and RTL text are associated with the RTL
* text. For instance, an LTR paragraph with content "abc 123 DEF" (where
* upper case letters represent RTL characters) will be transformed to
* "abc FED 123" (and not "abc 123 FED"), "DEF 123 abc" will be transformed
* to "123 FED abc" and "123 FED abc" will be transformed to "DEF 123 abc".
* This makes the algorithm reversible and makes it useful when round trip
* (from visual to logical and back to visual) must be achieved without
* adding LRM characters. However, this is a variation from the standard
* Unicode Bidi algorithm.
* The source text should not contain BiDi control characters other than LRM
* or RLM.
When the reordering mode is set to
* UBIDI_REORDER_RUNS_ONLY
,
* a "Logical to Logical" transformation must be performed:
*
paraLevel
* in ubidi_setPara
) is even, the source text will be handled as
* LTR logical text and will be transformed to the RTL logical text which has
* the same LTR visual display.When the reordering mode is set to
* UBIDI_REORDER_INVERSE_NUMBERS_AS_L
, an "inverse BiDi" algorithm
* is applied.
* Runs of text with numeric characters will be treated like LTR letters and
* may need to be surrounded with LRM characters when they are written in
* reordered sequence (the option UBIDI_INSERT_LRM_FOR_NUMERIC
can
* be used with function ubidi_writeReordered
to this end. This
* mode is equivalent to calling ubidi_setInverse
with
* argument isInverse
set to TRUE
.
When the reordering mode is set to
* UBIDI_REORDER_INVERSE_AS_DIRECT
, the "direct" Logical to Visual
* BiDi algorithm is used as an approximation of an "inverse BiDi" algorithm.
* This mode is similar to mode UBIDI_REORDER_INVERSE_NUMBERS_AS_L
* but is closer to the regular BiDi algorithm.
*
* For example, an LTR paragraph with the content "FED 123 456 CBA" (where
* upper case represents RTL characters) will be transformed to
* "ABC 456 123 DEF", as opposed to "DEF 123 456 ABC"
* with mode UBIDI_REORDER_INVERSE_NUMBERS_AS_L
.
* When used in conjunction with option
* UBIDI_OPTION_INSERT_MARKS
, this mode generally
* adds BiDi marks to the output significantly more sparingly than mode
* UBIDI_REORDER_INVERSE_NUMBERS_AS_L
.
with option
* UBIDI_INSERT_LRM_FOR_NUMERIC
in calls to
* ubidi_writeReordered
.
When the reordering mode is set to
* UBIDI_REORDER_INVERSE_FOR_NUMBERS_SPECIAL
, the Logical to Visual
* BiDi algorithm used in Windows XP is used as an approximation of an
* "inverse BiDi" algorithm.
*
* For example, an LTR paragraph with the content "abc FED123" (where
* upper case represents RTL characters) will be transformed to
* "abc 123DEF.
In all the reordering modes specifying an "inverse BiDi" algorithm
* (i.e. those with a name starting with UBIDI_REORDER_INVERSE
),
* output runs should be retrieved using
* ubidi_getVisualRun()
, and the output text with
* ubidi_writeReordered()
. The caller should keep in mind that in
* "inverse BiDi" modes the input is actually visually ordered text and
* reordered output returned by ubidi_getVisualRun()
or
* ubidi_writeReordered()
are actually runs or character string
* of logically ordered output.
* For all the "inverse BiDi" modes, the source text should not contain
* BiDi control characters other than LRM or RLM.
Note that option This option must be set or reset before calling
* This option is significant only with reordering modes which generate
* a result with Logical order. If this option is set in conjunction with reordering mode
* For other reordering modes, a minimum number of LRM or RLM characters
* will be added to the source text after reordering it so as to ensure
* round trip, i.e. applying the inverse reordering mode on the
* resulting logical text with removal of BiDi marks
* (option This option will be ignored if specified together with option
* This option must be set or reset before calling
* This option implies the option This option nullifies option This option must be set or reset before calling
* This option specifies that the caller is interested in processing large
* text object in parts.
* The results of the successive calls are expected to be concatenated by the
* caller. Only the call for the last part will have this option bit off. When this option bit is on, UBIDI_OUTPUT_REVERSE
of
* ubidi_writeReordered
has no useful meaning and should not be
* used in conjunction with any value of the reordering mode specifying
* "inverse BiDi" or with value UBIDI_REORDER_RUNS_ONLY
.
*
* @param pBiDi is a UBiDi
object.
* @param reorderingMode specifies the required variant of the BiDi algorithm.
*
* @see UBiDiReorderingMode
* @see ubidi_setInverse
* @see ubidi_setPara
* @see ubidi_writeReordered
* @draft ICU 3.6
*/
U_DRAFT void U_EXPORT2
ubidi_setReorderingMode(UBiDi *pBiDi, UBiDiReorderingMode reorderingMode);
/**
* What is the requested reordering mode for a given BiDi object?
*
* @param pBiDi is a UBiDi
object.
* @return the current reordering mode of the BiDi object
* @see ubidi_setReorderingMode
* @draft ICU 3.6
*/
U_DRAFT UBiDiReorderingMode U_EXPORT2
ubidi_getReorderingMode(UBiDi *pBiDi);
/**
* UBiDiReorderingOption> values indicate which options are specified
* to affect the BiDi algorithm.
*
* @see ubidi_setReorderingOptions
* @draft ICU 3.6
*/
typedef enum UBiDiReorderingOption {
/**
* option value for
ubidi_setReorderingOptions
:
* disable all the options which can be set with this function
* @see ubidi_setReorderingOptions
* @draft ICU 3.6
*/
UBIDI_OPTION_DEFAULT = 0,
/**
* option bit for ubidi_setReorderingOptions
:
* insert BiDi marks (LRM or RLM) when needed to ensure correct result of
* a reordering to a Logical order
*
* ubidi_setPara
.UBIDI_REORDER_INVERSE_NUMBERS_AS_L
or with calling
* ubidi_setInverse(TRUE)
, it implies
* option UBIDI_INSERT_LRM_FOR_NUMERIC
* in calls to function ubidi_writeReordered
.UBIDI_OPTION_REMOVE_CONTROLS
set before calling
* ubidi_setPara
or option UBIDI_REMOVE_BIDI_CONTROLS
* in ubidi_writeReordered
), the result will be identical to the
* source text in the first transformation.
*
* UBIDI_OPTION_REMOVE_CONTROLS
. It inhibits option
* UBIDI_REMOVE_BIDI_CONTROLS
in calls to function
* ubidi_writeReordered
and it implies option
* UBIDI_INSERT_LRM_FOR_NUMERIC
in calls to function
* ubidi_writeReordered
if the reordering mode is
* UBIDI_REORDER_INVERSE_NUMBERS_AS_L
.ubidi_setReorderingOptions
:
* remove BiDi control characters
*
* ubidi_setPara
.UBIDI_REMOVE_BIDI_CONTROLS
* in ubidi_writeReordered
.UBIDI_OPTION_INSERT_MARKS
.
* It inhibits option UBIDI_INSERT_LRM_FOR_NUMERIC
in calls
* to function ubidi_writeReordered
and it implies option
* UBIDI_REMOVE_BIDI_CONTROLS
in calls to that function.ubidi_setReorderingOptions
:
* process the output as part of a stream to be continued
*
* ubidi_setPara
.ubidi_setPara()
may process
* less than the full source text in order to truncate the text at a meaningful
* boundary. The caller should call ubidi_getProcessedLength()
* immediately after calling ubidi_setPara()
in order to
* determine how much of the source text has been processed.
* Source text beyond that length should be resubmitted in following calls to
* ubidi_setPara
. The processed length may be less than
* the length of the source text if a character preceding the last character of
* the source text constitutes a reasonable boundary (like a block separator)
* for text to be continued.
* If the last character of the source text constitutes a reasonable
* boundary, the whole text will be processed at once.
* If nowhere in the source text there exists
* such a reasonable boundary, the processed length will be zero.
* The caller should check for such an occurrence and do one of the following:
*
* In all cases, this option should be turned off before processing the last
* part of the text.UBIDI_OPTION_STREAMING
.
When the UBIDI_OPTION_STREAMING
option is used,
* it is recommended to call ubidi_orderParagraphsLTR()
with
* argument orderParagraphsLTR
set to TRUE
before
* calling ubidi_setPara
so that later paragraphs may be
* concatenated to previous paragraphs on the right.
UBiDi
object.
* @param reorderingOptions is a combination of zero or more reordering options.
* @see ubidi_getReorderingOptions
* @see UBIDI_OPTION_DEFAULT
* @see UBIDI_OPTION_INSERT_MARKS
* @see UBIDI_OPTION_REMOVE_CONTROLS
* @see UBIDI_OPTION_STREAMING
* @draft ICU 3.6
*/
U_DRAFT void U_EXPORT2
ubidi_setReorderingOptions(UBiDi *pBiDi, uint32_t reorderingOptions);
/**
* What are the reordering options applied to a given BiDi object?
*
* @param pBiDi is a UBiDi
object.
* @return the current reordering options of the BiDi object
* @see ubidi_setReorderingOptions
* @draft ICU 3.6
*/
U_DRAFT uint32_t U_EXPORT2
ubidi_getReorderingOptions(UBiDi *pBiDi);
/**
* Perform the Unicode BiDi algorithm. It is defined in the
* Unicode Standard Anned #9,
* version 13,
* also described in The Unicode Standard, Version 4.0 .* * This function takes a piece of plain text containing one or more paragraphs, * with or without externally specified embedding levels from styled * text and computes the left-right-directionality of each character.
*
* If the entire text is all of the same directionality, then
* the function may not perform all the steps described by the algorithm,
* i.e., some levels may not be the same as if all steps were performed.
* This is not relevant for unidirectional text.
* For example, in pure LTR text with numbers the numbers would get
* a resolved level of 2 higher than the surrounding text according to
* the algorithm. This implementation may set all resolved levels to
* the same value in such a case.
*
* The text can be composed of multiple paragraphs. Occurrence of a block
* separator in the text terminates a paragraph, and whatever comes next starts
* a new paragraph. The exception to this rule is when a Carriage Return (CR)
* is followed by a Line Feed (LF). Both CR and LF are block separators, but
* in that case, the pair of characters is considered as terminating the
* preceding paragraph, and a new paragraph will be started by a character
* coming after the LF.
*
* @param pBiDi A UBiDi
object allocated with ubidi_open()
* which will be set to contain the reordering information,
* especially the resolved levels for all the characters in text
.
*
* @param text is a pointer to the text that the
* BiDi algorithm will be performed on
* The text must be (at least) length
long.
* This pointer is stored in the UBiDi object and can be retrieved
* with ubidi_getText()
.
*
* @param length is the length of the text; if length==-1
then
* the text must be zero-terminated.
*
* @param paraLevel specifies the default level for the text;
* it is typically 0 (LTR) or 1 (RTL).
* If the function shall determine the paragraph level from the text,
* then paraLevel
can be set to
* either UBIDI_DEFAULT_LTR
* or UBIDI_DEFAULT_RTL
; if the text contains multiple
* paragraphs, the paragraph level shall be determined separately for
* each paragraph; if a paragraph does not include any strongly typed
* character, then the desired default is used (0 for LTR or 1 for RTL).
* Any other value between 0 and UBIDI_MAX_EXPLICIT_LEVEL
is also valid,
* with odd levels indicating RTL.
*
* @param embeddingLevels (in) may be used to preset the embedding and override levels,
* ignoring characters like LRE and PDF in the text.
* A level overrides the directional property of its corresponding
* (same index) character if the level has the
* UBIDI_LEVEL_OVERRIDE
bit set.
* Except for that bit, it must be
* paraLevel<=embeddingLevels[]<=UBIDI_MAX_EXPLICIT_LEVEL
,
* with one exception: a level of zero may be specified for a paragraph
* separator even if paraLevel>0
when multiple paragraphs
* are submitted in the same call to ubidi_setPara()
.
* Caution: A copy of this pointer, not of the levels,
* will be stored in the UBiDi
object;
* the embeddingLevels
array must not be
* deallocated before the UBiDi
structure is destroyed or reused,
* and the embeddingLevels
* should not be modified to avoid unexpected results on subsequent BiDi operations.
* However, the ubidi_setPara()
and
* ubidi_setLine()
functions may modify some or all of the levels.
* After the UBiDi
object is reused or destroyed, the caller
* must take care of the deallocation of the embeddingLevels
array.
* The embeddingLevels
array must be
* at least length
long.
*
* @param pErrorCode must be a valid pointer to an error code value.
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_setPara(UBiDi *pBiDi, const UChar *text, int32_t length,
UBiDiLevel paraLevel, UBiDiLevel *embeddingLevels,
UErrorCode *pErrorCode);
/**
* ubidi_setLine()
sets a UBiDi
to
* contain the reordering information, especially the resolved levels,
* for all the characters in a line of text. This line of text is
* specified by referring to a UBiDi
object representing
* this information for a piece of text containing one or more paragraphs,
* and by specifying a range of indexes in this text.
* In the new line object, the indexes will range from 0 to limit-start-1
.
*
* This is used after calling ubidi_setPara()
* for a piece of text, and after line-breaking on that text.
* It is not necessary if each paragraph is treated as a single line.
*
* After line-breaking, rules (L1) and (L2) for the treatment of
* trailing WS and for reordering are performed on
* a UBiDi
object that represents a line.
*
* Important: pLineBiDi
shares data with
* pParaBiDi
.
* You must destroy or reuse pLineBiDi
before pParaBiDi
.
* In other words, you must destroy or reuse the UBiDi
object for a line
* before the object for its parent paragraph.
*
* The text pointer that was stored in pParaBiDi
is also copied,
* and start
is added to it so that it points to the beginning of the
* line for this object.
*
* @param pParaBiDi is the parent paragraph object. It must have been set
* by a successful call to ubidi_setPara.
*
* @param start is the line's first index into the text.
*
* @param limit is just behind the line's last index into the text
* (its last index +1).
* It must be 0<=start<=limit<=
containing paragraph limit.
* If the specified line crosses a paragraph boundary, the function
* will terminate with error code U_ILLEGAL_ARGUMENT_ERROR.
*
* @param pLineBiDi is the object that will now represent a line of the text.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @see ubidi_setPara
* @see ubidi_getProcessedLength
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_setLine(const UBiDi *pParaBiDi,
int32_t start, int32_t limit,
UBiDi *pLineBiDi,
UErrorCode *pErrorCode);
/**
* Get the directionality of the text.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @return A UBIDI_XXX
value that indicates if the entire text
* represented by this object is unidirectional,
* and which direction, or if it is mixed-directional.
*
* @see UBiDiDirection
* @stable ICU 2.0
*/
U_STABLE UBiDiDirection U_EXPORT2
ubidi_getDirection(const UBiDi *pBiDi);
/**
* Get the pointer to the text.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @return The pointer to the text that the UBiDi object was created for.
*
* @see ubidi_setPara
* @see ubidi_setLine
* @stable ICU 2.0
*/
U_STABLE const UChar * U_EXPORT2
ubidi_getText(const UBiDi *pBiDi);
/**
* Get the length of the text.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @return The length of the text that the UBiDi object was created for.
* @stable ICU 2.0
*/
U_STABLE int32_t U_EXPORT2
ubidi_getLength(const UBiDi *pBiDi);
/**
* Get the paragraph level of the text.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @return The paragraph level. If there are multiple paragraphs, their
* level may vary if the required paraLevel is UBIDI_DEFAULT_LTR or
* UBIDI_DEFAULT_RTL. In that case, the level of the first paragraph
* is returned.
*
* @see UBiDiLevel
* @see ubidi_getParagraph
* @see ubidi_getParagraphByIndex
* @stable ICU 2.0
*/
U_STABLE UBiDiLevel U_EXPORT2
ubidi_getParaLevel(const UBiDi *pBiDi);
/**
* Get the number of paragraphs.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @return The number of paragraphs.
* @stable ICU 3.4
*/
U_STABLE int32_t U_EXPORT2
ubidi_countParagraphs(UBiDi *pBiDi);
/**
* Get a paragraph, given a position within the text.
* This function returns information about a paragraph.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param charIndex is the index of a character within the text, in the
* range [0..ubidi_getProcessedLength(pBiDi)-1]
.
*
* @param pParaStart will receive the index of the first character of the
* paragraph in the text.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pParaLimit will receive the limit of the paragraph.
* The l-value that you point to here may be the
* same expression (variable) as the one for
* charIndex
.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pParaLevel will receive the level of the paragraph.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The index of the paragraph containing the specified position.
*
* @see ubidi_getProcessedLength
* @stable ICU 3.4
*/
U_STABLE int32_t U_EXPORT2
ubidi_getParagraph(const UBiDi *pBiDi, int32_t charIndex, int32_t *pParaStart,
int32_t *pParaLimit, UBiDiLevel *pParaLevel,
UErrorCode *pErrorCode);
/**
* Get a paragraph, given the index of this paragraph.
*
* This function returns information about a paragraph.
*
* @param pBiDi is the paragraph UBiDi
object.
*
* @param paraIndex is the number of the paragraph, in the
* range [0..ubidi_countParagraphs(pBiDi)-1]
.
*
* @param pParaStart will receive the index of the first character of the
* paragraph in the text.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pParaLimit will receive the limit of the paragraph.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pParaLevel will receive the level of the paragraph.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @stable ICU 3.4
*/
U_STABLE void U_EXPORT2
ubidi_getParagraphByIndex(const UBiDi *pBiDi, int32_t paraIndex,
int32_t *pParaStart, int32_t *pParaLimit,
UBiDiLevel *pParaLevel, UErrorCode *pErrorCode);
/**
* Get the level for one character.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param charIndex the index of a character.
*
* @return The level for the character at charIndex.
*
* @see UBiDiLevel
* @see ubidi_getProcessedLength
* @stable ICU 2.0
*/
U_STABLE UBiDiLevel U_EXPORT2
ubidi_getLevelAt(const UBiDi *pBiDi, int32_t charIndex);
/**
* Get an array of levels for each character.
*
* Note that this function may allocate memory under some
* circumstances, unlike ubidi_getLevelAt()
.
*
* @param pBiDi is the paragraph or line UBiDi
object, whose
* text length must be strictly positive.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The levels array for the text,
* or NULL
if an error occurs.
*
* @see UBiDiLevel
* @see ubidi_getProcessedLength
* @stable ICU 2.0
*/
U_STABLE const UBiDiLevel * U_EXPORT2
ubidi_getLevels(UBiDi *pBiDi, UErrorCode *pErrorCode);
/**
* Get a logical run.
* This function returns information about a run and is used
* to retrieve runs in logical order.
* This is especially useful for line-breaking on a paragraph.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param logicalStart is the first character of the run.
*
* @param pLogicalLimit will receive the limit of the run.
* The l-value that you point to here may be the
* same expression (variable) as the one for
* logicalStart
.
* This pointer can be NULL
if this
* value is not necessary.
*
* @param pLevel will receive the level of the run.
* This pointer can be NULL
if this
* value is not necessary.
*
* @see ubidi_getProcessedLength
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_getLogicalRun(const UBiDi *pBiDi, int32_t logicalStart,
int32_t *pLogicalLimit, UBiDiLevel *pLevel);
/**
* Get the number of runs.
* This function may invoke the actual reordering on the
* UBiDi
object, after ubidi_setPara()
* may have resolved only the levels of the text. Therefore,
* ubidi_countRuns()
may have to allocate memory,
* and may fail doing so.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The number of runs.
* @stable ICU 2.0
*/
U_STABLE int32_t U_EXPORT2
ubidi_countRuns(UBiDi *pBiDi, UErrorCode *pErrorCode);
/**
* Get one run's logical start, length, and directionality,
* which can be 0 for LTR or 1 for RTL.
* In an RTL run, the character at the logical start is
* visually on the right of the displayed run.
* The length is the number of characters in the run.
* ubidi_countRuns()
should be called
* before the runs are retrieved.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param runIndex is the number of the run in visual order, in the
* range [0..ubidi_countRuns(pBiDi)-1]
.
*
* @param pLogicalStart is the first logical character index in the text.
* The pointer may be NULL
if this index is not needed.
*
* @param pLength is the number of characters (at least one) in the run.
* The pointer may be NULL
if this is not needed.
*
* @return the directionality of the run,
* UBIDI_LTR==0
or UBIDI_RTL==1
,
* never UBIDI_MIXED
.
*
* @see ubidi_countRuns
*
* Example:
*
* \code * int32_t i, count=ubidi_countRuns(pBiDi), * logicalStart, visualIndex=0, length; * for(i=0; i* * Note that in right-to-left runs, code like this places * modifier letters before base characters and second surrogates * before first ones. * @stable ICU 2.0 */ U_STABLE UBiDiDirection U_EXPORT2 ubidi_getVisualRun(UBiDi *pBiDi, int32_t runIndex, int32_t *pLogicalStart, int32_t *pLength); /** * Get the visual position from a logical text position. * If such a mapping is used many times on the same *0); * } else { * logicalStart+=length; // logicalLimit * do { // RTL * show_char(text[--logicalStart], visualIndex++); * } while(--length>0); * } * } *\endcode *
UBiDi
object, then calling
* ubidi_getLogicalMap()
is more efficient.
*
* The value returned may be UBIDI_MAP_NOWHERE
if there is no
* visual position because the corresponding text character is a BiDi control
* removed from output by the option UBIDI_OPTION_REMOVE_CONTROLS
.
*
* Note that in right-to-left runs, this mapping places
* modifier letters before base characters and second surrogates
* before first ones.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param logicalIndex is the index of a character in the text.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The visual position of this character.
*
* @see ubidi_getLogicalMap
* @see ubidi_getLogicalIndex
* @see ubidi_getProcessedLength
* @stable ICU 2.0
*/
U_STABLE int32_t U_EXPORT2
ubidi_getVisualIndex(UBiDi *pBiDi, int32_t logicalIndex, UErrorCode *pErrorCode);
/**
* Get the logical text position from a visual position.
* If such a mapping is used many times on the same
* UBiDi
object, then calling
* ubidi_getVisualMap()
is more efficient.
*
* The value returned may be UBIDI_MAP_NOWHERE
if there is no
* logical position because the corresponding text character is a BiDi mark
* inserted in the output by option UBIDI_OPTION_INSERT_MARKS
.
*
* This is the inverse function to ubidi_getVisualIndex()
.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param visualIndex is the visual position of a character.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The index of this character in the text.
*
* @see ubidi_getVisualMap
* @see ubidi_getVisualIndex
* @see ubidi_getResultLength
* @stable ICU 2.0
*/
U_STABLE int32_t U_EXPORT2
ubidi_getLogicalIndex(UBiDi *pBiDi, int32_t visualIndex, UErrorCode *pErrorCode);
/**
* Get a logical-to-visual index map (array) for the characters in the UBiDi
* (paragraph or line) object.
*
* Some values in the map may be UBIDI_MAP_NOWHERE
if the
* corresponding text characters are BiDi controls removed from the visual
* output by the option UBIDI_OPTION_REMOVE_CONTROLS
.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param indexMap is a pointer to an array of ubidi_getProcessedLength()
* indexes which will reflect the reordering of the characters.
* The array does not need to be initialized.
* The index map will result in indexMap[logicalIndex]==visualIndex
.
* * @param pErrorCode must be a valid pointer to an error code value. * * @see ubidi_getVisualMap * @see ubidi_getVisualIndex * @see ubidi_getProcessedLength * @stable ICU 2.0 */ U_STABLE void U_EXPORT2 ubidi_getLogicalMap(UBiDi *pBiDi, int32_t *indexMap, UErrorCode *pErrorCode); /** * Get a visual-to-logical index map (array) for the characters in the UBiDi * (paragraph or line) object. *
* Some values in the map may be UBIDI_MAP_NOWHERE
if the
* corresponding text characters are BiDi marks inserted in the visual output
* by the option UBIDI_OPTION_INSERT_MARKS
.
*
* @param pBiDi is the paragraph or line UBiDi
object.
*
* @param indexMap is a pointer to an array of ubidi_getResultLength()
* indexes which will reflect the reordering of the characters.
* The array does not need to be initialized.
* The index map will result in indexMap[visualIndex]==logicalIndex
.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @see ubidi_getLogicalMap
* @see ubidi_getLogicalIndex
* @see ubidi_getResultLength
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_getVisualMap(UBiDi *pBiDi, int32_t *indexMap, UErrorCode *pErrorCode);
/**
* This is a convenience function that does not use a UBiDi object.
* It is intended to be used for when an application has determined the levels
* of objects (character sequences) and just needs to have them reordered (L2).
* This is equivalent to using ubidi_getLogicalMap
on a
* UBiDi
object.
*
* @param levels is an array with length
levels that have been determined by
* the application.
*
* @param length is the number of levels in the array, or, semantically,
* the number of objects to be reordered.
* It must be length>0
.
*
* @param indexMap is a pointer to an array of length
* indexes which will reflect the reordering of the characters.
* The array does not need to be initialized.
* The index map will result in indexMap[logicalIndex]==visualIndex
.
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_reorderLogical(const UBiDiLevel *levels, int32_t length, int32_t *indexMap);
/**
* This is a convenience function that does not use a UBiDi object.
* It is intended to be used for when an application has determined the levels
* of objects (character sequences) and just needs to have them reordered (L2).
* This is equivalent to using ubidi_getVisualMap
on a
* UBiDi
object.
*
* @param levels is an array with length
levels that have been determined by
* the application.
*
* @param length is the number of levels in the array, or, semantically,
* the number of objects to be reordered.
* It must be length>0
.
*
* @param indexMap is a pointer to an array of length
* indexes which will reflect the reordering of the characters.
* The array does not need to be initialized.
* The index map will result in indexMap[visualIndex]==logicalIndex
.
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_reorderVisual(const UBiDiLevel *levels, int32_t length, int32_t *indexMap);
/**
* Invert an index map.
* The one-to-one index mapping of the first map is inverted and written to
* the second one.
*
* @param srcMap is an array with length
indexes
* which define the original mapping.
*
* @param destMap is an array with length
indexes
* which will be filled with the inverse mapping.
*
* @param length is the length of each array.
* @stable ICU 2.0
*/
U_STABLE void U_EXPORT2
ubidi_invertMap(const int32_t *srcMap, int32_t *destMap, int32_t length);
/** option flags for ubidi_writeReordered() */
/**
* option bit for ubidi_writeReordered():
* keep combining characters after their base characters in RTL runs
*
* @see ubidi_writeReordered
* @stable ICU 2.0
*/
#define UBIDI_KEEP_BASE_COMBINING 1
/**
* option bit for ubidi_writeReordered():
* replace characters with the "mirrored" property in RTL runs
* by their mirror-image mappings
*
* @see ubidi_writeReordered
* @stable ICU 2.0
*/
#define UBIDI_DO_MIRRORING 2
/**
* option bit for ubidi_writeReordered():
* surround the run with LRMs if necessary;
* this is part of the approximate "inverse BiDi" algorithm
*
*
This option does not imply corresponding adjustment of the index * mappings.
* * @see ubidi_setInverse * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_INSERT_LRM_FOR_NUMERIC 4 /** * option bit for ubidi_writeReordered(): * remove BiDi control characters * (this does not affect UBIDI_INSERT_LRM_FOR_NUMERIC) * *This option does not imply corresponding adjustment of the index * mappings.
* * @see ubidi_writeReordered * @stable ICU 2.0 */ #define UBIDI_REMOVE_BIDI_CONTROLS 8 /** * option bit for ubidi_writeReordered(): * write the output in reverse order * *This has the same effect as calling ubidi_writeReordered()
* first without this option, and then calling
* ubidi_writeReverse()
without mirroring.
* Doing this in the same step is faster and avoids a temporary buffer.
* An example for using this option is output to a character terminal that
* is designed for RTL scripts and stores text in reverse order.
ubidi_setPara()
. This length may be different from the length
* of the source text if option UBIDI_OPTION_STREAMING
* has been set.
* ubidi_setPara
(which receives unprocessed source
* text) and ubidi_getLength
(which returns the original length
* of the source text).limit
argument of
* ubidi_setLine
charIndex
argument of
* ubidi_getParagraph
charIndex
argument of
* ubidi_getLevelAt
ubidi_getLevels
logicalStart
argument of
* ubidi_getLogicalRun
logicalIndex
argument of
* ubidi_getVisualIndex
*indexMap
argument of
* ubidi_getLogicalMap
ubidi_writeReordered
UBiDi
object.
*
* @return The length of the part of the source text processed by
* the last call to ubidi_setPara
.
* @see ubidi_setPara
* @see UBIDI_OPTION_STREAMING
* @draft ICU 3.6
*/
U_DRAFT int32_t U_EXPORT2
ubidi_getProcessedLength(const UBiDi *pBiDi);
/**
* Get the length of the reordered text resulting from the last call to
* ubidi_setPara()
. This length may be different from the length
* of the source text if option UBIDI_OPTION_INSERT_MARKS
* or option UBIDI_OPTION_REMOVE_CONTROLS
has been set.
* visualIndex
argument of
* ubidi_getLogicalIndex
*indexMap
argument of
* ubidi_getVisualMap
ubidi_writeReordered, or if option
* UBIDI_REORDER_INVERSE_NUMBERS_AS_L has been set.
*
* @param pBiDi is the paragraph UBiDi
object.
*
* @return The length of the reordered text resulting from
* the last call to ubidi_setPara
.
* @see ubidi_setPara
* @see UBIDI_OPTION_INSERT_MARKS
* @see UBIDI_OPTION_REMOVE_CONTROLS
* @draft ICU 3.6
*/
U_DRAFT int32_t U_EXPORT2
ubidi_getResultLength(const UBiDi *pBiDi);
U_CDECL_BEGIN
/**
* value returned by UBiDiClassCallback
callbacks when
* there is no need to override the standard BiDi class for a given code point.
* @see UBiDiClassCallback
* @draft ICU 3.6
*/
#define U_BIDI_CLASS_DEFAULT U_CHAR_DIRECTION_COUNT
/**
* Callback type declaration for overriding default BiDi class values with
* custom ones.
* Usually, the function pointer will be propagated to a UBiDi
* object by calling the ubidi_setClassCallback
function;
* then the callback will be invoked by the UBA implementation any time the
* class of a character is to be determined.
*
* @param context is a pointer to the callback private data.
*
* @param c is the code point to get a BiDi class for.
*
* @return The directional property / BiDi class for the given code point
* c
if the default class has been overridden, or
* U_BIDI_CLASS_DEFAULT
if the standard BiDi class value
* for c
is to be used.
* @see ubidi_setClassCallback
* @see ubidi_getClassCallback
* @draft ICU 3.6
*/
typedef UCharDirection U_CALLCONV
UBiDiClassCallback(const void *context, UChar32 c);
U_CDECL_END
/**
* Retrieve the BiDi class for a given code point.
* If a UBiDiClassCallback
callback is defined and returns a
* value other than U_BIDI_CLASS_DEFAULT
, that value is used;
* otherwise the default class determination mechanism is invoked.
*
* @param pBiDi is the paragraph UBiDi
object.
*
* @param c is the code point whose BiDi class must be retrieved.
*
* @return The BiDi class for character c
based
* on the given pBiDi
instance.
* @see UBiDiClassCallback
* @draft ICU 3.6
*/
U_DRAFT UCharDirection U_EXPORT2
ubidi_getCustomizedClass(UBiDi *pBiDi, UChar32 c);
/**
* Set the callback function and callback data used by the UBA
* implementation for BiDi class determination.
* This may be useful for assigning BiDi classes to PUA characters, or
* for special application needs. For instance, an application may want to
* handle all spaces like L or R characters (according to the base direction)
* when creating the visual ordering of logical lines which are part of a report
* organized in columns: there should not be interaction between adjacent
* cells.
*
* @param pBiDi is the paragraph UBiDi
object.
*
* @param newFn is the new callback function pointer.
*
* @param newContext is the new callback context pointer. This can be NULL.
*
* @param oldFn fillin: Returns the old callback function pointer. This can be
* NULL.
*
* @param oldContext fillin: Returns the old callback's context. This can be
* NULL.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @see ubidi_getClassCallback
* @draft ICU 3.6
*/
U_DRAFT void U_EXPORT2
ubidi_setClassCallback(UBiDi *pBiDi, UBiDiClassCallback *newFn,
const void *newContext, UBiDiClassCallback **oldFn,
const void **oldContext, UErrorCode *pErrorCode);
/**
* Get the current callback function used for BiDi class determination.
*
* @param pBiDi is the paragraph UBiDi
object.
*
* @param fn fillin: Returns the callback function pointer.
*
* @param context fillin: Returns the callback's private context.
*
* @see ubidi_setClassCallback
* @draft ICU 3.6
*/
U_DRAFT void U_EXPORT2
ubidi_getClassCallback(UBiDi *pBiDi, UBiDiClassCallback **fn, const void **context);
/**
* Take a UBiDi
object containing the reordering
* information for a piece of text (one or more paragraphs) set by
* ubidi_setPara()
or for a line of text set by
* ubidi_setLine()
and write a reordered string to the
* destination buffer.
*
* This function preserves the integrity of characters with multiple
* code units and (optionally) modifier letters.
* Characters in RTL runs can be replaced by mirror-image characters
* in the destination buffer. Note that "real" mirroring has
* to be done in a rendering engine by glyph selection
* and that for many "mirrored" characters there are no
* Unicode characters as mirror-image equivalents.
* There are also options to insert or remove BiDi control
* characters; see the description of the destSize
* and options
parameters and of the option bit flags.
*
* @see UBIDI_DO_MIRRORING
* @see UBIDI_INSERT_LRM_FOR_NUMERIC
* @see UBIDI_KEEP_BASE_COMBINING
* @see UBIDI_OUTPUT_REVERSE
* @see UBIDI_REMOVE_BIDI_CONTROLS
*
* @param pBiDi A pointer to a UBiDi
object that
* is set by ubidi_setPara()
or
* ubidi_setLine()
and contains the reordering
* information for the text that it was defined for,
* as well as a pointer to that text.
*
The text was aliased (only the pointer was stored
* without copying the contents) and must not have been modified
* since the ubidi_setPara()
call.
*
* @param dest A pointer to where the reordered text is to be copied.
* The source text and dest[destSize]
* must not overlap.
*
* @param destSize The size of the dest
buffer,
* in number of UChars.
* If the UBIDI_INSERT_LRM_FOR_NUMERIC
* option is set, then the destination length could be
* as large as
* ubidi_getLength(pBiDi)+2*ubidi_countRuns(pBiDi)
.
* If the UBIDI_REMOVE_BIDI_CONTROLS
option
* is set, then the destination length may be less than
* ubidi_getLength(pBiDi)
.
* If none of these options is set, then the destination length
* will be exactly ubidi_getLength(pBiDi)
.
*
* @param options A bit set of options for the reordering that control
* how the reordered text is written.
* The options include mirroring the characters on a code
* point basis and inserting LRM characters, which is used
* especially for transforming visually stored text
* to logically stored text (although this is still an
* imperfect implementation of an "inverse BiDi" algorithm
* because it uses the "forward BiDi" algorithm at its core).
* The available options are:
* #UBIDI_DO_MIRRORING
,
* #UBIDI_INSERT_LRM_FOR_NUMERIC
,
* #UBIDI_KEEP_BASE_COMBINING
,
* #UBIDI_OUTPUT_REVERSE
,
* #UBIDI_REMOVE_BIDI_CONTROLS
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The length of the output string.
*
* @see ubidi_getProcessedLength
* @stable ICU 2.0
*/
U_STABLE int32_t U_EXPORT2
ubidi_writeReordered(UBiDi *pBiDi,
UChar *dest, int32_t destSize,
uint16_t options,
UErrorCode *pErrorCode);
/**
* Reverse a Right-To-Left run of Unicode text.
*
* This function preserves the integrity of characters with multiple
* code units and (optionally) modifier letters.
* Characters can be replaced by mirror-image characters
* in the destination buffer. Note that "real" mirroring has
* to be done in a rendering engine by glyph selection
* and that for many "mirrored" characters there are no
* Unicode characters as mirror-image equivalents.
* There are also options to insert or remove BiDi control
* characters.
*
* This function is the implementation for reversing RTL runs as part
* of ubidi_writeReordered()
. For detailed descriptions
* of the parameters, see there.
* Since no BiDi controls are inserted here, the output string length
* will never exceed srcLength
.
*
* @see ubidi_writeReordered
*
* @param src A pointer to the RTL run text.
*
* @param srcLength The length of the RTL run.
*
* @param dest A pointer to where the reordered text is to be copied.
* src[srcLength]
and dest[destSize]
* must not overlap.
*
* @param destSize The size of the dest
buffer,
* in number of UChars.
* If the UBIDI_REMOVE_BIDI_CONTROLS
option
* is set, then the destination length may be less than
* srcLength
.
* If this option is not set, then the destination length
* will be exactly srcLength
.
*
* @param options A bit set of options for the reordering that control
* how the reordered text is written.
* See the options
parameter in ubidi_writeReordered()
.
*
* @param pErrorCode must be a valid pointer to an error code value.
*
* @return The length of the output string.
* @stable ICU 2.0
*/
U_STABLE int32_t U_EXPORT2
ubidi_writeReverse(const UChar *src, int32_t srcLength,
UChar *dest, int32_t destSize,
uint16_t options,
UErrorCode *pErrorCode);
/*#define BIDI_SAMPLE_CODE*/
/*@}*/
#endif