/* ********************************************************************** * Copyright (C) 1999-2001, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 10/20/99 alan Creation. ********************************************************************** */ #include "unicode/uniset.h" #include "unicode/parsepos.h" #include "unicode/uchar.h" #include "unicode/uscript.h" #include "symtable.h" #include "cmemory.h" #include "rbt_rule.h" #include "upropset.h" #include "util.h" // HIGH_VALUE > all valid values. 110000 for codepoints #define UNICODESET_HIGH 0x0110000 // LOW <= all valid values. ZERO for codepoints #define UNICODESET_LOW 0x000000 // initial storage. Must be >= 0 #define START_EXTRA 16 // extra amount for growth. Must be >= 0 #define GROW_EXTRA START_EXTRA // Define UChar constants using hex for EBCDIC compatibility // Used #define to reduce private static exports and memory access time. #define SET_OPEN ((UChar)0x005B) /*[*/ #define SET_CLOSE ((UChar)0x005D) /*]*/ #define HYPHEN ((UChar)0x002D) /*-*/ #define COMPLEMENT ((UChar)0x005E) /*^*/ #define COLON ((UChar)0x003A) /*:*/ #define BACKSLASH ((UChar)0x005C) /*\*/ #define INTERSECTION ((UChar)0x0026) /*&*/ #define UPPER_U ((UChar)0x0055) /*U*/ #define LOWER_U ((UChar)0x0075) /*u*/ // TEMPORARY: Remove when deprecated category code constructor is removed. static const UChar CATEGORY_NAMES[] = { // Must be kept in sync with uchar.h/UCharCategory 0x43, 0x6E, /* "Cn" */ 0x4C, 0x75, /* "Lu" */ 0x4C, 0x6C, /* "Ll" */ 0x4C, 0x74, /* "Lt" */ 0x4C, 0x6D, /* "Lm" */ 0x4C, 0x6F, /* "Lo" */ 0x4D, 0x6E, /* "Mn" */ 0x4D, 0x65, /* "Me" */ 0x4D, 0x63, /* "Mc" */ 0x4E, 0x64, /* "Nd" */ 0x4E, 0x6C, /* "Nl" */ 0x4E, 0x6F, /* "No" */ 0x5A, 0x73, /* "Zs" */ 0x5A, 0x6C, /* "Zl" */ 0x5A, 0x70, /* "Zp" */ 0x43, 0x63, /* "Cc" */ 0x43, 0x66, /* "Cf" */ 0x43, 0x6F, /* "Co" */ 0x43, 0x73, /* "Cs" */ 0x50, 0x64, /* "Pd" */ 0x50, 0x73, /* "Ps" */ 0x50, 0x65, /* "Pe" */ 0x50, 0x63, /* "Pc" */ 0x50, 0x6F, /* "Po" */ 0x53, 0x6D, /* "Sm" */ 0x53, 0x63, /* "Sc" */ 0x53, 0x6B, /* "Sk" */ 0x53, 0x6F, /* "So" */ 0x50, 0x69, /* "Pi" */ 0x50, 0x66, /* "Pf" */ 0x00 }; /** * Delimiter string used in patterns to close a category reference: * ":]". Example: "[:Lu:]". */ static const UChar CATEGORY_CLOSE[] = {COLON, SET_CLOSE, 0x0000}; /* ":]" */ U_NAMESPACE_BEGIN /** * Minimum value that can be stored in a UnicodeSet. */ const UChar32 UnicodeSet::MIN_VALUE = UNICODESET_LOW; /** * Maximum value that can be stored in a UnicodeSet. */ const UChar32 UnicodeSet::MAX_VALUE = UNICODESET_HIGH - 1; const char UnicodeSet::fgClassID = 0; //---------------------------------------------------------------- // Debugging //---------------------------------------------------------------- // DO NOT DELETE THIS CODE. This code is used to debug memory leaks. // To enable the debugging, define the symbol DEBUG_MEM in the line // below. This will result in text being sent to stdout that looks // like this: // DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85- // DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85- // Each line lists a construction (ct) or destruction (dt) event, the // object address, the number of outstanding objects after the event, // and the pattern of the object in question. // #define DEBUG_MEM #ifdef DEBUG_MEM #include static int32_t _dbgCount = 0; #endif static inline void _dbgct(UnicodeSet* set) { #ifdef DEBUG_MEM UnicodeString str; set->toPattern(str, TRUE); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf); #endif } static inline void _dbgdt(UnicodeSet* set) { #ifdef DEBUG_MEM UnicodeString str; set->toPattern(str, TRUE); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf); #endif } //---------------------------------------------------------------- // Constructors &c //---------------------------------------------------------------- /** * Constructs an empty set. */ UnicodeSet::UnicodeSet() : len(1), capacity(1 + START_EXTRA), bufferCapacity(0), buffer(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); list[0] = UNICODESET_HIGH; _dbgct(this); } /** * Constructs a set containing the given range. If end > * start then an empty set is created. * * @param start first character, inclusive, of range * @param end last character, inclusive, of range */ UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) : len(1), capacity(1 + START_EXTRA), bufferCapacity(0), buffer(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); list[0] = UNICODESET_HIGH; complement(start, end); _dbgct(this); } /** * Constructs a set from the given pattern, optionally ignoring * white space. See the class description for the syntax of the * pattern language. * @param pattern a string specifying what characters are in the set */ UnicodeSet::UnicodeSet(const UnicodeString& pattern, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), buffer(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); applyPattern(pattern, status); _dbgct(this); } // For internal use by RuleBasedTransliterator UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos, const SymbolTable& symbols, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), buffer(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); applyPattern(pattern, pos, &symbols, status); _dbgct(this); } // For internal use by TransliteratorIDParser UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), buffer(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); applyPattern(pattern, pos, NULL, status); _dbgct(this); } /** * DEPRECATED Constructs a set from the given Unicode character category. * @param category an integer indicating the character category as * defined in uchar.h. * @deprecated To be removed after 2002-DEC-31 */ UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), list(0), buffer(0) { static const UChar OPEN[] = { 91, 58, 0 }; // "[:" static const UChar CLOSE[]= { 58, 93, 0 }; // ":]" if (U_SUCCESS(status)) { if (category < 0 || category >= U_CHAR_CATEGORY_COUNT) { status = U_ILLEGAL_ARGUMENT_ERROR; } else { UnicodeString pattern(FALSE, CATEGORY_NAMES + category*2, 2); pattern.insert(0, OPEN); pattern.append(CLOSE); list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); applyPattern(pattern, status); } } _dbgct(this); } /** * Constructs a set that is identical to the given UnicodeSet. */ UnicodeSet::UnicodeSet(const UnicodeSet& o) : UnicodeFilter(o), capacity(o.len + GROW_EXTRA), bufferCapacity(0), buffer(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); *this = o; _dbgct(this); } /** * Destructs the set. */ UnicodeSet::~UnicodeSet() { _dbgdt(this); // first! uprv_free(list); uprv_free(buffer); } /** * Assigns this object to be a copy of another. */ UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) { ensureCapacity(o.len); len = o.len; uprv_memcpy(list, o.list, len*sizeof(UChar32)); pat = o.pat; return *this; } /** * Compares the specified object with this set for equality. Returns * true if the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). * * @param o set to be compared for equality with this set. * @return true if the specified set is equal to this set. */ UBool UnicodeSet::operator==(const UnicodeSet& o) const { if (len != o.len) return FALSE; for (int32_t i = 0; i < len; ++i) { if (list[i] != o.list[i]) return FALSE; } return TRUE; } /** * Returns a copy of this object. All UnicodeMatcher objects have * to support cloning in order to allow classes using * UnicodeMatchers, such as Transliterator, to implement cloning. */ UnicodeFunctor* UnicodeSet::clone() const { return new UnicodeSet(*this); } /** * Returns the hash code value for this set. * * @return the hash code value for this set. * @see Object#hashCode() */ int32_t UnicodeSet::hashCode(void) const { int32_t result = len; for (int32_t i = 0; i < len; ++i) { result *= 1000003; result += list[i]; } return result; } //---------------------------------------------------------------- // Public API //---------------------------------------------------------------- /** * Make this object represent the range start - end. * If end > start then this object is set to an * an empty range. * * @param start first character in the set, inclusive * @rparam end last character in the set, inclusive */ void UnicodeSet::set(UChar32 start, UChar32 end) { clear(); complement(start, end); } /** * Modifies this set to represent the set specified by the given * pattern, optionally ignoring white space. See the class * description for the syntax of the pattern language. * @param pattern a string specifying what characters are in the set * @param ignoreSpaces if true, all spaces in the * pattern are ignored. Spaces are those characters for which * Character.isSpaceChar() is true. * Characters preceded by '\\' are escaped, losing any special * meaning they otherwise have. Spaces may be included by * escaping them. * @exception IllegalArgumentException if the pattern * contains a syntax error. */ void UnicodeSet::applyPattern(const UnicodeString& pattern, UErrorCode& status) { if (U_FAILURE(status)) { return; } ParsePosition pos(0); applyPattern(pattern, pos, NULL, status); if (U_FAILURE(status)) return; // Skip over trailing whitespace int32_t i = pos.getIndex(); int32_t n = pattern.length(); while (itoPattern() representation of a * character to the given StringBuffer. */ void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool useHexEscape) { if (useHexEscape) { // Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything // unprintable if (ICU_Utility::escapeUnprintable(buf, c)) { return; } } // Okay to let ':' pass through switch (c) { case SET_OPEN: case SET_CLOSE: case HYPHEN: case COMPLEMENT: case INTERSECTION: case BACKSLASH: case 123/*{*/: case 125/*}*/: case SymbolTable::SYMBOL_REF: case COLON: buf.append(BACKSLASH); break; default: // Escape whitespace if (u_isspace(c)) { buf.append(BACKSLASH); } break; } buf.append((UChar) c); } /** * Returns a string representation of this set. If the result of * calling this function is passed to a UnicodeSet constructor, it * will produce another set that is equal to this one. */ UnicodeString& UnicodeSet::toPattern(UnicodeString& result, UBool escapeUnprintable) const { result.truncate(0); return _toPattern(result, escapeUnprintable); } /** * Append a string representation of this set to result. This will be * a cleaned version of the string passed to applyPattern(), if there * is one. Otherwise it will be generated. */ UnicodeString& UnicodeSet::_toPattern(UnicodeString& result, UBool escapeUnprintable) const { if (pat.length() > 0) { int32_t i; int32_t backslashCount = 0; for (i=0; i 1 && getRangeStart(0) == MIN_VALUE && getRangeEnd(count-1) == MAX_VALUE) { // Emit the inverse result.append(COMPLEMENT); for (int32_t i = 1; i < count; ++i) { UChar32 start = getRangeEnd(i-1)+1; UChar32 end = getRangeStart(i)-1; _appendToPat(result, start, escapeUnprintable); if (start != end) { result.append(HYPHEN); _appendToPat(result, end, escapeUnprintable); } } } // Default; emit the ranges as pairs else { for (int32_t i = 0; i < count; ++i) { UChar32 start = getRangeStart(i); UChar32 end = getRangeEnd(i); _appendToPat(result, start, escapeUnprintable); if (start != end) { result.append(HYPHEN); _appendToPat(result, end, escapeUnprintable); } } } return result.append(SET_CLOSE); } /** * Returns the number of elements in this set (its cardinality), * n, where 0 <= n <= 65536. * * @return the number of elements in this set (its cardinality). */ int32_t UnicodeSet::size(void) const { int32_t n = 0; int32_t count = getRangeCount(); for (int32_t i = 0; i < count; ++i) { n += getRangeEnd(i) - getRangeStart(i) + 1; } return n; } /** * Returns true if this set contains no elements. * * @return true if this set contains no elements. */ UBool UnicodeSet::isEmpty(void) const { return len == 1; } /** * Returns true if this set contains every character * in the specified range of chars. * If end > start then the results of this method * are undefined. * * @return true if this set contains the specified range * of chars. */ UBool UnicodeSet::contains(UChar32 start, UChar32 end) const { int32_t i = -1; for (;;) { if (start < list[++i]) break; } return ((i & 1) != 0 && end < list[i]); } /** * Returns true if this set contains the specified char. * * @return true if this set contains the specified char. */ UBool UnicodeSet::contains(UChar32 c) const { // Set i to the index of the start item greater than ch // We know we will terminate without length test! // LATER: for large sets, add binary search int32_t i = -1; for (;;) { if (c < list[++i]) break; } return ((i & 1) != 0); // return true if odd } /** * Returns true if this set contains any character whose low byte * is the given value. This is used by RuleBasedTransliterator for * indexing. */ UBool UnicodeSet::matchesIndexValue(uint8_t v) const { /* The index value v, in the range [0,255], is contained in this set if * it is contained in any pair of this set. Pairs either have the high * bytes equal, or unequal. If the high bytes are equal, then we have * aaxx..aayy, where aa is the high byte. Then v is contained if xx <= * v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa. * Then v is contained if xx <= v || v <= yy. (This is identical to the * time zone month containment logic.) */ for (int32_t i=0; icharAt(). * @return an index from 0..size()-1, or -1 */ int32_t UnicodeSet::indexOf(UChar32 c) const { if (c < MIN_VALUE || c > MAX_VALUE) { return -1; } int32_t i = 0; int32_t n = 0; for (;;) { UChar32 start = list[i++]; if (c < start) { return -1; } UChar32 limit = list[i++]; if (c < limit) { return n + c - start; } n += limit - start; } } /** * Returns the character at the given index within this set, where * the set is ordered by ascending code point. If the index is * out of range, return (UChar32)-1. The inverse of this method is * indexOf(). * @param index an index from 0..size()-1 * @return the character at the given index, or (UChar32)-1. */ UChar32 UnicodeSet::charAt(int32_t index) const { if (index >= 0) { // len2 is the largest even integer <= len, that is, it is len // for even values and len-1 for odd values. With odd values // the last entry is UNICODESET_HIGH. int32_t len2 = len & ~1; for (int32_t i=0; i < len2;) { UChar32 start = list[i++]; int32_t count = list[i++] - start; if (index < count) { return (UChar32)(start + index); } index -= count; } } return (UChar32)-1; } /** * Adds the specified range to this set if it is not already * present. If this set already contains the specified range, * the call leaves this set unchanged. If end > start * then an empty range is added, leaving the set unchanged. * * @param start first character, inclusive, of range to be added * to this set. * @param end last character, inclusive, of range to be added * to this set. */ void UnicodeSet::add(UChar32 start, UChar32 end) { if (start <= end) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; add(range, 2, 0); } } /** * Adds the specified character to this set if it is not already * present. If this set already contains the specified character, * the call leaves this set unchanged. */ void UnicodeSet::add(UChar32 c) { add(c, c); } /** * Retain only the elements in this set that are contained in the * specified range. If end > start then an empty range is * retained, leaving the set empty. * * @param start first character, inclusive, of range to be retained * to this set. * @param end last character, inclusive, of range to be retained * to this set. */ void UnicodeSet::retain(UChar32 start, UChar32 end) { if (start <= end) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 0); } else { clear(); } } void UnicodeSet::retain(UChar32 c) { retain(c, c); } /** * Removes the specified range from this set if it is present. * The set will not contain the specified range once the call * returns. If end > start then an empty range is * removed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ void UnicodeSet::remove(UChar32 start, UChar32 end) { if (start <= end) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 2); } } /** * Removes the specified character from this set if it is present. * The set will not contain the specified range once the call * returns. */ void UnicodeSet::remove(UChar32 c) { remove(c, c); } /** * Complements the specified range in this set. Any character in * the range will be removed if it is in this set, or will be * added if it is not in this set. If end > start * then an empty range is xor'ed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ void UnicodeSet::complement(UChar32 start, UChar32 end) { if (start <= end) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; exclusiveOr(range, 2, 0); } } void UnicodeSet::complement(UChar32 c) { complement(c, c); } /** * Returns true if the specified set is a subset * of this set. * * @param c set to be checked for containment in this set. * @return true if this set contains all of the elements of the * specified set. */ UBool UnicodeSet::containsAll(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int i=0; iunion of the two * sets. The behavior of this operation is unspecified if the specified * collection is modified while the operation is in progress. * * @param c set whose elements are to be added to this set. * @see #add(char, char) */ void UnicodeSet::addAll(const UnicodeSet& c) { add(c.list, c.len, 0); } /** * Retains only the elements in this set that are contained in the * specified set. In other words, removes from this set all of * its elements that are not contained in the specified set. This * operation effectively modifies this set so that its value is * the intersection of the two sets. * * @param c set that defines which elements this set will retain. */ void UnicodeSet::retainAll(const UnicodeSet& c) { retain(c.list, c.len, 0); } /** * Removes from this set all of its elements that are contained in the * specified set. This operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * * @param c set that defines which elements will be removed from * this set. */ void UnicodeSet::removeAll(const UnicodeSet& c) { retain(c.list, c.len, 2); } /** * Complements in this set all elements contained in the specified * set. Any character in the other set will be removed if it is * in this set, or will be added if it is not in this set. * * @param c set that defines which elements will be xor'ed from * this set. */ void UnicodeSet::complementAll(const UnicodeSet& c) { exclusiveOr(c.list, c.len, 0); } /** * Inverts this set. This operation modifies this set so that its * value is its complement. This is equivalent to the pseudo * code: this = new UnicodeSet(UnicodeSet.MIN_VALUE, * UnicodeSet.MAX_VALUE).removeAll(this). */ void UnicodeSet::complement(void) { if (list[0] == UNICODESET_LOW) { ensureBufferCapacity(len-1); uprv_memcpy(buffer, list + 1, (len-1)*sizeof(UChar32)); --len; } else { ensureBufferCapacity(len+1); uprv_memcpy(buffer + 1, list, len*sizeof(UChar32)); buffer[0] = UNICODESET_LOW; ++len; } swapBuffers(); pat.truncate(0); } /** * Removes all of the elements from this set. This set will be * empty after this call returns. */ void UnicodeSet::clear(void) { list[0] = UNICODESET_HIGH; len = 1; pat.truncate(0); } /** * Iteration method that returns the number of ranges contained in * this set. * @see #getRangeStart * @see #getRangeEnd */ int32_t UnicodeSet::getRangeCount() const { return len/2; } /** * Iteration method that returns the first character in the * specified range of this set. * @see #getRangeCount * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeStart(int32_t index) const { return list[index*2]; } /** * Iteration method that returns the last character in the * specified range of this set. * @see #getRangeStart * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeEnd(int32_t index) const { return list[index*2 + 1] - 1; } /** * Reallocate this objects internal structures to take up the least * possible space, without changing this object's value. */ void UnicodeSet::compact() { if (len != capacity) { capacity = len; UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); uprv_memcpy(temp, list, len*sizeof(UChar32)); uprv_free(list); list = temp; } uprv_free(buffer); buffer = NULL; } //---------------------------------------------------------------- // Implementation: Pattern parsing //---------------------------------------------------------------- /** * Parses the given pattern, starting at the given position. The * character at pattern.charAt(pos.getIndex()) must be '[', or the * parse fails. Parsing continues until the corresponding closing * ']'. If a syntax error is encountered between the opening and * closing brace, the parse fails. Upon return from a successful * parse, the ParsePosition is updated to point to the character * following the closing ']', and a StringBuffer containing a * pairs list for the parsed pattern is returned. This method calls * itself recursively to parse embedded subpatterns. * * @param pattern the string containing the pattern to be parsed. * The portion of the string from pos.getIndex(), which must be a * '[', to the corresponding closing ']', is parsed. * @param pos upon entry, the position at which to being parsing. * The character at pattern.charAt(pos.getIndex()) must be a '['. * Upon return from a U_SUCCESSful parse, pos.getIndex() is either * the character after the closing ']' of the parsed pattern, or * pattern.length() if the closing ']' is the last character of * the pattern string. * @return a StringBuffer containing a pairs list for the parsed * substring of pattern * @exception IllegalArgumentException if the parse fails. */ void UnicodeSet::applyPattern(const UnicodeString& pattern, ParsePosition& pos, const SymbolTable* symbols, UErrorCode& status) { if (U_FAILURE(status)) { return; } // Need to build the pattern in a temporary string because // _applyPattern calls add() etc., which set pat to empty. UnicodeString rebuiltPat; _applyPattern(pattern, pos, symbols, rebuiltPat, status); pat = rebuiltPat; } void UnicodeSet::_applyPattern(const UnicodeString& pattern, ParsePosition& pos, const SymbolTable* symbols, UnicodeString& rebuiltPat, UErrorCode& status) { if (U_FAILURE(status)) { return; } // If the pattern contains any of the following, we save a // rebuilt (variable-substituted) copy of the source pattern: // - a category // - an intersection or subtraction operator // - an anchor (trailing '$', indicating RBT ether) UBool rebuildPattern = FALSE; UnicodeString newPat(SET_OPEN); int32_t nestedPatStart = - 1; // see below for usage UBool nestedPatDone = FALSE; // see below for usage UBool invert = FALSE; clear(); const UChar32 NONE = (UChar32) -1; UChar32 lastChar = NONE; // This is either a char (0..10FFFF) or NONE UBool isLastLiteral = FALSE; // TRUE if lastChar was a literal UChar lastOp = 0; /* This loop iterates over the characters in the pattern. We start at * the position specified by pos. We exit the loop when either a * matching closing ']' is seen, or we read all characters of the * pattern. In the latter case an error will be thrown. */ /* Pattern syntax: * pat := '[' '^'? elem* ']' * elem := a | a '-' a | set | set op set * set := pat | (a set variable) * op := '&' | '-' * a := (a character, possibly defined by a var) */ // mode 0: No chars parsed yet; next must be '[' // mode 1: '[' seen; if next is '^' or ':' then special // mode 2: '[' '^'? seen; parse pattern and close with ']' // mode 3: '[:' seen; parse category and close with ':]' // mode 4: ']' seen; parse complete // mode 5: Top-level property pattern seen int8_t mode = 0; int32_t i = pos.getIndex(); int32_t limit = pattern.length(); UnicodeSet nestedAux; const UnicodeSet* nestedSet; // never owned UnicodeString scratch; /* In the case of an embedded SymbolTable variable, we look it up and * then take characters from the resultant char[] array. These chars * are subjected to an extra level of lookup in the SymbolTable in case * they are stand-ins for a nested UnicodeSet. */ const UnicodeString* varValueBuffer = NULL; int32_t ivarValueBuffer = 0; int32_t anchor = 0; UChar32 c; while (ilength()) { c = varValueBuffer->char32At(ivarValueBuffer); ivarValueBuffer += UTF_CHAR_LENGTH(c); const UnicodeFunctor *m = symbols->lookupMatcher(c); // may be NULL if (m != NULL && m->getDynamicClassID() != UnicodeSet::getStaticClassID()) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } nestedSet = (UnicodeSet*) m; nestedPatDone = FALSE; } else { varValueBuffer = NULL; c = pattern.char32At(i); i += UTF_CHAR_LENGTH(c); } } else { c = pattern.char32At(i); i += UTF_CHAR_LENGTH(c); } // Ignore whitespace. This is not Unicode whitespace, but Java // whitespace, a subset of Unicode whitespace. if (u_isspace(c)) { continue; } // Keep track of the count of characters after an alleged anchor if (anchor > 0) { ++anchor; } // Parse the opening '[' and optional following '^' switch (mode) { case 0: if (UnicodePropertySet::resemblesPattern(pattern, i-1)) { mode = 3; break; // Fall through } else if (c == SET_OPEN) { mode = 1; // Next look for '^' or ':' continue; } else { // throw new IllegalArgumentException("Missing opening '['"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } case 1: mode = 2; switch (c) { case COMPLEMENT: invert = TRUE; newPat.append(c); continue; // Back to top to fetch next character case HYPHEN: isLiteral = TRUE; // Treat leading '-' as a literal break; // Fall through } // else fall through and parse this character normally } // After opening matter is parsed ("[", "[^", or "[:"), the mode // will be 2 if we want a closing ']', or 3 if we should parse a // category and close with ":]". // Only process escapes, variable references, and nested sets // if we are _not_ retrieving characters from the variable // buffer. Characters in the variable buffer have already // benn through escape and variable reference processing. if (varValueBuffer == NULL) { /** * Handle property set patterns. */ if (UnicodePropertySet::resemblesPattern(pattern, i-1)) { ParsePosition pp(i-1); UnicodeSet *s = UnicodePropertySet::createFromPattern(pattern, pp); if (s == NULL) { // assert(pp.getIndex() == i-1); //throw new IllegalArgumentException("Invalid property pattern " + // pattern.substring(i-1)); status = U_INVALID_PROPERTY_PATTERN; return; } // TODO This is very inefficient. We create a new UnicodeSet, // then do an assignment, then delete it. Clean this up in // the future so that either (1) we just use the new set // directly, and delete it when we're done, or (2) even better, // UnicodePropertySet takes an existing set. nestedAux = *s; delete s; nestedSet = &nestedAux; nestedPatStart = newPat.length(); nestedPatDone = TRUE; // we're going to do it just below switch (lastOp) { case HYPHEN: case INTERSECTION: newPat.append(lastOp); break; } // If we have a top-level property pattern, then trim // off the opening '[' and use the property pattern // as the entire pattern. if (mode == 3) { newPat.truncate(0); } UnicodeString str; pattern.extractBetween(i-1, pp.getIndex(), str); newPat.append(str); rebuildPattern = TRUE; i = pp.getIndex(); // advance past property pattern if (mode == 3) { // Entire pattern is a category; leave parse // loop. This is one of 2 ways we leave this // loop if the pattern is well-formed. *this = nestedAux; mode = 5; break; } } /* Handle escapes. If a character is escaped, then it assumes its * literal value. This is true for all characters, both special * characters and characters with no special meaning. We also * interpret '\\uxxxx' Unicode escapes here (as literals). */ else if (c == BACKSLASH) { UChar32 escaped = pattern.unescapeAt(i); if (escaped == (UChar32) -1) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } isLiteral = TRUE; c = escaped; } /* Parse variable references. These are treated as literals. If a * variable refers to a UnicodeSet, its stand in character is * returned in the UChar[] buffer. * Variable names are only parsed if varNameToChar is not null. * Set variables are only looked up if varCharToSet is not null. */ else if (symbols != NULL && !isLiteral && c == SymbolTable::SYMBOL_REF) { pos.setIndex(i); UnicodeString name = symbols->parseReference(pattern, pos, limit); if (name.length() != 0) { varValueBuffer = symbols->lookup(name); if (varValueBuffer == NULL) { //throw new IllegalArgumentException("Undefined variable: " // + name); status = U_ILLEGAL_ARGUMENT_ERROR; return; } ivarValueBuffer = 0; i = pos.getIndex(); // Make i point PAST last char of var name } else { // Got a null; this means we have an isolated $. // Tentatively assume this is an anchor. anchor = 1; } continue; // Back to the top to get varValueBuffer[0] } /* An opening bracket indicates the first bracket of a nested * subpattern. */ else if (!isLiteral && c == SET_OPEN) { // Record position before nested pattern nestedPatStart = newPat.length(); // Recurse to get the pairs for this nested set. // Backup i to '['. pos.setIndex(--i); switch (lastOp) { case HYPHEN: case INTERSECTION: newPat.append(lastOp); break; } nestedAux._applyPattern(pattern, pos, symbols, newPat, status); nestedSet = &nestedAux; nestedPatDone = TRUE; if (U_FAILURE(status)) { return; } i = pos.getIndex(); } } /* At this point we have either a character c, or a nested set. If * we have encountered a nested set, either embedded in the pattern, * or as a variable, we have a non-null nestedSet, and c should be * ignored. Otherwise c is the current character, and isLiteral * indicates whether it is an escaped literal (or variable) or a * normal unescaped character. Unescaped characters '-', '&', and * ']' have special meanings. */ if (nestedSet != NULL) { if (lastChar != NONE) { if (lastOp != 0) { // throw new IllegalArgumentException("Illegal rhs for " + lastChar + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return; } add(lastChar, lastChar); if (nestedPatDone) { // If there was a character before the nested set, // then we need to insert it in newPat before the // pattern for the nested set. This position was // recorded in nestedPatStart. UnicodeString s; _appendToPat(s, lastChar, FALSE); newPat.insert(nestedPatStart, s); } else { _appendToPat(newPat, lastChar, FALSE); } lastChar = NONE; } switch (lastOp) { case HYPHEN: removeAll(*nestedSet); break; case INTERSECTION: retainAll(*nestedSet); break; case 0: addAll(*nestedSet); break; } // Get the pattern for the nested set, if we haven't done so // already. if (!nestedPatDone) { if (lastOp != 0) { newPat.append(lastOp); } nestedSet->_toPattern(newPat, FALSE); } rebuildPattern = TRUE; lastOp = 0; } else if (!isLiteral && c == SET_CLOSE) { // Final closing delimiter. This is one of 2 ways we // leave this loop if the pattern is well-formed. if (anchor > 2 || anchor == 1) { //throw new IllegalArgumentException("Syntax error near $" + pattern); status = U_ILLEGAL_ARGUMENT_ERROR; return; } if (anchor == 2) { rebuildPattern = TRUE; newPat.append((UChar)SymbolTable::SYMBOL_REF); add(TransliterationRule::ETHER); } mode = 4; break; } else if (lastOp == 0 && !isLiteral && (c == HYPHEN || c == INTERSECTION)) { // assert(c <= 0xFFFF); lastOp = (UChar) c; } else if (lastOp == HYPHEN) { if (lastChar >= c) { // Don't allow redundant (a-a) or empty (b-a) ranges; // these are most likely typos. //throw new IllegalArgumentException("Invalid range " + lastChar + // '-' + c); status = U_ILLEGAL_ARGUMENT_ERROR; return; } add(lastChar, c); _appendToPat(newPat, lastChar, FALSE); newPat.append(HYPHEN); _appendToPat(newPat, c, FALSE); lastOp = 0; lastChar = NONE; } else if (lastOp != 0) { // We have & or & // throw new IllegalArgumentException("Unquoted " + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return; } else { if (lastChar != NONE) { // We have add(lastChar, lastChar); _appendToPat(newPat, lastChar, FALSE); } lastChar = c; isLastLiteral = isLiteral; } } if (mode < 4) { // throw new IllegalArgumentException("Missing ']'"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } // Treat a trailing '$' as indicating ETHER. This code is only // executed if symbols == NULL; otherwise other code parses the // anchor. if (lastChar == (UChar)SymbolTable::SYMBOL_REF && !isLastLiteral) { rebuildPattern = TRUE; newPat.append(lastChar); add(TransliterationRule::ETHER); } else if (lastChar != NONE) { add(lastChar, lastChar); _appendToPat(newPat, lastChar, FALSE); } // Handle unprocessed stuff preceding the closing ']' if (lastOp == HYPHEN) { // Trailing '-' is treated as literal add(lastOp, lastOp); newPat.append(HYPHEN); } else if (lastOp == INTERSECTION) { // throw new IllegalArgumentException("Unquoted trailing " + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return; } if (mode == 4) { newPat.append(SET_CLOSE); } /** * If we saw a '^' after the initial '[' of this pattern, then perform * the complement. (Inversion after '[:' is handled elsewhere.) */ if (invert) { complement(); } pos.setIndex(i); // Use the rebuilt pattern (newPat) only if necessary. Prefer the // generated pattern. if (rebuildPattern) { rebuiltPat.append(newPat); } else { _generatePattern(rebuiltPat, FALSE); } } //---------------------------------------------------------------- // Implementation: Utility methods //---------------------------------------------------------------- void UnicodeSet::ensureCapacity(int32_t newLen) { if (newLen <= capacity) return; capacity = newLen + GROW_EXTRA; UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); uprv_memcpy(temp, list, len*sizeof(UChar32)); uprv_free(list); list = temp; } void UnicodeSet::ensureBufferCapacity(int32_t newLen) { if (buffer != NULL && newLen <= bufferCapacity) return; uprv_free(buffer); bufferCapacity = newLen + GROW_EXTRA; buffer = (UChar32*) uprv_malloc(sizeof(UChar32) * bufferCapacity); } /** * Swap list and buffer. */ void UnicodeSet::swapBuffers(void) { // swap list and buffer UChar32* temp = list; list = buffer; buffer = temp; int32_t c = capacity; capacity = bufferCapacity; bufferCapacity = c; } //---------------------------------------------------------------- // Implementation: Fundamental operators //---------------------------------------------------------------- static inline UChar32 max(UChar32 a, UChar32 b) { return (a > b) ? a : b; } // polarity = 0, 3 is normal: x xor y // polarity = 1, 2: x xor ~y == x === y void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) { ensureBufferCapacity(len + otherLen); int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b; if (polarity == 1 || polarity == 2) { b = UNICODESET_LOW; if (other[j] == UNICODESET_LOW) { // skip base if already LOW ++j; b = other[j]; } } else { b = other[j++]; } // simplest of all the routines // sort the values, discarding identicals! for (;;) { if (a < b) { buffer[k++] = a; a = list[i++]; } else if (b < a) { buffer[k++] = b; b = other[j++]; } else if (a != UNICODESET_HIGH) { // at this point, a == b // discard both values! a = list[i++]; b = other[j++]; } else { // DONE! buffer[k++] = UNICODESET_HIGH; len = k; break; } } swapBuffers(); pat.truncate(0); } // polarity = 0 is normal: x union y // polarity = 2: x union ~y // polarity = 1: ~x union y // polarity = 3: ~x union ~y void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) { ensureBufferCapacity(len + otherLen); int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; take lower if unequal if (a < b) { // take a // Back up over overlapping ranges in buffer[] if (k > 0 && a <= buffer[k-1]) { // Pick latter end value in buffer[] vs. list[] a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; // Common if/else code factored out polarity ^= 1; } else if (b < a) { // take b if (k > 0 && b <= buffer[k-1]) { b = max(other[j], buffer[--k]); } else { buffer[k++] = b; b = other[j]; } j++; polarity ^= 2; } else { // a == b, take a, drop b if (a == UNICODESET_HIGH) goto loop_end; // This is symmetrical; it doesn't matter if // we backtrack with a or b. - liu if (k > 0 && a <= buffer[k-1]) { a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take higher if unequal, and drop other if (b <= a) { // take a if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; } else { // take b if (b == UNICODESET_HIGH) goto loop_end; buffer[k++] = b; } a = list[i++]; polarity ^= 1; // factored common code b = other[j++]; polarity ^= 2; break; case 1: // a second, b first; if b < a, overlap if (a < b) { // no overlap, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, drop b b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, drop a a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); pat.truncate(0); } // polarity = 0 is normal: x intersect y // polarity = 2: x intersect ~y == set-minus // polarity = 1: ~x intersect y // polarity = 3: ~x intersect ~y void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) { ensureBufferCapacity(len + otherLen); int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; drop the smaller if (a < b) { // drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // drop b b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take lower if unequal if (a < b) { // take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 1: // a second, b first; if (a < b) { // NO OVERLAP, drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, drop b b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); pat.truncate(0); } U_NAMESPACE_END