// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * Copyright (C) 1996-2016, International Business Machines Corporation and * others. All Rights Reserved. ******************************************************************************* */ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "itrbnf.h" #include "unicode/umachine.h" #include "unicode/tblcoll.h" #include "unicode/coleitr.h" #include "unicode/ures.h" #include "unicode/ustring.h" #include "unicode/decimfmt.h" #include "unicode/udata.h" #include "cmemory.h" #include "putilimp.h" #include "testutil.h" #include // import com.ibm.text.RuleBasedNumberFormat; // import com.ibm.test.TestFmwk; // import java.util.Locale; // import java.text.NumberFormat; // current macro not in icu1.8.1 #define TESTCASE(id,test) \ case id: \ name = #test; \ if (exec) { \ logln(#test "---"); \ logln(); \ test(); \ } \ break void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) { if (exec) logln("TestSuite RuleBasedNumberFormat"); switch (index) { #if U_HAVE_RBNF TESTCASE(0, TestEnglishSpellout); TESTCASE(1, TestOrdinalAbbreviations); TESTCASE(2, TestDurations); TESTCASE(3, TestSpanishSpellout); TESTCASE(4, TestFrenchSpellout); TESTCASE(5, TestSwissFrenchSpellout); TESTCASE(6, TestItalianSpellout); TESTCASE(7, TestGermanSpellout); TESTCASE(8, TestThaiSpellout); TESTCASE(9, TestAPI); TESTCASE(10, TestFractionalRuleSet); TESTCASE(11, TestSwedishSpellout); TESTCASE(12, TestBelgianFrenchSpellout); TESTCASE(13, TestSmallValues); TESTCASE(14, TestLocalizations); TESTCASE(15, TestAllLocales); TESTCASE(16, TestHebrewFraction); TESTCASE(17, TestPortugueseSpellout); TESTCASE(18, TestMultiplierSubstitution); TESTCASE(19, TestSetDecimalFormatSymbols); TESTCASE(20, TestPluralRules); TESTCASE(21, TestMultiplePluralRules); TESTCASE(22, TestInfinityNaN); TESTCASE(23, TestVariableDecimalPoint); TESTCASE(24, TestLargeNumbers); TESTCASE(25, TestCompactDecimalFormatStyle); TESTCASE(26, TestParseFailure); TESTCASE(27, TestMinMaxIntegerDigitsIgnored); #else TESTCASE(0, TestRBNFDisabled); #endif default: name = ""; break; } } #if U_HAVE_RBNF void IntlTestRBNF::TestHebrewFraction() { // this is the expected output for 123.45, with no '<' in it. UChar text1[] = { 0x05de, 0x05d0, 0x05d4, 0x0020, 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, 0x05d7, 0x05de, 0x05e9, 0x0000, }; UChar text2[] = { 0x05DE, 0x05D0, 0x05D4, 0x0020, 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, 0x05D0, 0x05E4, 0x05E1, 0x0020, 0x05D0, 0x05E4, 0x05E1, 0x0020, 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, 0x05D7, 0x05DE, 0x05E9, 0x0000, }; UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status); if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status)); delete formatter; return; } UnicodeString result; Formattable parseResult; ParsePosition pp(0); { UnicodeString expected(text1); formatter->format(123.45, result); if (result != expected) { errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); } else { // formatter->parse(result, parseResult, pp); // if (parseResult.getDouble() != 123.45) { // errln("expected 123.45 but got: %g", parseResult.getDouble()); // } } } { UnicodeString expected(text2); result.remove(); formatter->format(123.0045, result); if (result != expected) { errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); } else { pp.setIndex(0); // formatter->parse(result, parseResult, pp); // if (parseResult.getDouble() != 123.0045) { // errln("expected 123.0045 but got: %g", parseResult.getDouble()); // } } } delete formatter; } void IntlTestRBNF::TestAPI() { // This test goes through the APIs that were not tested before. // These tests are too small to have separate test classes/functions UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { dataerrln("Unable to create formatter. - %s", u_errorName(status)); delete formatter; return; } logln("RBNF API test starting"); // test clone { logln("Testing Clone"); RuleBasedNumberFormat* rbnfClone = formatter->clone(); if(rbnfClone != NULL) { if(!(*rbnfClone == *formatter)) { errln("Clone should be semantically equivalent to the original!"); } delete rbnfClone; } else { errln("Cloning failed!"); } } // test assignment { logln("Testing assignment operator"); RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); assignResult = *formatter; if(!(assignResult == *formatter)) { errln("Assignment result should be semantically equivalent to the original!"); } } // test rule constructor { logln("Testing rule constructor"); LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status)); if(U_FAILURE(status)) { errln("Unable to access resource bundle with data!"); } else { int32_t ruleLen = 0; int32_t len = 0; LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status)); LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status)); UnicodeString desc; while (ures_hasNext(ruleSets.getAlias())) { const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status); ruleLen += len; desc.append(currentString); } const UChar *spelloutRules = desc.getTerminatedBuffer(); if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { errln("Unable to access the rules string!"); } else { UParseError perror; RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); if(!(ruleCtorResult == *formatter)) { errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); } // Jitterbug 4452, for coverage RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status); if(!(nf == *formatter)) { errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); } } } } // test getRules { logln("Testing getRules function"); UnicodeString rules = formatter->getRules(); UParseError perror; RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); if(!(fromRulesResult == *formatter)) { errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); } } { logln("Testing copy constructor"); RuleBasedNumberFormat copyCtorResult(*formatter); if(!(copyCtorResult == *formatter)) { errln("Copy constructor result result should be semantically equivalent to the original!"); } } #if !UCONFIG_NO_COLLATION // test ruleset names { logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); if(noOfRuleSetNames == 0) { errln("Number of rule set names should be more than zero"); } UnicodeString ruleSetName; int32_t i = 0; int32_t intFormatNum = 34567; double doubleFormatNum = 893411.234; logln("number of rule set names is %i", noOfRuleSetNames); for(i = 0; i < noOfRuleSetNames; i++) { FieldPosition pos1, pos2; UnicodeString intFormatResult, doubleFormatResult; Formattable intParseResult, doubleParseResult; ruleSetName = formatter->getRuleSetName(i); log("Rule set name %i is ", i); log(ruleSetName); logln(". Format results are: "); intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); if(U_FAILURE(status)) { errln("Format using a rule set failed"); break; } logln(intFormatResult); logln(doubleFormatResult); formatter->setLenient(TRUE); formatter->parse(intFormatResult, intParseResult, status); formatter->parse(doubleFormatResult, doubleParseResult, status); logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); formatter->setLenient(FALSE); formatter->parse(intFormatResult, intParseResult, status); formatter->parse(doubleFormatResult, doubleParseResult, status); logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); if(U_FAILURE(status)) { errln("Error during parsing"); } intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); if(U_SUCCESS(status)) { errln("Using invalid rule set name should have failed"); break; } status = U_ZERO_ERROR; doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); if(U_SUCCESS(status)) { errln("Using invalid rule set name should have failed"); break; } status = U_ZERO_ERROR; } status = U_ZERO_ERROR; } #endif // test API UnicodeString expected("four point five",""); logln("Testing format(double)"); UnicodeString result; formatter->format(4.5,result); if(result != expected) { errln("Formatted 4.5, expected " + expected + " got " + result); } else { logln("Formatted 4.5, expected " + expected + " got " + result); } result.remove(); expected = "four"; formatter->format((int32_t)4,result); if(result != expected) { errln("Formatted 4, expected " + expected + " got " + result); } else { logln("Formatted 4, expected " + expected + " got " + result); } result.remove(); FieldPosition pos; formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); if(result != expected) { errln("Formatted 4 int64_t, expected " + expected + " got " + result); } else { logln("Formatted 4 int64_t, expected " + expected + " got " + result); } //Jitterbug 4452, for coverage result.remove(); FieldPosition pos2; formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR); if(result != expected) { errln("Formatted 4 int64_t, expected " + expected + " got " + result); } else { logln("Formatted 4 int64_t, expected " + expected + " got " + result); } // clean up logln("Cleaning up"); delete formatter; } /** * Perform a simple spot check on the parsing going into an infinite loop for alternate rules. */ void IntlTestRBNF::TestMultiplePluralRules() { // This is trying to model the feminine form, but don't worry about the details too much. // We're trying to test the plural rules where there are different prefixes. UnicodeString rules("%spellout-cardinal-feminine-genitive:" "0: zero;" "1: ono;" "2: two;" "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" "%spellout-cardinal-feminine:" "x.x: [<< $(cardinal,one{singleton}other{plurality})$ ]>%%fractions>;" "0: zero;" "1: one;" "2: two;" "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" "%%fractions:" "10: <%spellout-cardinal-feminine< $(cardinal,one{oneth}other{tenth})$;" "100: <%spellout-cardinal-feminine< $(cardinal,one{1hundredth}other{hundredth})$;"); UErrorCode status = U_ZERO_ERROR; UParseError pError; RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status); Formattable result; UnicodeString resultStr; FieldPosition pos; if (U_FAILURE(status)) { dataerrln("Unable to create formatter - %s", u_errorName(status)); return; } formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status); if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong()); errln(resultStr); } resultStr.remove(); formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status); if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) { errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong()); errln(resultStr); } resultStr.remove(); formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status); if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong()); errln(resultStr); } static const char* const testData[][2] = { { "0", "zero" }, { "1", "one" }, { "2", "two" }, { "0.1", "one oneth" }, { "0.2", "two tenth" }, { "1.1", "one singleton one oneth" }, { "1.2", "one singleton two tenth" }, { "2.1", "two plurality one oneth" }, { "2.2", "two plurality two tenth" }, { "0.01", "one 1hundredth" }, { "0.02", "two hundredth" }, { NULL, NULL } }; doTest(&formatter, testData, TRUE); } void IntlTestRBNF::TestFractionalRuleSet() { UnicodeString fracRules( "%main:\n" // this rule formats the number if it's 1 or more. It formats // the integral part using a DecimalFormat ("#,##0" puts // thousands separators in the right places) and the fractional // part using %%frac. If there is no fractional part, it // just shows the integral part. " x.0: <#,##0<[ >%%frac>];\n" // this rule formats the number if it's between 0 and 1. It // shows only the fractional part (0.5 shows up as "1/2," not // "0 1/2") " 0.x: >%%frac>;\n" // the fraction rule set. This works the same way as the one in the // preceding example: We multiply the fractional part of the number // being formatted by each rule's base value and use the rule that // produces the result closest to 0 (or the first rule that produces 0). // Since we only provide rules for the numbers from 2 to 10, we know // we'll get a fraction with a denominator between 2 and 10. // "<0<" causes the numerator of the fraction to be formatted // using numerals "%%frac:\n" " 2: 1/2;\n" " 3: <0 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); // unsigned < LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); // unsigned >= LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); // unsigned <= LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); // operator> LLAssert(llong(1, 1) > llong(1, 0)); LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); LLAssert(llong(1, 0) > llong(0, 0xffffffff)); LLAssert(llong(0, 0) > llong(0x80000000, 1)); // operator< LLAssert(llong(1, 0) < llong(1, 1)); LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); LLAssert(llong(0, 0xffffffff) < llong(1, 0)); LLAssert(llong(0x80000000, 1) < llong(0, 0)); // operator>= LLAssert(llong(1, 1) >= llong(1, 0)); LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); LLAssert(llong(0, 0) >= llong(0x80000000, 1)); LLAssert(llong() >= llong(0, 0)); LLAssert(llong(1,0) >= llong(1, 0)); LLAssert(llong(0,1) >= llong(0, 1)); // operator<= LLAssert(llong(1, 0) <= llong(1, 1)); LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); LLAssert(llong(0x80000000, 1) <= llong(0, 0)); LLAssert(llong() <= llong(0, 0)); LLAssert(llong(1,0) <= llong(1, 0)); LLAssert(llong(0,1) <= llong(0, 1)); // operator==(int32) LLAssert(llong() == (int32_t)0); LLAssert(llong(0,1) == (int32_t)1); // operator!=(int32) LLAssert(llong(1,0) != (int32_t)0); LLAssert(llong(0,1) != (int32_t)2); LLAssert(llong(0,0xffffffff) != (int32_t)-1); llong negOne(0xffffffff, 0xffffffff); // operator>(int32) LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); LLAssert(negOne > (int32_t)-2); LLAssert(llong(1, 0) > (int32_t)0x7fffffff); LLAssert(llong(0, 0) > (int32_t)-1); // operator<(int32) LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); // operator>=(int32) LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); LLAssert(negOne >= (int32_t)-2); LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); LLAssert(llong(0, 0) >= (int32_t)-1); LLAssert(llong() >= (int32_t)0); LLAssert(llong(0,1) >= (int32_t)1); // operator<=(int32) LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); LLAssert(llong() <= (int32_t)0); LLAssert(llong(0,1) <= (int32_t)1); // operator= LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); // operator <<= LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used // operator << LLAssert((llong((int32_t)1) << 5).asUInt() == 32); // operator >>= (sign extended) LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used // operator >> sign extended) LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); // ushr (right shift without sign extension) LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used // operator&(llong) LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); // operator|(llong) LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); // operator^(llong) LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); // operator&(uint32) LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); // operator|(uint32) LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); // operator^(uint32) LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); // operator~ LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); // operator&=(llong) LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); // operator|=(llong) LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); // operator^=(llong) LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); // operator&=(uint32) LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); // operator|=(uint32) LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); // operator^=(uint32) LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); // prefix inc LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); // prefix dec LLAssert(llong(0,0xffffffff) == --llong(1, 0)); // postfix inc { llong n(0, 0xffffffff); LLAssert(llong(0, 0xffffffff) == n++); LLAssert(llong(1, 0) == n); } // postfix dec { llong n(1, 0); LLAssert(llong(1, 0) == n--); LLAssert(llong(0, 0xffffffff) == n); } // unary minus LLAssert(llong(0, 0) == -llong(0, 0)); LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow // operator-= { llong n; LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); LLAssert(n == llong(0xffffffff, 0xffffffff)); n = llong(1, 0); LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); LLAssert(n == llong(0, 0xffffffff)); } // operator- { llong n; LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); LLAssert(n == llong(0, 0)); n = llong(1, 0); LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); LLAssert(n == llong(1, 0)); } // operator+= { llong n(0xffffffff, 0xffffffff); LLAssert((n += llong(0, 1)) == llong(0, 0)); LLAssert(n == llong(0, 0)); n = llong(0, 0xffffffff); LLAssert((n += llong(0, 1)) == llong(1, 0)); LLAssert(n == llong(1, 0)); } // operator+ { llong n(0xffffffff, 0xffffffff); LLAssert((n + llong(0, 1)) == llong(0, 0)); LLAssert(n == llong(0xffffffff, 0xffffffff)); n = llong(0, 0xffffffff); LLAssert((n + llong(0, 1)) == llong(1, 0)); LLAssert(n == llong(0, 0xffffffff)); } } void IntlTestRBNF::TestLLong() { logln("Starting TestLLong"); TestLLongConstructors(); TestLLongSimpleOperators(); logln("Testing operator*=, operator*"); // operator*=, operator* // small and large values, positive, &NEGative, zero // also test commutivity { const llong ZERO; const llong ONE(0, 1); const llong NEG_ONE((int32_t)-1); const llong THREE(0, 3); const llong NEG_THREE((int32_t)-3); const llong TWO_TO_16(0, 0x10000); const llong NEG_TWO_TO_16 = -TWO_TO_16; const llong TWO_TO_32(1, 0); const llong NEG_TWO_TO_32 = -TWO_TO_32; const llong NINE(0, 9); const llong NEG_NINE = -NINE; const llong TWO_TO_16X3(0, 0x00030000); const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; const llong TWO_TO_32X3(3, 0); const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; const llong TWO_TO_48(0x10000, 0); const llong NEG_TWO_TO_48 = -TWO_TO_48; const int32_t VALUE_WIDTH = 9; const llong* values[VALUE_WIDTH] = { &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 }; const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO }; for (int i = 0; i < VALUE_WIDTH; ++i) { for (int j = 0; j < VALUE_WIDTH; ++j) { llong lhs = *values[i]; llong rhs = *values[j]; llong ans = *answers[i*VALUE_WIDTH + j]; llong n = lhs; LLAssert((n *= rhs) == ans); LLAssert(n == ans); n = lhs; LLAssert((n * rhs) == ans); LLAssert(n == lhs); } } } logln("Testing operator/=, operator/"); // operator/=, operator/ // test num = 0, div = 0, pos/neg, > 2^32, div > num { const llong ZERO; const llong ONE(0, 1); const llong NEG_ONE = -ONE; const llong MAX(0x7fffffff, 0xffffffff); const llong MIN(0x80000000, 0); const llong TWO(0, 2); const llong NEG_TWO = -TWO; const llong FIVE(0, 5); const llong NEG_FIVE = -FIVE; const llong TWO_TO_32(1, 0); const llong NEG_TWO_TO_32 = -TWO_TO_32; const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; const llong* tuples[] = { // lhs, rhs, ans &ZERO, &ZERO, &ZERO, &ONE, &ZERO,&MAX, &NEG_ONE, &ZERO, &MIN, &ONE, &ONE, &ONE, &ONE, &NEG_ONE, &NEG_ONE, &NEG_ONE, &ONE, &NEG_ONE, &NEG_ONE, &NEG_ONE, &ONE, &FIVE, &TWO, &TWO, &FIVE, &NEG_TWO, &NEG_TWO, &NEG_FIVE, &TWO, &NEG_TWO, &NEG_FIVE, &NEG_TWO, &TWO, &TWO, &FIVE, &ZERO, &TWO, &NEG_FIVE, &ZERO, &NEG_TWO, &FIVE, &ZERO, &NEG_TWO, &NEG_FIVE, &ZERO, &TWO_TO_32, &TWO_TO_32, &ONE, &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, &TWO_TO_32, &FIVE, &TWO_TO_32d5, &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, &TWO_TO_32X5, &FIVE, &TWO_TO_32, &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, &TWO_TO_32X5, &TWO_TO_32, &FIVE, &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE }; const int TUPLE_WIDTH = 3; const int TUPLE_COUNT = UPRV_LENGTHOF(tuples)/TUPLE_WIDTH; for (int i = 0; i < TUPLE_COUNT; ++i) { const llong lhs = *tuples[i*TUPLE_WIDTH+0]; const llong rhs = *tuples[i*TUPLE_WIDTH+1]; const llong ans = *tuples[i*TUPLE_WIDTH+2]; llong n = lhs; if (!((n /= rhs) == ans)) { errln("fail: (n /= rhs) == ans"); } LLAssert(n == ans); n = lhs; LLAssert((n / rhs) == ans); LLAssert(n == lhs); } } logln("Testing operator%%=, operator%%"); //operator%=, operator% { const llong ZERO; const llong ONE(0, 1); const llong TWO(0, 2); const llong THREE(0,3); const llong FOUR(0, 4); const llong FIVE(0, 5); const llong SIX(0, 6); const llong NEG_ONE = -ONE; const llong NEG_TWO = -TWO; const llong NEG_THREE = -THREE; const llong NEG_FOUR = -FOUR; const llong NEG_FIVE = -FIVE; const llong NEG_SIX = -SIX; const llong NINETY_NINE(0, 99); const llong HUNDRED(0, 100); const llong HUNDRED_ONE(0, 101); const llong BIG(0x12345678, 0x9abcdef0); const llong BIG_FIVE(BIG * FIVE); const llong BIG_FIVEm1 = BIG_FIVE - ONE; const llong BIG_FIVEp1 = BIG_FIVE + ONE; const llong* tuples[] = { &ZERO, &FIVE, &ZERO, &ONE, &FIVE, &ONE, &TWO, &FIVE, &TWO, &THREE, &FIVE, &THREE, &FOUR, &FIVE, &FOUR, &FIVE, &FIVE, &ZERO, &SIX, &FIVE, &ONE, &ZERO, &NEG_FIVE, &ZERO, &ONE, &NEG_FIVE, &ONE, &TWO, &NEG_FIVE, &TWO, &THREE, &NEG_FIVE, &THREE, &FOUR, &NEG_FIVE, &FOUR, &FIVE, &NEG_FIVE, &ZERO, &SIX, &NEG_FIVE, &ONE, &NEG_ONE, &FIVE, &NEG_ONE, &NEG_TWO, &FIVE, &NEG_TWO, &NEG_THREE, &FIVE, &NEG_THREE, &NEG_FOUR, &FIVE, &NEG_FOUR, &NEG_FIVE, &FIVE, &ZERO, &NEG_SIX, &FIVE, &NEG_ONE, &NEG_ONE, &NEG_FIVE, &NEG_ONE, &NEG_TWO, &NEG_FIVE, &NEG_TWO, &NEG_THREE, &NEG_FIVE, &NEG_THREE, &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, &NEG_FIVE, &NEG_FIVE, &ZERO, &NEG_SIX, &NEG_FIVE, &NEG_ONE, &NINETY_NINE, &FIVE, &FOUR, &HUNDRED, &FIVE, &ZERO, &HUNDRED_ONE, &FIVE, &ONE, &BIG_FIVEm1, &FIVE, &FOUR, &BIG_FIVE, &FIVE, &ZERO, &BIG_FIVEp1, &FIVE, &ONE }; const int TUPLE_WIDTH = 3; const int TUPLE_COUNT = UPRV_LENGTHOF(tuples)/TUPLE_WIDTH; for (int i = 0; i < TUPLE_COUNT; ++i) { const llong lhs = *tuples[i*TUPLE_WIDTH+0]; const llong rhs = *tuples[i*TUPLE_WIDTH+1]; const llong ans = *tuples[i*TUPLE_WIDTH+2]; llong n = lhs; if (!((n %= rhs) == ans)) { errln("fail: (n %= rhs) == ans"); } LLAssert(n == ans); n = lhs; LLAssert((n % rhs) == ans); LLAssert(n == lhs); } } logln("Testing pow"); // pow LLAssert(llong(0, 0).pow(0) == llong(0, 0)); LLAssert(llong(0, 0).pow(2) == llong(0, 0)); LLAssert(llong(0, 2).pow(0) == llong(0, 1)); LLAssert(llong(0, 2).pow(2) == llong(0, 4)); LLAssert(llong(0, 2).pow(32) == llong(1, 0)); LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); // absolute value { const llong n(0xffffffff,0xffffffff); LLAssert(n.abs() == llong(0, 1)); } #ifdef RBNF_DEBUG logln("Testing atoll"); // atoll const char empty[] = ""; const char zero[] = "0"; const char neg_one[] = "-1"; const char neg_12345[] = "-12345"; const char big1[] = "123456789abcdef0"; const char big2[] = "fFfFfFfFfFfFfFfF"; LLAssert(llong::atoll(empty) == llong(0, 0)); LLAssert(llong::atoll(zero) == llong(0, 0)); LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); #endif // u_atoll const UChar uempty[] = { 0 }; const UChar uzero[] = { 0x30, 0 }; const UChar uneg_one[] = { 0x2d, 0x31, 0 }; const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; LLAssert(llong::utoll(uempty) == llong(0, 0)); LLAssert(llong::utoll(uzero) == llong(0, 0)); LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); #ifdef RBNF_DEBUG logln("Testing lltoa"); // lltoa { char buf[64]; // ascii LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); } #endif logln("Testing u_lltoa"); // u_lltoa { UChar buf[64]; LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); } } /* if 0 */ #endif void IntlTestRBNF::TestEnglishSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "one" }, { "2", "two" }, { "15", "fifteen" }, { "20", "twenty" }, { "23", "twenty-three" }, { "73", "seventy-three" }, { "88", "eighty-eight" }, { "100", "one hundred" }, { "106", "one hundred six" }, { "127", "one hundred twenty-seven" }, { "200", "two hundred" }, { "579", "five hundred seventy-nine" }, { "1,000", "one thousand" }, { "2,000", "two thousand" }, { "3,004", "three thousand four" }, { "4,567", "four thousand five hundred sixty-seven" }, { "15,943", "fifteen thousand nine hundred forty-three" }, { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" }, { "-36", "minus thirty-six" }, { "234.567", "two hundred thirty-four point five six seven" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "fifty-7", "57" }, { " fifty-7", "57" }, { " fifty-7", "57" }, { "2 thousand six HUNDRED fifty-7", "2,657" }, { "fifteen hundred and zero", "1,500" }, { "FOurhundred thiRTY six", "436" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } void IntlTestRBNF::TestOrdinalAbbreviations() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "1st" }, { "2", "2nd" }, { "3", "3rd" }, { "4", "4th" }, { "7", "7th" }, { "10", "10th" }, { "11", "11th" }, { "13", "13th" }, { "20", "20th" }, { "21", "21st" }, { "22", "22nd" }, { "23", "23rd" }, { "24", "24th" }, { "33", "33rd" }, { "102", "102nd" }, { "312", "312th" }, { "12,345", "12,345th" }, { NULL, NULL} }; doTest(formatter, testData, FALSE); } delete formatter; } void IntlTestRBNF::TestDurations() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "3,600", "1:00:00" }, //move me and I fail { "0", "0 sec." }, { "1", "1 sec." }, { "24", "24 sec." }, { "60", "1:00" }, { "73", "1:13" }, { "145", "2:25" }, { "666", "11:06" }, // { "3,600", "1:00:00" }, { "3,740", "1:02:20" }, { "10,293", "2:51:33" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "2-51-33", "10,293" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } void IntlTestRBNF::TestSpanishSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "uno" }, { "6", "seis" }, { "16", "diecis\\u00e9is" }, { "20", "veinte" }, { "24", "veinticuatro" }, { "26", "veintis\\u00e9is" }, { "73", "setenta y tres" }, { "88", "ochenta y ocho" }, { "100", "cien" }, { "106", "ciento seis" }, { "127", "ciento veintisiete" }, { "200", "doscientos" }, { "579", "quinientos setenta y nueve" }, { "1,000", "mil" }, { "2,000", "dos mil" }, { "3,004", "tres mil cuatro" }, { "4,567", "cuatro mil quinientos sesenta y siete" }, { "15,943", "quince mil novecientos cuarenta y tres" }, { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, { "-36", "menos treinta y seis" }, { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestFrenchSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "un" }, { "15", "quinze" }, { "20", "vingt" }, { "21", "vingt-et-un" }, { "23", "vingt-trois" }, { "62", "soixante-deux" }, { "70", "soixante-dix" }, { "71", "soixante-et-onze" }, { "73", "soixante-treize" }, { "80", "quatre-vingts" }, { "88", "quatre-vingt-huit" }, { "100", "cent" }, { "106", "cent six" }, { "127", "cent vingt-sept" }, { "200", "deux cents" }, { "579", "cinq cent soixante-dix-neuf" }, { "1,000", "mille" }, { "1,123", "mille cent vingt-trois" }, { "1,594", "mille cinq cent quatre-vingt-quatorze" }, { "2,000", "deux mille" }, { "3,004", "trois mille quatre" }, { "4,567", "quatre mille cinq cent soixante-sept" }, { "15,943", "quinze mille neuf cent quarante-trois" }, { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" }, { "-36", "moins trente-six" }, { "234.567", "deux cent trente-quatre virgule cinq six sept" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "trente-et-un", "31" }, { "un cent quatre vingt dix huit", "198" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } static const char* const swissFrenchTestData[][2] = { { "1", "un" }, { "15", "quinze" }, { "20", "vingt" }, { "21", "vingt-et-un" }, { "23", "vingt-trois" }, { "62", "soixante-deux" }, { "70", "septante" }, { "71", "septante-et-un" }, { "73", "septante-trois" }, { "80", "huitante" }, { "88", "huitante-huit" }, { "100", "cent" }, { "106", "cent six" }, { "127", "cent vingt-sept" }, { "200", "deux cents" }, { "579", "cinq cent septante-neuf" }, { "1,000", "mille" }, { "1,123", "mille cent vingt-trois" }, { "1,594", "mille cinq cent nonante-quatre" }, { "2,000", "deux mille" }, { "3,004", "trois mille quatre" }, { "4,567", "quatre mille cinq cent soixante-sept" }, { "15,943", "quinze mille neuf cent quarante-trois" }, { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, { "-36", "moins trente-six" }, { "234.567", "deux cent trente-quatre virgule cinq six sept" }, { NULL, NULL} }; void IntlTestRBNF::TestSwissFrenchSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { doTest(formatter, swissFrenchTestData, TRUE); } delete formatter; } static const char* const belgianFrenchTestData[][2] = { { "1", "un" }, { "15", "quinze" }, { "20", "vingt" }, { "21", "vingt-et-un" }, { "23", "vingt-trois" }, { "62", "soixante-deux" }, { "70", "septante" }, { "71", "septante-et-un" }, { "73", "septante-trois" }, { "80", "quatre-vingts" }, { "88", "quatre-vingt huit" }, { "90", "nonante" }, { "91", "nonante-et-un" }, { "95", "nonante-cinq" }, { "100", "cent" }, { "106", "cent six" }, { "127", "cent vingt-sept" }, { "200", "deux cents" }, { "579", "cinq cent septante-neuf" }, { "1,000", "mille" }, { "1,123", "mille cent vingt-trois" }, { "1,594", "mille cinq cent nonante-quatre" }, { "2,000", "deux mille" }, { "3,004", "trois mille quatre" }, { "4,567", "quatre mille cinq cent soixante-sept" }, { "15,943", "quinze mille neuf cent quarante-trois" }, { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, { "-36", "moins trente-six" }, { "234.567", "deux cent trente-quatre virgule cinq six sept" }, { NULL, NULL} }; void IntlTestRBNF::TestBelgianFrenchSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); if (U_FAILURE(status)) { errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status)); errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { // Belgian french should match Swiss french. doTest(formatter, belgianFrenchTestData, TRUE); } delete formatter; } void IntlTestRBNF::TestItalianSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "uno" }, { "15", "quindici" }, { "20", "venti" }, { "23", "venti\\u00ADtr\\u00E9" }, { "73", "settanta\\u00ADtr\\u00E9" }, { "88", "ottant\\u00ADotto" }, { "100", "cento" }, { "101", "cento\\u00ADuno" }, { "103", "cento\\u00ADtr\\u00E9" }, { "106", "cento\\u00ADsei" }, { "108", "cent\\u00ADotto" }, { "127", "cento\\u00ADventi\\u00ADsette" }, { "181", "cent\\u00ADottant\\u00ADuno" }, { "200", "due\\u00ADcento" }, { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, { "1,000", "mille" }, { "2,000", "due\\u00ADmila" }, { "3,004", "tre\\u00ADmila\\u00ADquattro" }, { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" }, { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" }, { "-36", "meno trenta\\u00ADsei" }, { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestPortugueseSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "um" }, { "15", "quinze" }, { "20", "vinte" }, { "23", "vinte e tr\\u00EAs" }, { "73", "setenta e tr\\u00EAs" }, { "88", "oitenta e oito" }, { "100", "cem" }, { "106", "cento e seis" }, { "108", "cento e oito" }, { "127", "cento e vinte e sete" }, { "181", "cento e oitenta e um" }, { "200", "duzentos" }, { "579", "quinhentos e setenta e nove" }, { "1,000", "mil" }, { "2,000", "dois mil" }, { "3,004", "tr\\u00EAs mil e quatro" }, { "4,567", "quatro mil e quinhentos e sessenta e sete" }, { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, { "-36", "menos trinta e seis" }, { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestGermanSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "1", "eins" }, { "15", "f\\u00fcnfzehn" }, { "20", "zwanzig" }, { "23", "drei\\u00ADund\\u00ADzwanzig" }, { "73", "drei\\u00ADund\\u00ADsiebzig" }, { "88", "acht\\u00ADund\\u00ADachtzig" }, { "100", "ein\\u00ADhundert" }, { "106", "ein\\u00ADhundert\\u00ADsechs" }, { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, { "200", "zwei\\u00ADhundert" }, { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" }, { "1,000", "ein\\u00ADtausend" }, { "2,000", "zwei\\u00ADtausend" }, { "3,004", "drei\\u00ADtausend\\u00ADvier" }, { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" }, { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" }, { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); #if !UCONFIG_NO_COLLATION formatter->setLenient(TRUE); static const char* lpTestData[][2] = { { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, { NULL, NULL} }; doLenientParseTest(formatter, lpTestData); #endif } delete formatter; } void IntlTestRBNF::TestThaiSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testData[][2] = { { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, { "10", "\\u0e2a\\u0e34\\u0e1a" }, { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, { NULL, NULL} }; doTest(formatter, testData, TRUE); } delete formatter; } void IntlTestRBNF::TestSwedishSpellout() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* testDataDefault[][2] = { { "101", "ett\\u00adhundra\\u00adett" }, { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, { "1,001", "et\\u00adtusen ett" }, { "1,100", "et\\u00adtusen ett\\u00adhundra" }, { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" }, { "10,001", "tio\\u00adtusen ett" }, { "11,000", "elva\\u00adtusen" }, { "12,000", "tolv\\u00adtusen" }, { "20,000", "tjugo\\u00adtusen" }, { "21,000", "tjugo\\u00adet\\u00adtusen" }, { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" }, { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" }, { NULL, NULL } }; doTest(formatter, testDataDefault, TRUE); static const char* testDataNeutrum[][2] = { { "101", "ett\\u00adhundra\\u00adett" }, { "1,001", "et\\u00adtusen ett" }, { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, { "10,001", "tio\\u00adtusen ett" }, { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, { NULL, NULL } }; formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); if (U_SUCCESS(status)) { logln(" testing spellout-cardinal-neuter rules"); doTest(formatter, testDataNeutrum, TRUE); } else { errln("Can't test spellout-cardinal-neuter rules"); } static const char* testDataYear[][2] = { { "101", "ett\\u00adhundra\\u00adett" }, { "900", "nio\\u00adhundra" }, { "1,001", "et\\u00adtusen ett" }, { "1,100", "elva\\u00adhundra" }, { "1,101", "elva\\u00adhundra\\u00adett" }, { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, { "2,001", "tjugo\\u00adhundra\\u00adett" }, { "10,001", "tio\\u00adtusen ett" }, { NULL, NULL } }; status = U_ZERO_ERROR; formatter->setDefaultRuleSet("%spellout-numbering-year", status); if (U_SUCCESS(status)) { logln("testing year rules"); doTest(formatter, testDataYear, TRUE); } else { errln("Can't test year rules"); } } delete formatter; } void IntlTestRBNF::TestSmallValues() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { static const char* const testDataDefault[][2] = { { "0.001", "zero point zero zero one" }, { "0.0001", "zero point zero zero zero one" }, { "0.00001", "zero point zero zero zero zero one" }, { "0.000001", "zero point zero zero zero zero zero one" }, { "0.0000001", "zero point zero zero zero zero zero zero one" }, { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, { "10,000,000.001", "ten million point zero zero one" }, { "10,000,000.0001", "ten million point zero zero zero one" }, { "10,000,000.00001", "ten million point zero zero zero zero one" }, { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, { "10,000,000", "ten million" }, // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" }, { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" }, { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" }, { "1,234.4321", "one thousand two hundred thirty-four point four three two one" }, { "123.321", "one hundred twenty-three point three two one" }, { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, { NULL, NULL } }; doTest(formatter, testDataDefault, TRUE); delete formatter; } } void IntlTestRBNF::TestLocalizations(void) { int i; UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); UErrorCode status = U_ZERO_ERROR; UParseError perror; RuleBasedNumberFormat formatter(rules, perror, status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); } else { { static const char* const testData[][2] = { { "0", "nada" }, { "5", "yah, some" }, { "423", "plenty" }, { "12345", "more'n you'll ever need" }, { NULL, NULL } }; doTest(&formatter, testData, FALSE); } { UnicodeString loc("<<%main, %other>,,,>"); static const char* const testData[][2] = { { "0", "no" }, { "5", "some" }, { "423", "a lot" }, { "12345", "tons" }, { NULL, NULL } }; RuleBasedNumberFormat formatter0(rules, loc, perror, status); if (U_FAILURE(status)) { errln("failed to build second formatter"); } else { doTest(&formatter0, testData, FALSE); { // exercise localization info Locale locale0("en__VALLEY@turkey=gobblegobble"); Locale locale1("de_DE_FOO"); Locale locale2("ja_JP"); UnicodeString name = formatter0.getRuleSetName(0); if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" && formatter0.getRuleSetDisplayName(0, locale1) == "das Main" && formatter0.getRuleSetDisplayName(0, locale2) == "%main" && formatter0.getRuleSetDisplayName(name, locale0) == "Main" && formatter0.getRuleSetDisplayName(name, locale1) == "das Main" && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){ logln("getRuleSetDisplayName tested"); }else { errln("failed to getRuleSetDisplayName"); } } for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) { Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status); if (U_SUCCESS(status)) { for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) { UnicodeString name = formatter0.getRuleSetName(j); UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale); UnicodeString msg = locale.getName(); msg.append(": "); msg.append(name); msg.append(" = "); msg.append(lname); logln(msg); } } } } } { static const char* goodLocs[] = { "", // zero-length ok, same as providing no localization data "<<>>", // no public rule sets ok "<<%main>>", // no localizations ok "<<%main,>,>", // comma before close angle ok "<<%main>,\" '>>", // quotes everything until next quote "<<%main>,<'en', \"it's ok\">>", // double quotes work too " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok }; int32_t goodLocsLen = UPRV_LENGTHOF(goodLocs); static const char* badLocs[] = { " ", // non-zero length "<>", // empty array "<", // unclosed outer array "<<", // unclosed inner array "<<,>>", // unexpected comma "<<''>>", // empty string " x<<%main>>", // first non space char not open angle bracket "<%main>", // missing inner array "<<%main %other>>", // elements missing separating commma (spaces must be quoted) "<<%main>>", // arrays missing separating comma "<<%main>,>", // too many elements in locale data "<<%main>,>", // too few elements in locale data "<<<%main>>>", // unexpected open angle "<<%main<>>>", // unexpected open angle "<<%main, %other>,>", // implicit empty strings "<<%main>,>", // empty string "<<%main>, < en, '>>", // unterminated quote "<<%main>, < en, \"<>>", // unterminated quote "<<%main\">>", // quote in string "<<%main'>>", // quote in string "<<%main<>>", // open angle in string "<<%main>> x", // extra non-space text at end }; int32_t badLocsLen = UPRV_LENGTHOF(badLocs); for (i = 0; i < goodLocsLen; ++i) { logln("[%d] '%s'", i, goodLocs[i]); UErrorCode status = U_ZERO_ERROR; UnicodeString loc(goodLocs[i]); RuleBasedNumberFormat fmt(rules, loc, perror, status); if (U_FAILURE(status)) { errln("Failed parse of good localization string: '%s'", goodLocs[i]); } } for (i = 0; i < badLocsLen; ++i) { logln("[%d] '%s'", i, badLocs[i]); UErrorCode status = U_ZERO_ERROR; UnicodeString loc(badLocs[i]); RuleBasedNumberFormat fmt(rules, loc, perror, status); if (U_SUCCESS(status)) { errln("Successful parse of bad localization string: '%s'", badLocs[i]); } } } } } void IntlTestRBNF::TestAllLocales() { const char* names[] = { " (spellout) ", " (ordinal) " // " (duration) " // This is English only, and it's not really supported in CLDR anymore. }; double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; int32_t count = 0; const Locale* locales = Locale::getAvailableLocales(count); for (int i = 0; i < count; ++i) { const Locale* loc = &locales[i]; for (int j = 0; j < 2; ++j) { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status); if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) { // Skip it. delete f; break; } if (U_FAILURE(status)) { errln(UnicodeString(loc->getName()) + names[j] + "ERROR could not instantiate -> " + u_errorName(status)); continue; } #if !UCONFIG_NO_COLLATION for (unsigned int numidx = 0; numidx < UPRV_LENGTHOF(numbers); numidx++) { double n = numbers[numidx]; UnicodeString str; f->format(n, str); if (verbose) { logln(UnicodeString(loc->getName()) + names[j] + "success: " + n + " -> " + str); } // We do not validate the result in this test case, // because there are cases which do not round trip by design. Formattable num; // regular parse status = U_ZERO_ERROR; f->setLenient(FALSE); f->parse(str, num, status); if (U_FAILURE(status)) { errln(UnicodeString(loc->getName()) + names[j] + "ERROR could not parse '" + str + "' -> " + u_errorName(status)); } // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. if (j == 0) { if (num.getType() == Formattable::kLong && num.getLong() != n) { errln(UnicodeString(loc->getName()) + names[j] + UnicodeString("ERROR could not roundtrip ") + n + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); } else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { // The epsilon difference is too high. errln(UnicodeString(loc->getName()) + names[j] + UnicodeString("ERROR could not roundtrip ") + n + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); } } if (!quick && !logKnownIssue("9503") ) { // lenient parse status = U_ZERO_ERROR; f->setLenient(TRUE); f->parse(str, num, status); if (U_FAILURE(status)) { errln(UnicodeString(loc->getName()) + names[j] + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status)); } // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. if (j == 0) { if (num.getType() == Formattable::kLong && num.getLong() != n) { errln(UnicodeString(loc->getName()) + names[j] + UnicodeString("ERROR could not roundtrip ") + n + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); } else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { // The epsilon difference is too high. errln(UnicodeString(loc->getName()) + names[j] + UnicodeString("ERROR could not roundtrip ") + n + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); } } } } #endif delete f; } } } void IntlTestRBNF::TestMultiplierSubstitution(void) { UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); UErrorCode status = U_ZERO_ERROR; UParseError parse_error; RuleBasedNumberFormat *rbnf = new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); if (U_SUCCESS(status)) { UnicodeString res; FieldPosition pos; double n = 1234000.0; rbnf->format(n, res, pos); delete rbnf; UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million")); if (expected != res) { UnicodeString msg = "Expected: "; msg.append(expected); msg.append(" but got "); msg.append(res); errln(msg); } } } void IntlTestRBNF::TestSetDecimalFormatSymbols() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); if (U_FAILURE(status)) { dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); return; } DecimalFormatSymbols dfs(Locale::getEnglish(), status); if (U_FAILURE(status)) { errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status))); return; } UnicodeString expected[] = { UnicodeString("1,001st"), UnicodeString("1&001st") }; double number = 1001; UnicodeString result; rbnf.format(number, result); if (result != expected[0]) { errln("Format Error - Got: " + result + " Expected: " + expected[0]); } result.remove(); /* Set new symbol for testing */ dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE); rbnf.setDecimalFormatSymbols(dfs); rbnf.format(number, result); if (result != expected[1]) { errln("Format Error - Got: " + result + " Expected: " + expected[1]); } } void IntlTestRBNF::TestPluralRules() { UErrorCode status = U_ZERO_ERROR; UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;"); UParseError parseError; RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); if (U_FAILURE(status)) { dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); return; } const char* const enTestData[][2] = { { "1", "1st" }, { "2", "2nd" }, { "3", "3rd" }, { "4", "4th" }, { "11", "11th" }, { "12", "12th" }, { "13", "13th" }, { "14", "14th" }, { "21", "21st" }, { "22", "22nd" }, { "23", "23rd" }, { "24", "24th" }, { NULL, NULL } }; doTest(&enFormatter, enTestData, TRUE); // This is trying to model the feminine form, but don't worry about the details too much. // We're trying to test the plural rules. UnicodeString ruRules("%spellout-numbering:" "-x: minus >>;" "x.x: << point >>;" "0: zero;" "1: one;" "2: two;" "3: three;" "4: four;" "5: five;" "6: six;" "7: seven;" "8: eight;" "9: nine;" "10: ten;" "11: eleven;" "12: twelve;" "13: thirteen;" "14: fourteen;" "15: fifteen;" "16: sixteen;" "17: seventeen;" "18: eighteen;" "19: nineteen;" "20: twenty[->>];" "30: thirty[->>];" "40: forty[->>];" "50: fifty[->>];" "60: sixty[->>];" "70: seventy[->>];" "80: eighty[->>];" "90: ninety[->>];" "100: hundred[ >>];" "200: << hundred[ >>];" "300: << hundreds[ >>];" "500: << hundredss[ >>];" "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];" "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];"); RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status); const char* const ruTestData[][2] = { { "1", "one" }, { "100", "hundred" }, { "125", "hundred twenty-five" }, { "399", "three hundreds ninety-nine" }, { "1,000", "one thousand" }, { "1,001", "one thousand one" }, { "2,000", "two thousands" }, { "2,001", "two thousands one" }, { "2,002", "two thousands two" }, { "3,333", "three thousands three hundreds thirty-three" }, { "5,000", "five thousandss" }, { "11,000", "eleven thousandss" }, { "21,000", "twenty-one thousand" }, { "22,000", "twenty-two thousands" }, { "25,001", "twenty-five thousandss one" }, { NULL, NULL } }; if (U_FAILURE(status)) { errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); return; } doTest(&ruFormatter, ruTestData, TRUE); // Make sure there are no divide by 0 errors. UnicodeString result; RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format((int32_t)21000, result); if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) { errln("Got " + result + " for 21000"); } } void IntlTestRBNF::TestInfinityNaN() { UErrorCode status = U_ZERO_ERROR; UParseError parseError; UnicodeString enRules("%default:" "-x: minus >>;" "Inf: infinite;" "NaN: not a number;" "0: =#,##0=;"); RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); const char * const enTestData[][2] = { {"1", "1"}, {"\\u221E", "infinite"}, {"-\\u221E", "minus infinite"}, {"NaN", "not a number"}, { NULL, NULL } }; if (U_FAILURE(status)) { dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); return; } doTest(&enFormatter, enTestData, true); // Test the default behavior when the rules are undefined. UnicodeString enRules2("%default:" "-x: ->>;" "0: =#,##0=;"); RuleBasedNumberFormat enFormatter2(enRules2, Locale::getEnglish(), parseError, status); if (U_FAILURE(status)) { errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); return; } const char * const enDefaultTestData[][2] = { {"1", "1"}, {"\\u221E", "\\u221E"}, {"-\\u221E", "-\\u221E"}, {"NaN", "NaN"}, { NULL, NULL } }; doTest(&enFormatter2, enDefaultTestData, true); } void IntlTestRBNF::TestVariableDecimalPoint() { UErrorCode status = U_ZERO_ERROR; UParseError parseError; UnicodeString enRules("%spellout-numbering:" "-x: minus >>;" "x.x: << point >>;" "x,x: << comma >>;" "0.x: xpoint >>;" "0,x: xcomma >>;" "0: zero;" "1: one;" "2: two;" "3: three;" "4: four;" "5: five;" "6: six;" "7: seven;" "8: eight;" "9: nine;"); RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); const char * const enTestPointData[][2] = { {"1.1", "one point one"}, {"1.23", "one point two three"}, {"0.4", "xpoint four"}, { NULL, NULL } }; if (U_FAILURE(status)) { dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); return; } doTest(&enFormatter, enTestPointData, true); DecimalFormatSymbols decimalFormatSymbols(Locale::getEnglish(), status); decimalFormatSymbols.setSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol, UNICODE_STRING_SIMPLE(",")); enFormatter.setDecimalFormatSymbols(decimalFormatSymbols); const char * const enTestCommaData[][2] = { {"1.1", "one comma one"}, {"1.23", "one comma two three"}, {"0.4", "xcomma four"}, { NULL, NULL } }; doTest(&enFormatter, enTestCommaData, true); } void IntlTestRBNF::TestLargeNumbers() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat rbnf(URBNF_SPELLOUT, Locale::getEnglish(), status); const char * const enTestFullData[][2] = { {"-9007199254740991", "minus nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-one"}, // Maximum precision in both a double and a long {"9007199254740991", "nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-one"}, // Maximum precision in both a double and a long {"-9007199254740992", "minus nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-two"}, // Only precisely contained in a long {"9007199254740992", "nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-two"}, // Only precisely contained in a long {"9999999999999998", "nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-eight"}, {"9999999999999999", "nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine"}, {"999999999999999999", "nine hundred ninety-nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine"}, {"1000000000000000000", "1,000,000,000,000,000,000"}, // The rules don't go to 1 quintillion yet {"-9223372036854775809", "-9,223,372,036,854,775,809"}, // We've gone beyond 64-bit precision {"-9223372036854775808", "-9,223,372,036,854,775,808"}, // We've gone beyond +64-bit precision {"-9223372036854775807", "minus 9,223,372,036,854,775,807"}, // Minimum 64-bit precision {"-9223372036854775806", "minus 9,223,372,036,854,775,806"}, // Minimum 64-bit precision + 1 {"9223372036854774111", "9,223,372,036,854,774,111"}, // Below 64-bit precision {"9223372036854774999", "9,223,372,036,854,774,999"}, // Below 64-bit precision {"9223372036854775000", "9,223,372,036,854,775,000"}, // Below 64-bit precision {"9223372036854775806", "9,223,372,036,854,775,806"}, // Maximum 64-bit precision - 1 {"9223372036854775807", "9,223,372,036,854,775,807"}, // Maximum 64-bit precision {"9223372036854775808", "9,223,372,036,854,775,808"}, // We've gone beyond 64-bit precision. This can only be represented with BigDecimal. { NULL, NULL } }; doTest(&rbnf, enTestFullData, false); } void IntlTestRBNF::TestCompactDecimalFormatStyle() { UErrorCode status = U_ZERO_ERROR; UParseError parseError; // This is not a common use case, but we're testing it anyway. UnicodeString numberPattern("=###0.#####=;" "1000: <###0.00< K;" "1000000: <###0.00< M;" "1000000000: <###0.00< B;" "1000000000000: <###0.00< T;" "1000000000000000: <###0.00< Q;"); RuleBasedNumberFormat rbnf(numberPattern, UnicodeString(), Locale::getEnglish(), parseError, status); const char * const enTestFullData[][2] = { {"1000", "1.00 K"}, {"1234", "1.23 K"}, {"999994", "999.99 K"}, {"999995", "1000.00 K"}, {"1000000", "1.00 M"}, {"1200000", "1.20 M"}, {"1200000000", "1.20 B"}, {"1200000000000", "1.20 T"}, {"1200000000000000", "1.20 Q"}, {"4503599627370495", "4.50 Q"}, {"4503599627370496", "4.50 Q"}, {"8990000000000000", "8.99 Q"}, {"9008000000000000", "9.00 Q"}, // Number doesn't precisely fit into a double {"9456000000000000", "9.00 Q"}, // Number doesn't precisely fit into a double {"10000000000000000", "10.00 Q"}, // Number doesn't precisely fit into a double {"9223372036854775807", "9223.00 Q"}, // Maximum 64-bit precision {"9223372036854775808", "9,223,372,036,854,775,808"}, // We've gone beyond 64-bit precision. This can only be represented with BigDecimal. { NULL, NULL } }; doTest(&rbnf, enTestFullData, false); } void IntlTestRBNF::TestParseFailure() { UErrorCode status = U_ZERO_ERROR; RuleBasedNumberFormat rbnf(URBNF_SPELLOUT, Locale::getJapanese(), status); static const UChar* testData[] = { u"・・・・・・・・・・・・・・・・・・・・・・・・" }; if (assertSuccess("", status, true, __FILE__, __LINE__)) { for (int i = 0; i < UPRV_LENGTHOF(testData); ++i) { UnicodeString spelledNumberString(testData[i]); Formattable actualNumber; rbnf.parse(spelledNumberString, actualNumber, status); if (status != U_INVALID_FORMAT_ERROR) { // I would have expected U_PARSE_ERROR, but NumberFormat::parse gives U_INVALID_FORMAT_ERROR errln("FAIL: string should be unparseable index=%d %s", i, u_errorName(status)); } } } } void IntlTestRBNF::TestMinMaxIntegerDigitsIgnored() { IcuTestErrorCode status(*this, "TestMinMaxIntegerDigitsIgnored"); // NOTE: SimpleDateFormat has an optimization that depends on the fact that min/max integer digits // do not affect RBNF (see SimpleDateFormat#zeroPaddingNumber). RuleBasedNumberFormat rbnf(URBNF_SPELLOUT, "en", status); if (status.isSuccess()) { rbnf.setMinimumIntegerDigits(2); rbnf.setMaximumIntegerDigits(3); UnicodeString result; rbnf.format(3, result.remove(), status); assertEquals("Min integer digits are ignored", u"three", result); rbnf.format(1012, result.remove(), status); assertEquals("Max integer digits are ignored", u"one thousand twelve", result); } } void IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing) { // man, error reporting would be easier with printf-style syntax for unicode string and formattable UErrorCode status = U_ZERO_ERROR; DecimalFormatSymbols dfs("en", status); // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); DecimalFormat decFmt("#,###.################", dfs, status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); } else { for (int i = 0; testData[i][0]; ++i) { const char* numString = testData[i][0]; const char* expectedWords = testData[i][1]; log("[%i] %s = ", i, numString); Formattable expectedNumber; UnicodeString escapedNumString = UnicodeString(numString, -1, US_INV).unescape(); decFmt.parse(escapedNumString, expectedNumber, status); if (U_FAILURE(status)) { errln("FAIL: decFmt could not parse %s", numString); break; } else { UnicodeString actualString; FieldPosition pos; formatter->format(expectedNumber, actualString/* , pos*/, status); if (U_FAILURE(status)) { UnicodeString msg = "Fail: formatter could not format "; decFmt.format(expectedNumber, msg, status); errln(msg); break; } else { UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape(); if (actualString != expectedString) { UnicodeString msg = "FAIL: check failed for "; decFmt.format(expectedNumber, msg, status); msg.append(", expected "); msg.append(expectedString); msg.append(" but got "); msg.append(actualString); errln(msg); break; } else { logln(actualString); if (testParsing) { Formattable parsedNumber; formatter->parse(actualString, parsedNumber, status); if (U_FAILURE(status)) { UnicodeString msg = "FAIL: formatter could not parse "; msg.append(actualString); msg.append(" status code: " ); msg.append(u_errorName(status)); errln(msg); break; } else { if (parsedNumber != expectedNumber && (!uprv_isNaN(parsedNumber.getDouble()) || !uprv_isNaN(expectedNumber.getDouble()))) { UnicodeString msg = "FAIL: parse failed for "; msg.append(actualString); msg.append(", expected "); decFmt.format(expectedNumber, msg, status); msg.append(", but got "); decFmt.format(parsedNumber, msg, status); errln(msg); break; } } } } } } } } } void IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) { UErrorCode status = U_ZERO_ERROR; NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); if (U_FAILURE(status)) { errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); } else { for (int i = 0; testData[i][0]; ++i) { const char* spelledNumber = testData[i][0]; // spelled-out number const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); Formattable actualNumber; formatter->parse(spelledNumberString, actualNumber, status); if (U_FAILURE(status)) { UnicodeString msg = "FAIL: formatter could not parse "; msg.append(spelledNumberString); errln(msg); break; } else { // I changed the logic of this test somewhat from Java-- instead of comparing the // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, // so change it back. UnicodeString asciiUSNumberString = asciiUSNumber; Formattable expectedNumber; decFmt->parse(asciiUSNumberString, expectedNumber, status); if (U_FAILURE(status)) { UnicodeString msg = "FAIL: decFmt could not parse "; msg.append(asciiUSNumberString); errln(msg); break; } else { UnicodeString actualNumberString; UnicodeString expectedNumberString; decFmt->format(actualNumber, actualNumberString, status); decFmt->format(expectedNumber, expectedNumberString, status); if (actualNumberString != expectedNumberString) { UnicodeString msg = "FAIL: parsing"; msg.append(asciiUSNumberString); msg.append("\n"); msg.append(" lenient parse failed for "); msg.append(spelledNumberString); msg.append(", expected "); msg.append(expectedNumberString); msg.append(", but got "); msg.append(actualNumberString); errln(msg); break; } } } } delete decFmt; } } /* U_HAVE_RBNF */ #else void IntlTestRBNF::TestRBNFDisabled() { errln("*** RBNF currently disabled on this platform ***\n"); } /* U_HAVE_RBNF */ #endif #endif /* #if !UCONFIG_NO_FORMATTING */