/* ********************************************************************** * Copyright (C) 1999-2003 IBM Corp. All rights reserved. ********************************************************************** * Date Name Description * 12/1/99 rgillam Complete port from Java. * 01/13/2000 helena Added UErrorCode to ctors. ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_BREAK_ITERATION #include "unicode/dbbi.h" #include "unicode/schriter.h" #include "dbbi_tbl.h" #include "uvector.h" #include "cmemory.h" #include "uassert.h" U_NAMESPACE_BEGIN UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DictionaryBasedBreakIterator) //------------------------------------------------------------------------------ // // constructors // //------------------------------------------------------------------------------ DictionaryBasedBreakIterator::DictionaryBasedBreakIterator() : RuleBasedBreakIterator() { init(); } DictionaryBasedBreakIterator::DictionaryBasedBreakIterator(UDataMemory* rbbiData, const char* dictionaryFilename, UErrorCode& status) : RuleBasedBreakIterator(rbbiData, status) { init(); if (U_FAILURE(status)) {return;}; fTables = new DictionaryBasedBreakIteratorTables(dictionaryFilename, status); if (U_FAILURE(status)) { if (fTables != NULL) { fTables->removeReference(); fTables = NULL; } return; } /* test for NULL */ if(fTables == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } DictionaryBasedBreakIterator::DictionaryBasedBreakIterator(const DictionaryBasedBreakIterator &other) : RuleBasedBreakIterator(other) { init(); if (other.fTables != NULL) { fTables = other.fTables; fTables->addReference(); } } //------------------------------------------------------------------------------ // // Destructor // //------------------------------------------------------------------------------ DictionaryBasedBreakIterator::~DictionaryBasedBreakIterator() { uprv_free(cachedBreakPositions); cachedBreakPositions = NULL; if (fTables != NULL) {fTables->removeReference();}; } //------------------------------------------------------------------------------ // // Assignment operator. Sets this iterator to have the same behavior, // and iterate over the same text, as the one passed in. // //------------------------------------------------------------------------------ DictionaryBasedBreakIterator& DictionaryBasedBreakIterator::operator=(const DictionaryBasedBreakIterator& that) { if (this == &that) { return *this; } reset(); // clears out cached break positions. RuleBasedBreakIterator::operator=(that); if (this->fTables != that.fTables) { if (this->fTables != NULL) {this->fTables->removeReference();}; this->fTables = that.fTables; if (this->fTables != NULL) {this->fTables->addReference();}; } return *this; } //------------------------------------------------------------------------------ // // Clone() Returns a newly-constructed RuleBasedBreakIterator with the same // behavior, and iterating over the same text, as this one. // //------------------------------------------------------------------------------ BreakIterator* DictionaryBasedBreakIterator::clone() const { return new DictionaryBasedBreakIterator(*this); } //======================================================================= // BreakIterator overrides //======================================================================= /** * Advances the iterator one step backwards. * @return The position of the last boundary position before the * current iteration position */ int32_t DictionaryBasedBreakIterator::previous() { // if we have cached break positions and we're still in the range // covered by them, just move one step backward in the cache if (cachedBreakPositions != NULL && positionInCache > 0) { --positionInCache; fText->setIndex(cachedBreakPositions[positionInCache]); return cachedBreakPositions[positionInCache]; } // otherwise, dump the cache and use the inherited previous() method to move // backward. This may fill up the cache with new break positions, in which // case we have to mark our position in the cache else { reset(); int32_t result = RuleBasedBreakIterator::previous(); if (cachedBreakPositions != NULL) { for (positionInCache=0; cachedBreakPositions[positionInCache] != result; positionInCache++); U_ASSERT(positionInCache < numCachedBreakPositions); if (positionInCache >= numCachedBreakPositions) { // Something has gone wrong. Dump the cache. reset(); } } return result; } } /** * Sets the current iteration position to the last boundary position * before the specified position. * @param offset The position to begin searching from * @return The position of the last boundary before "offset" */ int32_t DictionaryBasedBreakIterator::preceding(int32_t offset) { // if the offset passed in is already past the end of the text, // just return DONE; if it's before the beginning, return the // text's starting offset if (fText == NULL || offset > fText->endIndex()) { return BreakIterator::DONE; } else if (offset < fText->startIndex()) { return fText->startIndex(); } // if we have no cached break positions, or "offset" is outside the // range covered by the cache, we can just call the inherited routine // (which will eventually call other routines in this class that may // refresh the cache) if (cachedBreakPositions == NULL || offset <= cachedBreakPositions[0] || offset > cachedBreakPositions[numCachedBreakPositions - 1]) { reset(); return RuleBasedBreakIterator::preceding(offset); } // on the other hand, if "offset" is within the range covered by the cache, // then all we have to do is search the cache for the last break position // before "offset" else { positionInCache = 0; while (positionInCache < numCachedBreakPositions && offset > cachedBreakPositions[positionInCache]) ++positionInCache; --positionInCache; fText->setIndex(cachedBreakPositions[positionInCache]); return fText->getIndex(); } } /** * Sets the current iteration position to the first boundary position after * the specified position. * @param offset The position to begin searching forward from * @return The position of the first boundary after "offset" */ int32_t DictionaryBasedBreakIterator::following(int32_t offset) { // if the offset passed in is already past the end of the text, // just return DONE; if it's before the beginning, return the // text's starting offset if (fText == NULL || offset > fText->endIndex()) { return BreakIterator::DONE; } else if (offset < fText->startIndex()) { return fText->startIndex(); } // if we have no cached break positions, or if "offset" is outside the // range covered by the cache, then dump the cache and call our // inherited following() method. This will call other methods in this // class that may refresh the cache. if (cachedBreakPositions == NULL || offset < cachedBreakPositions[0] || offset >= cachedBreakPositions[numCachedBreakPositions - 1]) { reset(); return RuleBasedBreakIterator::following(offset); } // on the other hand, if "offset" is within the range covered by the // cache, then just search the cache for the first break position // after "offset" else { positionInCache = 0; while (positionInCache < numCachedBreakPositions && offset >= cachedBreakPositions[positionInCache]) ++positionInCache; fText->setIndex(cachedBreakPositions[positionInCache]); return fText->getIndex(); } } /** * This is the implementation function for next(). */ int32_t DictionaryBasedBreakIterator::handleNext() { UErrorCode status = U_ZERO_ERROR; // if there are no cached break positions, or if we've just moved // off the end of the range covered by the cache, we have to dump // and possibly regenerate the cache if (cachedBreakPositions == NULL || positionInCache == numCachedBreakPositions - 1) { // start by using the inherited handleNext() to find a tentative return // value. dictionaryCharCount tells us how many dictionary characters // we passed over on our way to the tentative return value int32_t startPos = fText->getIndex(); fDictionaryCharCount = 0; int32_t result = RuleBasedBreakIterator::handleNext(); // if we passed over more than one dictionary character, then we use // divideUpDictionaryRange() to regenerate the cached break positions // for the new range if (fDictionaryCharCount > 1 && result - startPos > 1) { divideUpDictionaryRange(startPos, result, status); U_ASSERT(U_SUCCESS(status)); if (U_FAILURE(status)) { // Something went badly wrong, an internal error. // We have no way from here to report it to caller. // Treat as if this is if the dictionary did not apply to range. reset(); return result; } } // otherwise, the value we got back from the inherited fuction // is our return value, and we can dump the cache else { reset(); return result; } } // if the cache of break positions has been regenerated (or existed all // along), then just advance to the next break position in the cache // and return it if (cachedBreakPositions != NULL) { ++positionInCache; fText->setIndex(cachedBreakPositions[positionInCache]); return cachedBreakPositions[positionInCache]; } return -9999; // SHOULD NEVER GET HERE! } void DictionaryBasedBreakIterator::reset() { uprv_free(cachedBreakPositions); cachedBreakPositions = NULL; numCachedBreakPositions = 0; fDictionaryCharCount = 0; positionInCache = 0; } //------------------------------------------------------------------------------ // // init() Common initialization routine, for use by constructors, etc. // //------------------------------------------------------------------------------ void DictionaryBasedBreakIterator::init() { cachedBreakPositions = NULL; fTables = NULL; numCachedBreakPositions = 0; fDictionaryCharCount = 0; positionInCache = 0; } //------------------------------------------------------------------------------ // // BufferClone // //------------------------------------------------------------------------------ BreakIterator * DictionaryBasedBreakIterator::createBufferClone(void *stackBuffer, int32_t &bufferSize, UErrorCode &status) { if (U_FAILURE(status)){ return NULL; } // // If user buffer size is zero this is a preflight operation to // obtain the needed buffer size, allowing for worst case misalignment. // if (bufferSize == 0) { bufferSize = sizeof(DictionaryBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0); return NULL; } // // Check the alignment and size of the user supplied buffer. // Allocate heap memory if the user supplied memory is insufficient. // char *buf = (char *)stackBuffer; uint32_t s = bufferSize; if (stackBuffer == NULL) { s = 0; // Ignore size, force allocation if user didn't give us a buffer. } if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(buf); s -= offsetUp; buf += offsetUp; } if (s < sizeof(DictionaryBasedBreakIterator)) { buf = (char *) new DictionaryBasedBreakIterator(); if (buf == 0) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } status = U_SAFECLONE_ALLOCATED_WARNING; } // // Initialize the clone object. // TODO: using an overloaded C++ "operator new" to directly initialize the // copy in the user's buffer would be better, but it doesn't seem // to get along with namespaces. Investigate why. // // The memcpy is only safe with an empty (default constructed) // break iterator. Use on others can screw up reference counts // to data. memcpy-ing objects is not really a good idea... // DictionaryBasedBreakIterator localIter; // Empty break iterator, source for memcpy DictionaryBasedBreakIterator *clone = (DictionaryBasedBreakIterator *)buf; uprv_memcpy(clone, &localIter, sizeof(DictionaryBasedBreakIterator)); // clone = empty, but initialized, iterator. *clone = *this; // clone = the real one we want. if (status != U_SAFECLONE_ALLOCATED_WARNING) { clone->fBufferClone = TRUE; } return clone; } /** * This is the function that actually implements the dictionary-based * algorithm. Given the endpoints of a range of text, it uses the * dictionary to determine the positions of any boundaries in this * range. It stores all the boundary positions it discovers in * cachedBreakPositions so that we only have to do this work once * for each time we enter the range. */ void DictionaryBasedBreakIterator::divideUpDictionaryRange(int32_t startPos, int32_t endPos, UErrorCode &status) { // the range we're dividing may begin or end with non-dictionary characters // (i.e., for line breaking, we may have leading or trailing punctuation // that needs to be kept with the word). Seek from the beginning of the // range to the first dictionary character fText->setIndex(startPos); UChar c = fText->current(); while (isDictionaryChar(c) == FALSE) { c = fText->next(); } if (U_FAILURE(status)) { return; // UStack below overwrites the status error codes } // initialize. We maintain two stacks: currentBreakPositions contains // the list of break positions that will be returned if we successfully // finish traversing the whole range now. possibleBreakPositions lists // all other possible word ends we've passed along the way. (Whenever // we reach an error [a sequence of characters that can't begin any word // in the dictionary], we back up, possibly delete some breaks from // currentBreakPositions, move a break from possibleBreakPositions // to currentBreakPositions, and start over from there. This process // continues in this way until we either successfully make it all the way // across the range, or exhaust all of our combinations of break // positions.) wrongBreakPositions is used to keep track of paths we've // tried on previous iterations. As the iterator backs up further and // further, this saves us from having to follow each possible path // through the text all the way to the error (hopefully avoiding many // future recursive calls as well). // there can be only one kind of error in UStack and UVector, so we'll // just let the error fall through UStack currentBreakPositions(status); UStack possibleBreakPositions(status); UVector wrongBreakPositions(status); // the dictionary is implemented as a trie, which is treated as a state // machine. -1 represents the end of a legal word. Every word in the // dictionary is represented by a path from the root node to -1. A path // that ends in state 0 is an illegal combination of characters. int16_t state = 0; // these two variables are used for error handling. We keep track of the // farthest we've gotten through the range being divided, and the combination // of breaks that got us that far. If we use up all possible break // combinations, the text contains an error or a word that's not in the // dictionary. In this case, we "bless" the break positions that got us the // farthest as real break positions, and then start over from scratch with // the character where the error occurred. int32_t farthestEndPoint = fText->getIndex(); UStack bestBreakPositions(status); UBool bestBreakPositionsInitialized = FALSE; if (U_FAILURE(status)) { return; } // initialize (we always exit the loop with a break statement) c = fText->current(); for (;;) { // if we can transition to state "-1" from our current state, we're // on the last character of a legal word. Push that position onto // the possible-break-positions stack if (fTables->fDictionary->at(state, (int32_t)0) == -1) { possibleBreakPositions.push(fText->getIndex(), status); if (U_FAILURE(status)) { return; } } // look up the new state to transition to in the dictionary state = fTables->fDictionary->at(state, c); // if the character we're sitting on causes us to transition to // the "end of word" state, then it was a non-dictionary character // and we've successfully traversed the whole range. Drop out // of the loop. if (state == -1) { currentBreakPositions.push(fText->getIndex(), status); if (U_FAILURE(status)) { return; } break; } // if the character we're sitting on causes us to transition to // the error state, or if we've gone off the end of the range // without transitioning to the "end of word" state, we've hit // an error... else if (state == 0 || fText->getIndex() >= endPos) { // if this is the farthest we've gotten, take note of it in // case there's an error in the text if (fText->getIndex() > farthestEndPoint) { farthestEndPoint = fText->getIndex(); bestBreakPositions.removeAllElements(); bestBreakPositionsInitialized = TRUE; for (int32_t i = 0; i < currentBreakPositions.size(); i++) { bestBreakPositions.push(currentBreakPositions.elementAti(i), status); } } // wrongBreakPositions is a list of all break positions we've tried starting // that didn't allow us to traverse all the way through the text. Every time // we pop a break position off of currentBreakPositions, we put it into // wrongBreakPositions to avoid trying it again later. If we make it to this // spot, we're either going to back up to a break in possibleBreakPositions // and try starting over from there, or we've exhausted all possible break // positions and are going to do the fallback procedure. This loop prevents // us from messing with anything in possibleBreakPositions that didn't work as // a starting point the last time we tried it (this is to prevent a bunch of // repetitive checks from slowing down some extreme cases) while (!possibleBreakPositions.isEmpty() && wrongBreakPositions.contains( possibleBreakPositions.peeki())) { possibleBreakPositions.popi(); } // if we've used up all possible break-position combinations, there's // an error or an unknown word in the text. In this case, we start // over, treating the farthest character we've reached as the beginning // of the range, and "blessing" the break positions that got us that // far as real break positions if (possibleBreakPositions.isEmpty()) { if (bestBreakPositionsInitialized) { currentBreakPositions.removeAllElements(); for (int32_t i = 0; i < bestBreakPositions.size(); i++) { currentBreakPositions.push(bestBreakPositions.elementAti(i), status); if (U_FAILURE(status)) { return; } } bestBreakPositions.removeAllElements(); if (farthestEndPoint < endPos) { fText->setIndex(farthestEndPoint + 1); } else { break; } } else { if ((currentBreakPositions.isEmpty() || currentBreakPositions.peeki() != fText->getIndex()) && fText->getIndex() != startPos) { currentBreakPositions.push(fText->getIndex(), status); if (U_FAILURE(status)) { return; } } fText->next(); currentBreakPositions.push(fText->getIndex(), status); if (U_FAILURE(status)) { return; } } } // if we still have more break positions we can try, then promote the // last break in possibleBreakPositions into currentBreakPositions, // and get rid of all entries in currentBreakPositions that come after // it. Then back up to that position and start over from there (i.e., // treat that position as the beginning of a new word) else { int32_t temp = possibleBreakPositions.popi(); int32_t temp2 = 0; while (!currentBreakPositions.isEmpty() && temp < currentBreakPositions.peeki()) { temp2 = currentBreakPositions.popi(); wrongBreakPositions.addElement(temp2, status); } currentBreakPositions.push(temp, status); fText->setIndex(currentBreakPositions.peeki()); } // re-sync "c" for the next go-round, and drop out of the loop if // we've made it off the end of the range c = fText->current(); if (fText->getIndex() >= endPos) { break; } } // if we didn't hit any exceptional conditions on this last iteration, // just advance to the next character and loop else { c = fText->next(); } } // dump the last break position in the list, and replace it with the actual // end of the range (which may be the same character, or may be further on // because the range actually ended with non-dictionary characters we want to // keep with the word) if (!currentBreakPositions.isEmpty()) { currentBreakPositions.popi(); } currentBreakPositions.push(endPos, status); if (U_FAILURE(status)) { return; } // create a regular array to hold the break positions and copy // the break positions from the stack to the array (in addition, // our starting position goes into this array as a break position). // This array becomes the cache of break positions used by next() // and previous(), so this is where we actually refresh the cache. if (cachedBreakPositions != NULL) { uprv_free(cachedBreakPositions); } cachedBreakPositions = (int32_t *)uprv_malloc((currentBreakPositions.size() + 1) * sizeof(int32_t)); /* Test for NULL */ if(cachedBreakPositions == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } numCachedBreakPositions = currentBreakPositions.size() + 1; cachedBreakPositions[0] = startPos; for (int32_t i = 0; i < currentBreakPositions.size(); i++) { cachedBreakPositions[i + 1] = currentBreakPositions.elementAti(i); } positionInCache = 0; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ /* eof */