/* ********************************************************************** * Copyright (C) 1999-2001, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "cmemory.h" #include "cstring.h" #include "hash.h" #include "mutex.h" #include "rbt_data.h" #include "rbt_pars.h" #include "transreg.h" #include "unicode/cpdtrans.h" #include "unicode/hangjamo.h" #include "unicode/hextouni.h" #include "unicode/jamohang.h" #include "unicode/locid.h" #include "unicode/msgfmt.h" #include "unicode/name2uni.h" #include "unicode/nortrans.h" #include "unicode/nultrans.h" #include "unicode/putil.h" #include "unicode/rep.h" #include "unicode/remtrans.h" #include "unicode/resbund.h" #include "unicode/titletrn.h" #include "unicode/tolowtrn.h" #include "unicode/toupptrn.h" #include "unicode/translit.h" #include "unicode/uni2name.h" #include "unicode/unicode.h" #include "unicode/unifilt.h" #include "unicode/uniset.h" #include "unicode/unitohex.h" #include "unicode/uscript.h" // keep in sync with CompoundTransliterator static const UChar ID_SEP = 0x002D; /*-*/ static const UChar ID_DELIM = 0x003B; /*;*/ static const UChar VARIANT_SEP = 0x002F; // '/' static const UChar OPEN_PAREN = 40; static const UChar CLOSE_PAREN = 41; /** * The mutex controlling access to registry object. */ static UMTX registryMutex = 0; /** * System transliterator registry; non-null when initialized. */ static TransliteratorRegistry* registry = 0; /** * Prefix for resource bundle key for the display name for a * transliterator. The ID is appended to this to form the key. * The resource bundle value should be a String. */ static const char* RB_DISPLAY_NAME_PREFIX = "%Translit%%"; /** * Prefix for resource bundle key for the display name for a * transliterator SCRIPT. The ID is appended to this to form the key. * The resource bundle value should be a String. */ static const char* RB_SCRIPT_DISPLAY_NAME_PREFIX = "%Translit%"; /** * Resource bundle key for display name pattern. * The resource bundle value should be a String forming a * MessageFormat pattern, e.g.: * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}". */ static const char* RB_DISPLAY_NAME_PATTERN = "TransliteratorNamePattern"; /** * Resource bundle key for the list of RuleBasedTransliterator IDs. * The resource bundle value should be a String[] with each element * being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX * to obtain the class name in which the RB_RULE key will be sought. */ static const char* RB_RULE_BASED_IDS = "RuleBasedTransliteratorIDs"; /** * Class identifier for subclasses of Transliterator that do not * define their class (anonymous subclasses). */ char Transliterator::fgClassID = 0; // Value is irrelevant /** * Default constructor. * @param theID the string identifier for this transliterator * @param theFilter the filter. Any character for which * filter.contains() returns FALSE will not be * altered by this transliterator. If filter is * null then no filtering is applied. */ Transliterator::Transliterator(const UnicodeString& theID, UnicodeFilter* adoptedFilter) : ID(theID), filter(adoptedFilter), maximumContextLength(0) {} /** * Destructor. */ Transliterator::~Transliterator() { delete filter; } /** * Copy constructor. */ Transliterator::Transliterator(const Transliterator& other) : ID(other.ID), filter(0), maximumContextLength(other.maximumContextLength) { if (other.filter != 0) { // We own the filter, so we must have our own copy filter = (UnicodeFilter*) other.filter->clone(); } } /** * Assignment operator. */ Transliterator& Transliterator::operator=(const Transliterator& other) { ID = other.ID; maximumContextLength = other.maximumContextLength; // MUST go through adoptFilter in case latter is overridden adoptFilter((other.filter == 0) ? 0 : (UnicodeFilter*) other.filter->clone()); return *this; } /** * Transliterates a segment of a string. Transliterator API. * @param text the string to be transliterated * @param start the beginning index, inclusive; 0 <= start * <= limit. * @param limit the ending index, exclusive; start <= limit * <= text.length(). * @return the new limit index */ int32_t Transliterator::transliterate(Replaceable& text, int32_t start, int32_t limit) const { UTransPosition offsets; offsets.contextStart= start; offsets.contextLimit = limit; offsets.start = start; offsets.limit = limit; filteredTransliterate(text, offsets, FALSE); return offsets.limit; } /** * Transliterates an entire string in place. Convenience method. * @param text the string to be transliterated */ void Transliterator::transliterate(Replaceable& text) const { transliterate(text, 0, text.length()); } /** * Transliterates the portion of the text buffer that can be * transliterated unambiguosly after new text has been inserted, * typically as a result of a keyboard event. The new text in * insertion will be inserted into text * at index.contextLimit, advancing * index.contextLimit by insertion.length(). * Then the transliterator will try to transliterate characters of * text between index.start and * index.contextLimit. Characters before * index.start will not be changed. * *

Upon return, values in index will be updated. * index.contextStart will be advanced to the first * character that future calls to this method will read. * index.start and index.contextLimit will * be adjusted to delimit the range of text that future calls to * this method may change. * *

Typical usage of this method begins with an initial call * with index.contextStart and index.contextLimit * set to indicate the portion of text to be * transliterated, and index.start == index.contextStart. * Thereafter, index can be used without * modification in future calls, provided that all changes to * text are made via this method. * *

This method assumes that future calls may be made that will * insert new text into the buffer. As a result, it only performs * unambiguous transliterations. After the last call to this * method, there may be untransliterated text that is waiting for * more input to resolve an ambiguity. In order to perform these * pending transliterations, clients should call {@link * #finishKeyboardTransliteration} after the last call to this * method has been made. * * @param text the buffer holding transliterated and untransliterated text * @param index an array of three integers. * *

* * @param insertion text to be inserted and possibly * transliterated into the translation buffer at * index.contextLimit. If null then no text * is inserted. * @see #START * @see #LIMIT * @see #CURSOR * @see #handleTransliterate * @exception IllegalArgumentException if index * is invalid */ void Transliterator::transliterate(Replaceable& text, UTransPosition& index, const UnicodeString& insertion, UErrorCode &status) const { _transliterate(text, index, &insertion, status); } /** * Transliterates the portion of the text buffer that can be * transliterated unambiguosly after a new character has been * inserted, typically as a result of a keyboard event. This is a * convenience method; see {@link * #transliterate(Replaceable, int[], String)} for details. * @param text the buffer holding transliterated and * untransliterated text * @param index an array of three integers. See {@link * #transliterate(Replaceable, int[], String)}. * @param insertion text to be inserted and possibly * transliterated into the translation buffer at * index.contextLimit. * @see #transliterate(Replaceable, int[], String) */ void Transliterator::transliterate(Replaceable& text, UTransPosition& index, UChar32 insertion, UErrorCode& status) const { UnicodeString str(insertion); if (UTF_IS_LEAD(insertion)) { // Oops, the caller passed us a single lead surrogate. In // general, we don't support this, but we'll do the caller a // favor in the special case of LEAD followed by TRAIL // insertion. Anything else won't work. text.handleReplaceBetween(index.limit, index.limit, str); ++index.limit; ++index.contextLimit; } else { _transliterate(text, index, &str, status); } } /** * Transliterates the portion of the text buffer that can be * transliterated unambiguosly. This is a convenience method; see * {@link #transliterate(Replaceable, int[], String)} for * details. * @param text the buffer holding transliterated and * untransliterated text * @param index an array of three integers. See {@link * #transliterate(Replaceable, int[], String)}. * @see #transliterate(Replaceable, int[], String) */ void Transliterator::transliterate(Replaceable& text, UTransPosition& index, UErrorCode& status) const { _transliterate(text, index, 0, status); } /** * Finishes any pending transliterations that were waiting for * more characters. Clients should call this method as the last * call after a sequence of one or more calls to * transliterate(). * @param text the buffer holding transliterated and * untransliterated text. * @param index the array of indices previously passed to {@link * #transliterate} */ void Transliterator::finishTransliteration(Replaceable& text, UTransPosition& index) const { filteredTransliterate(text, index, FALSE); } /** * This internal method does keyboard transliteration. If the * 'insertion' is non-null then we append it to 'text' before * proceeding. This method calls through to the pure virtual * framework method handleTransliterate() to do the actual * work. */ void Transliterator::_transliterate(Replaceable& text, UTransPosition& index, const UnicodeString* insertion, UErrorCode &status) const { if (U_FAILURE(status)) { return; } if (index.contextStart < 0 || index.contextLimit > text.length() || index.start < index.contextStart || index.start > index.contextLimit) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } int32_t originalStart = index.contextStart; if (insertion != 0) { text.handleReplaceBetween(index.limit, index.limit, *insertion); index.limit += insertion->length(); index.contextLimit += insertion->length(); } filteredTransliterate(text, index, TRUE); #if 0 // I CAN'T DO what I'm attempting below now that the Kleene star // operator is supported. For example, in the rule // ([:Lu:]+) { x } > $1; // what is the maximum context length? getMaximumContextLength() // will return 1, but this is just the length of the ante context // part of the pattern string -- 1 character, which is a standin // for a Quantifier, which contains a StringMatcher, which // contains a UnicodeSet. // There is a complicated way to make this work again, and that's // to add a "maximum left context" protocol into the // UnicodeMatcher hierarchy. At present I'm not convinced this is // worth it. // --- // The purpose of the code below is to keep the context small // while doing incremental transliteration. When part of the left // context (between contextStart and start) is no longer needed, // we try to advance contextStart past that portion. We use the // maximum context length to do so. int32_t newCS = index.start; int32_t n = getMaximumContextLength(); while (newCS > originalStart && n-- > 0) { --newCS; newCS -= UTF_CHAR_LENGTH(text.char32At(newCS)) - 1; } index.contextStart = uprv_max(newCS, originalStart); #endif } /** * This method breaks up the input text into runs of unfiltered * characters. It passes each such run to * .handleTransliterate(). Subclasses that can handle the * filter logic more efficiently themselves may override this method. * * All transliteration calls in this class go through this method. */ void Transliterator::filteredTransliterate(Replaceable& text, UTransPosition& index, UBool incremental) const { if (filter == 0) { // Short circuit path for transliterators with no filter handleTransliterate(text, index, incremental); return; } // globalLimit is the limit value for the entire operation. We // set index.limit to the end of each unfiltered run before // calling handleTransliterate(), so we need to maintain the real // value of index.limit here. After each transliteration, we // update globalLimit for insertions or deletions that have // happened. int32_t globalLimit = index.limit; // Break the input text up. Say the input text has the form: // xxxabcxxdefxx // where 'x' represents a filtered character. Then we break this // up into: // xxxabc xxdef xx // Each pass through the loop consumes a run of filtered // characters (which are ignored) and a subsequent run of // unfiltered characters (which are transliterated). If, at any // point, we fail to consume our entire segment, we stop. do { // Narrow the range to be transliterated to the first segment // of unfiltered characters at or after index.start. UChar32 c; // Advance compoundStart past filtered chars while (index.start < globalLimit && !filter->contains(c=text.char32At(index.start))) { index.start += UTF_CHAR_LENGTH(c); } // Find the end of this run of unfiltered chars index.limit = index.start; while (index.limit < globalLimit && filter->contains(c=text.char32At(index.limit))) { index.limit += UTF_CHAR_LENGTH(c); } // Check to see if the unfiltered run is empty. This only // happens at the end of the string when all the remaining // characters are filtered. if (index.limit == index.start) { // assert(index.start == globalLimit); break; } int32_t limit = index.limit; // Delegate to subclass for actual transliteration. If there // is additional filtered text (if limit < globalLimit) then // we pass in an incremental value of FALSE to force the subclass // to complete the transliteration for this segment. handleTransliterate(text, index, limit < globalLimit ? FALSE : incremental); // Adjust overall limit for insertions/deletions. Don't need // to worry about contextLimit because handleTransliterate() // maintains that. globalLimit += index.limit - limit; // If we failed to complete transliterate this segment, then // we are done. If we did completely transliterate this // segment, then repeat with the next unfiltered segment. } while (index.start == index.limit); // Start is valid where it is. Limit needs to be put back where // it was, modulo adjustments for deletions/insertions. index.limit = globalLimit; } /** * Method for subclasses to use to set the maximum context length. * @see #getMaximumContextLength */ void Transliterator::setMaximumContextLength(int32_t maxContextLength) { maximumContextLength = maxContextLength; } /** * Returns a programmatic identifier for this transliterator. * If this identifier is passed to getInstance(), it * will return this object, if it has been registered. * @see #registerInstance * @see #getAvailableIDs */ const UnicodeString& Transliterator::getID(void) const { return ID; } /** * Returns a name for this transliterator that is appropriate for * display to the user in the default locale. See {@link * #getDisplayName(Locale)} for details. */ UnicodeString& Transliterator::getDisplayName(const UnicodeString& ID, UnicodeString& result) { return getDisplayName(ID, Locale::getDefault(), result); } /** * Returns a name for this transliterator that is appropriate for * display to the user in the given locale. This name is taken * from the locale resource data in the standard manner of the * java.text package. * *

If no localized names exist in the system resource bundles, * a name is synthesized using a localized * MessageFormat pattern from the resource data. The * arguments to this pattern are an integer followed by one or two * strings. The integer is the number of strings, either 1 or 2. * The strings are formed by splitting the ID for this * transliterator at the first ID_SEP. If there is no ID_SEP, then the * entire ID forms the only string. * @param inLocale the Locale in which the display name should be * localized. * @see java.text.MessageFormat */ UnicodeString& Transliterator::getDisplayName(const UnicodeString& ID, const Locale& inLocale, UnicodeString& result) { UErrorCode status = U_ZERO_ERROR; ResourceBundle bundle(u_getDataDirectory(), inLocale, status); // Suspend checking status until later... // build the char* key char key[100]; uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX); int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX); key[length + ID.extract(0, (int32_t)(sizeof(key)-length-1), key+length, "")]=0; // Try to retrieve a UnicodeString from the bundle. UnicodeString resString = bundle.getStringEx(key, status); if (U_SUCCESS(status) && resString.length() != 0) { return result = resString; // [sic] assign & return } // We have failed to get a name from the locale data. This is // typical, since most transliterators will not have localized // name data. The next step is to retrieve the MessageFormat // pattern from the locale data and to use it to synthesize the // name from the ID. status = U_ZERO_ERROR; resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status); if (U_SUCCESS(status) && resString.length() != 0) { MessageFormat msg(resString, inLocale, status); // Suspend checking status until later... // We pass either 2 or 3 Formattable objects to msg. Formattable args[3]; int32_t i = ID.indexOf(ID_SEP); int32_t nargs; if (i < 0) { args[0].setLong(1); // # of args to follow args[1].setString(ID); nargs = 2; } else { UnicodeString left, right; ID.extractBetween(0, i, left); ID.extractBetween(i+1, ID.length(), right); args[0].setLong(2); // # of args to follow args[1].setString(left); args[2].setString(right); nargs = 3; } // Use display names for the scripts, if they exist UnicodeString s; length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX); for (int j=1; j<=((i<0)?1:2); ++j) { status = U_ZERO_ERROR; uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX); args[j].getString(s); key[length + s.extract(0, sizeof(key)-length-1, key+length, "")]=0; resString = bundle.getStringEx(key, status); if (U_SUCCESS(status)) { args[j] = resString; } } status = U_ZERO_ERROR; FieldPosition pos; // ignored by msg msg.format(args, nargs, result, pos, status); if (U_SUCCESS(status)) { return result; } } // We should not reach this point unless there is something // wrong with the build or the RB_DISPLAY_NAME_PATTERN has // been deleted from the root RB_LOCALE_ELEMENTS resource. result = ID; return result; } /** * Returns the filter used by this transliterator, or null * if this transliterator uses no filter. Caller musn't delete * the result! */ const UnicodeFilter* Transliterator::getFilter(void) const { return filter; } /** * Returns the filter used by this transliterator, or * NULL if this transliterator uses no filter. The * caller must eventually delete the result. After this call, * this transliterator's filter is set to NULL. */ UnicodeFilter* Transliterator::orphanFilter(void) { UnicodeFilter *result = filter; // MUST go through adoptFilter in case latter is overridden adoptFilter(0); return result; } /** * Changes the filter used by this transliterator. If the filter * is set to null then no filtering will occur. * *

Callers must take care if a transliterator is in use by * multiple threads. The filter should not be changed by one * thread while another thread may be transliterating. */ void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) { delete filter; filter = filterToAdopt; } /** * Returns this transliterator's inverse. See the class * documentation for details. This implementation simply inverts * the two entities in the ID and attempts to retrieve the * resulting transliterator. That is, if getID() * returns "A-B", then this method will return the result of * getInstance("B-A"), or null if that * call fails. * *

This method does not take filtering into account. The * returned transliterator will have no filter. * *

Subclasses with knowledge of their inverse may wish to * override this method. * * @return a transliterator that is an inverse, not necessarily * exact, of this transliterator, or null if no such * transliterator is registered. * @see #registerInstance */ Transliterator* Transliterator::createInverse(void) const { return Transliterator::createInstance(ID, UTRANS_REVERSE); } /** * Returns a Transliterator object given its ID. * The ID must be either a system transliterator ID or a ID registered * using registerInstance(). * * @param ID a valid ID, as enumerated by getAvailableIDs() * @return A Transliterator object with the given ID * @see #registerInstance * @see #getAvailableIDs * @see #getID */ Transliterator* Transliterator::createInstance(const UnicodeString& ID, UTransDirection dir, UParseError* parseError) { UErrorCode status = U_ZERO_ERROR; return createInstance(ID, dir, -1, NULL, parseError, status); } /** * Create a transliterator given a compound ID (possibly degenerate, * with no ID_DELIM). If idSplitPoint >= 0 and adoptedSplitTrans != * 0, then insert adoptedSplitTrans in the compound ID at offset * idSplitPoint. Otherwise idSplitPoint should be -1 and * adoptedSplitTrans should be 0. The resultant transliterator will * be an atomic (non-compound) transliterator if this is indicated by * ID. Otherwise it will be a compound translitertor. */ Transliterator* Transliterator::createInstance(const UnicodeString& ID, UTransDirection dir, int32_t idSplitPoint, Transliterator *adoptedSplitTrans, UParseError* parseError, UErrorCode& status) { if (U_FAILURE(status)) { return 0; } UVector list; int32_t ignored; UnicodeString regenID; parseCompoundID(ID, regenID, dir, idSplitPoint, adoptedSplitTrans, list, ignored, parseError, status); if (U_FAILURE(status)) { return 0; } Transliterator *t; switch (list.size()) { case 0: t = new NullTransliterator(); break; case 1: t = (Transliterator*) list.elementAt(0); break; default: t = new CompoundTransliterator(dir, list, status); break; } t->setID(regenID); return t; } /** * Returns a Transliterator object constructed from * the given rule string. This will be a RuleBasedTransliterator, * if the rule string contains only rules, or a * CompoundTransliterator, if it contains ID blocks, or a * NullTransliterator, if it contains ID blocks which parse as * empty for the given direction. */ Transliterator* Transliterator::createFromRules(const UnicodeString& ID, const UnicodeString& rules, UTransDirection dir, UParseError* parseError) { UnicodeString idBlock; int32_t idSplitPoint = -1; TransliterationRuleData *data = 0; UErrorCode status = U_ZERO_ERROR; TransliteratorParser::parse(rules, dir, data, idBlock, idSplitPoint, parseError, status); if (U_FAILURE(status)) { delete data; return 0; } // NOTE: The logic here matches that in TransliteratorRegistry. if (idBlock.length() == 0) { if (data == 0) { // No idBlock, no data -- this is just an // alias for Null return new NullTransliterator(); } else { // No idBlock, data != 0 -- this is an // ordinary RBT_DATA. return new RuleBasedTransliterator(ID, data, TRUE); // TRUE == adopt data object } } else { if (data == 0) { // idBlock, no data -- this is an alias Transliterator *t = createInstance(idBlock, dir, parseError); if (t != 0) { t->setID(ID); } return t; } else { // idBlock and data -- this is a compound // RBT UnicodeString id("_", ""); Transliterator *t = new RuleBasedTransliterator(id, data, TRUE); // TRUE == adopt data object t = new CompoundTransliterator(ID, idBlock, idSplitPoint, t, status); if (U_FAILURE(status)) { delete t; t = 0; } return t; } } } UnicodeString& Transliterator::toRules(UnicodeString& rulesSource, UBool escapeUnprintable) const { // The base class implementation of toRules munges the ID into // the correct format. That is: foo => ::foo rulesSource = getID(); // KEEP in sync with rbt_pars rulesSource.insert(0, UnicodeString("::", "")); rulesSource.append(ID_DELIM); return rulesSource; } /** * Parse a compound ID (possibly a degenerate one, containing no * ID_DELIM). If idSplitPoint >= 0 and adoptedSplitTrans != 0, then * insert adoptedSplitTrans in the compound ID at offset idSplitPoint. * Otherwise idSplitPoint should be -1 and adoptedSplitTrans should be * 0. Return in the result vector the instantiated transliterator * objects (one of these will be adoptedSplitTrans, if the latter was * specified). These will be in order of id, so if dir is REVERSE, * then the caller will have to reverse the order. * * @param regenID regenerated ID, reversed if appropriate, which * should be applied to the final created transliterator * @param splitTransIndex output parameter to receive the index in * 'result' at which the adoptedSplitTrans is stored, or -1 if * adoptedSplitTrans == 0 */ void Transliterator::parseCompoundID(const UnicodeString& id, UnicodeString& regenID, UTransDirection dir, int32_t idSplitPoint, Transliterator *adoptedSplitTrans, UVector& result, int32_t& splitTransIndex, UParseError* parseError, UErrorCode& status) { if (U_FAILURE(status)) { return; } regenID.truncate(0); splitTransIndex = -1; int32_t pos = 0; int32_t i; while (pos < id.length()) { // We compare (pos >= split), not (pos == split), so we can // skip over whitespace (see below). if (pos >= idSplitPoint && adoptedSplitTrans != 0) { splitTransIndex = result.size(); result.addElement(adoptedSplitTrans); adoptedSplitTrans = 0; } int32_t p = pos; UBool sawDelimiter; // We ignore this Transliterator *t = parseID(id, regenID, p, sawDelimiter, dir, parseError, TRUE); if (p == pos || (p < id.length() && !sawDelimiter)) { delete t; status = U_ILLEGAL_ARGUMENT_ERROR; break; } pos = p; // The return value may be NULL when, for instance, creating a // REVERSE transliterator of ID "Latin-Greek()". if (t != 0) { result.addElement(t); } } // Handle case of idSplitPoint == id.length() if (pos >= idSplitPoint && adoptedSplitTrans != 0) { splitTransIndex = result.size(); result.addElement(adoptedSplitTrans); adoptedSplitTrans = 0; } if (U_FAILURE(status)) { for (i=0; i= 0 && revStart < limit) { int32_t revSetStart, revSetLimit, dummy; UnicodeSet* revFilter = 0; if (!parseIDBounds(ID, revStart+1, TRUE, revLimit, revSetStart, revSetLimit, dummy, revFilter)) { delete filter; delete revFilter; return 0; } // revStart points to '(' if (dir == UTRANS_REVERSE) { idStart = revStart+1; idLimit = revLimit; setStart = revSetStart; setLimit = revSetLimit; delete filter; filter = revFilter; } else { idLimit = revStart; delete revFilter; } // assert(revLimit < ID.length() && ID.charAt(revLimit) == ')'); limit = revLimit+1; } // Advance limit past /\s*;?\s*/ preDelimLimit = limit; skipSpaces(ID, limit); sawDelimiter = (limit < ID.length() && ID.charAt(limit) == ID_DELIM); if (sawDelimiter) { ++limit; } skipSpaces(ID, limit); if (!create) { // TODO Improve performance by scanning the UnicodeSet pattern // without actually constructing it, if create is FALSE. That // is, create a method like this one for UnicodeSet. delete filter; pos = limit; return 0; } // 'id' is the ID with the filter pattern removed and with // whitespace deleted. In a Foo(Bar) ID, id is Foo for FORWARD // and Bar for REVERSE. UnicodeString id, str; ID.extractBetween(idStart, setStart, id); ID.extractBetween(setLimit, idLimit, str); id.append(str); // Delete whitespace int32_t i; for (i=0; i B-A). This // is only done if the id is NOT of the form Foo(Bar). Record the // position of the separator. // // For both A-B and Foo(Bar) ids, detect the special case of Null, // whose inverse is itself. Given an ID with no separator "Foo", // an abbreviation for "Any-Foo", consider the inverse to be // "Foo-Any". int32_t sep = id.indexOf(ID_SEP); if (sep < 0 && id.caseCompare(NullTransliterator::SHORT_ID, U_FOLD_CASE_DEFAULT) == 0) { // Handle "Null" sep = id.length(); } else if (dir == UTRANS_REVERSE && id.caseCompare(NullTransliterator::ID, U_FOLD_CASE_DEFAULT) == 0) { // Reverse of "Any-Null" => "Null" id.removeBetween(0, sep+1); sep = id.length(); } else if (dir == UTRANS_REVERSE && revStart < 0) { if (sep >= 0) { id.extractBetween(0, sep, str); id.removeBetween(0, sep+1); } else { str = UnicodeString("Any", ""); } sep = id.length(); id.append(ID_SEP).append(str); } else if (sep < 0 && id.length() > 0) { // Don't do anything for empty IDs -- we handle these specially below str = UnicodeString("Any-", ""); sep = str.length() - 1; id.insert(0, str); } Transliterator *t = 0; // If we have a reverse part of the ID, e.g., Foo(Bar), then we // need to check for an empty part, which represents a Null // transliterator. We return 0 (not a NullTransliterator). If we // are not of the form Foo(Bar) then an empty string is illegal. if (revStart >= 0 && id.length() == 0) { // Ignore any filters; filters on Null are meaningless (and we // can't attach them to 0 anyway) delete filter; } else { // Create the actual transliterator from the registry if (parseError != 0) { parseError->line = parseError->offset = 0; parseError->preContext[0] = parseError->postContext[0] = 0; } if (registry == 0) { initializeRegistry(); } { Mutex lock(®istryMutex); str.truncate(0); t = registry->get(id, str, parseError); // Need to enclose this in a block to prevent deadlock when // instantiating aliases (below). } if (str.length() != 0) { // assert(t==0); // Instantiate an alias t = createInstance(str, UTRANS_FORWARD, parseError); } if (t == 0) { // Creation failed; the ID is invalid or is an alias delete filter; return 0; } // Set the filter, if any t->adoptFilter(filter); } // Set the ID. This is normally just a substring of the input // ID, but for reverse transliterators we need to munge A-B to // B-A or Foo(Bar) to Bar(Foo). if (dir == UTRANS_FORWARD) { ID.extractBetween(pos, preDelimLimit, id); } else if (revStart < 0) { id.insert(sep, ID, setStart, setLimit-setStart); } else { // Change Foo(Bar) to Bar(Foo) ID.extractBetween(pos, revStart, str); str.trim(); ID.extractBetween(revStart+1, revLimit, id); id.trim().append(OPEN_PAREN).append(str).append(CLOSE_PAREN); } id.trim(); if (t != 0) { t->setID(id); } // Regenerate ID of a compound entity if (dir == UTRANS_FORWARD) { if (regenID.length() != 0) { regenID.append(ID_DELIM); } regenID.append(id); } else { if (regenID.length() != 0) { regenID.insert(0, ID_DELIM); } regenID.insert(0, id); } // Indicate success by bumping pos past the final /;?\s*/. pos = limit; return t; } /** * Internal method used by parseID. Given a piece of a single ID, * find the boundaries of various parts. For IDs of the form * Foo(Bar), this method parses the Foo, then the Bar. In each piece * it locates any inline UnicodeSet pattern [setStart, setLimit) * and finds the limit (this will point to either ';' or ')' or * ID.length()). * * @param ID the ID to be parsed * @param pos the index of ID at which to start * @param withinParens if TRUE, parse the Bar of Foo(Bar), stop at a * close paren, and do not look for an open paren. If TRUE then a * close paren MUST be seen or FALSE is returned; if FALSE then the * ';' delimiter is optional. * @param limit set to the position of ';' or ')' (depending on * withinParens), or ID.length() if no delimiter was found * @param setStart set to the start of an inline filter pattern, * or pos if none * @param setLimit set to the limit of an inline filter pattern, * or pos if none * @param revStart if not withinParens then set to the position of the * first '(', which may be > limit; otherwise set to -1 * @param filter set to a newly created UnicodeSet object for the * inline filter pattern, if any; OWNED BY THE CALLER * * @return TRUE if the pattern is valid, FALSE is there is an invalid * UnicodeSet pattern or if withinParens is TRUE and no close paren is * seen. */ UBool Transliterator::parseIDBounds(const UnicodeString& ID, int32_t pos, UBool withinParens, int32_t& limit, int32_t& setStart, int32_t& setLimit, int32_t& revStart, UnicodeSet*& filter) { UChar endDelimiter = withinParens ? CLOSE_PAREN : ID_DELIM; limit = ID.indexOf(endDelimiter, pos); if (limit < 0) { if (withinParens) { return FALSE; } limit = ID.length(); } setStart = ID.indexOf((UChar)0x005B /*[*/, pos); revStart = withinParens ? -1 : ID.indexOf(OPEN_PAREN, pos); if (setStart >= 0 && setStart < limit && (revStart < 0 || setStart < revStart)) { UErrorCode status = U_ZERO_ERROR; ParsePosition ppos(setStart); // TODO Improve performance by scanning the UnicodeSet pattern // without actually constructing it, if create is FALSE. That // is, create a method like this one for UnicodeSet. filter = new UnicodeSet(); filter->applyPattern(ID, ppos, 0, status); if (U_FAILURE(status)) { delete filter; return FALSE; } setLimit = ppos.getIndex(); if (limit < setLimit) { limit = ID.indexOf(endDelimiter, setLimit); if (limit < 0) { if (withinParens) { return FALSE; } limit = ID.length(); } } if (revStart >= 0 && revStart < setLimit) { revStart = ID.indexOf(CLOSE_PAREN, setLimit); } } else { setStart = setLimit = pos; } return TRUE; } /** * If pos is the index of a space in str, then advance it over that * space and any immediately subsequent ones. */ void Transliterator::skipSpaces(const UnicodeString& str, int32_t& pos) { while (pos < str.length() && u_isspace(str.charAt(pos))) { ++pos; } } // For public consumption void Transliterator::registerFactory(const UnicodeString& id, Transliterator::Factory factory) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); _registerFactory(id, factory); } // To be called only by Transliterator subclasses that are called // to register themselves by initializeRegistry(). void Transliterator::_registerFactory(const UnicodeString& id, Transliterator::Factory factory) { registry->put(id, factory, TRUE); } /** * Registers a instance obj of a subclass of * Transliterator with the system. This object must * implement the clone() method. When * getInstance() is called with an ID string that is * equal to obj.getID(), then obj.clone() is * returned. * * @param obj an instance of subclass of * Transliterator that defines clone() * @see #getInstance * @see #unregister */ void Transliterator::registerInstance(Transliterator* adoptedPrototype) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); registry->put(adoptedPrototype, TRUE); } /** * Unregisters a transliterator or class. This may be either * a system transliterator or a user transliterator or class. * * @param ID the ID of the transliterator or class * @see #registerInstance */ void Transliterator::unregister(const UnicodeString& ID) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); registry->remove(ID); } /** * Return the number of IDs currently registered with the system. * To retrieve the actual IDs, call getAvailableID(i) with * i from 0 to countAvailableIDs() - 1. */ int32_t Transliterator::countAvailableIDs(void) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->countAvailableIDs(); } /** * Return the index-th available ID. index must be between 0 * and countAvailableIDs() - 1, inclusive. If index is out of * range, the result of getAvailableID(0) is returned. */ const UnicodeString& Transliterator::getAvailableID(int32_t index) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->getAvailableID(index); } int32_t Transliterator::countAvailableSources(void) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->countAvailableSources(); } UnicodeString& Transliterator::getAvailableSource(int32_t index, UnicodeString& result) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->getAvailableSource(index, result); } int32_t Transliterator::countAvailableTargets(const UnicodeString& source) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->countAvailableTargets(source); } UnicodeString& Transliterator::getAvailableTarget(int32_t index, const UnicodeString& source, UnicodeString& result) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->getAvailableTarget(index, source, result); } int32_t Transliterator::countAvailableVariants(const UnicodeString& source, const UnicodeString& target) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->countAvailableVariants(source, target); } UnicodeString& Transliterator::getAvailableVariant(int32_t index, const UnicodeString& source, const UnicodeString& target, UnicodeString& result) { if (registry == 0) { initializeRegistry(); } Mutex lock(®istryMutex); return registry->getAvailableVariant(index, source, target, result); } /** * Method for subclasses to use to obtain a character in the given * string, with filtering. * @deprecated the new architecture provides filtering at the top * level. This method will be removed Dec 31 2001. */ UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const { UChar c; const UnicodeFilter* localFilter = getFilter(); return (localFilter == 0) ? text.charAt(i) : (localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE); } void Transliterator::initializeRegistry(void) { // Lock first, check registry pointer second Mutex lock(®istryMutex); if (registry != 0) { // We were blocked by another thread in initializeRegistry() return; } registry = new TransliteratorRegistry(); if (registry == 0) { return; // out of memory, no recovery } UErrorCode status = U_ZERO_ERROR; /* The following code parses the index table located in * icu/data/translit_index.txt. The index is an n x 4 table * that follows this format: * * :file:: * :internal:: * :alias:: * * is the ID of the system transliterator being defined. These * are public IDs enumerated by Transliterator.getAvailableIDs(), * unless the second field is "internal". * * is a ResourceReader resource name. Currently these refer * to file names under com/ibm/text/resources. This string is passed * directly to ResourceReader, together with . * * is either "FORWARD" or "REVERSE". * * is a string to be passed directly to * Transliterator.getInstance(). The returned Transliterator object * then has its ID changed to and is returned. * * The extra blank field on "alias" lines is to make the array square. */ Locale indexLoc("translit_index"); ResourceBundle bundle((char *)0, indexLoc, status); ResourceBundle transIDs(bundle.get(RB_RULE_BASED_IDS, status)); int32_t row, maxRows; if (U_SUCCESS(status)) { maxRows = transIDs.getSize(); for (row = 0; row < maxRows; row++) { ResourceBundle colBund(transIDs.get(row, status)); if (U_SUCCESS(status) && colBund.getSize() == 4) { UnicodeString id(colBund.getStringEx((int32_t)0, status)); UChar type = colBund.getStringEx(1, status).charAt(0); UnicodeString resString(colBund.getStringEx(2, status)); if (U_SUCCESS(status)) { switch (type) { case 0x66: // 'f' case 0x69: // 'i' // 'file' or 'internal'; // row[2]=resource, row[3]=direction { UBool visible = (type == 0x0066 /*f*/); UTransDirection dir = (colBund.getStringEx(3, status).charAt(0) == 0x0046 /*F*/) ? UTRANS_FORWARD : UTRANS_REVERSE; registry->put(id, resString, dir, visible); } break; case 0x61: // 'a' // 'alias'; row[2]=createInstance argument registry->put(id, resString, TRUE); break; } } } } } // Manually add prototypes that the system knows about to the // cache. This is how new non-rule-based transliterators are // added to the system. registry->put(new HexToUnicodeTransliterator(), TRUE); registry->put(new UnicodeToHexTransliterator(), TRUE); registry->put(new JamoHangulTransliterator(), TRUE); registry->put(new HangulJamoTransliterator(), TRUE); registry->put(new NullTransliterator(), TRUE); registry->put(new RemoveTransliterator(), TRUE); registry->put(new LowercaseTransliterator(), TRUE); registry->put(new UppercaseTransliterator(), TRUE); registry->put(new TitlecaseTransliterator(), TRUE); registry->put(new UnicodeNameTransliterator(), TRUE); registry->put(new NameUnicodeTransliterator(), TRUE); NormalizationTransliterator::registerIDs(); } //eof