/* ********************************************************************** * Copyright (C) 1999-2003, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 10/20/99 alan Creation. ********************************************************************** */ #include "unicode/uniset.h" #include "unicode/parsepos.h" #include "unicode/uchar.h" #include "unicode/uscript.h" #include "symtable.h" #include "cmemory.h" #include "uhash.h" #include "util.h" #include "uvector.h" #include "uprops.h" #include "charstr.h" #include "ustrfmt.h" #include "mutex.h" #include "uassert.h" #include "hash.h" #include "ucmp8.h" // HIGH_VALUE > all valid values. 110000 for codepoints #define UNICODESET_HIGH 0x0110000 // LOW <= all valid values. ZERO for codepoints #define UNICODESET_LOW 0x000000 // initial storage. Must be >= 0 #define START_EXTRA 16 // extra amount for growth. Must be >= 0 #define GROW_EXTRA START_EXTRA // Define UChar constants using hex for EBCDIC compatibility // Used #define to reduce private static exports and memory access time. #define SET_OPEN ((UChar)0x005B) /*[*/ #define SET_CLOSE ((UChar)0x005D) /*]*/ #define HYPHEN ((UChar)0x002D) /*-*/ #define COMPLEMENT ((UChar)0x005E) /*^*/ #define COLON ((UChar)0x003A) /*:*/ #define BACKSLASH ((UChar)0x005C) /*\*/ #define INTERSECTION ((UChar)0x0026) /*&*/ #define UPPER_U ((UChar)0x0055) /*U*/ #define LOWER_U ((UChar)0x0075) /*u*/ #define OPEN_BRACE ((UChar)123) /*{*/ #define CLOSE_BRACE ((UChar)125) /*}*/ #define UPPER_P ((UChar)0x0050) /*P*/ #define LOWER_P ((UChar)0x0070) /*p*/ #define UPPER_N ((UChar)78) /*N*/ #define EQUALS ((UChar)0x003D) /*=*/ static const UChar POSIX_OPEN[] = { 91,58,0 }; // "[:" static const UChar POSIX_CLOSE[] = { 58,93,0 }; // ":]" static const UChar PERL_OPEN[] = { 92,112,0 }; // "\\p" static const UChar PERL_CLOSE[] = { 125,0 }; // "}" static const UChar NAME_OPEN[] = { 92,78,0 }; // "\\N" // Special property set IDs static const char ANY[] = "ANY"; // [\u0000-\U0010FFFF] static const char ASCII[] = "ASCII"; // [\u0000-\u007F] static const char NAME_PROP[] = "na"; // Unicode name property alias // TODO: Remove the following special-case code when // these four C99-compatibility properties are implemented // as enums/names. U_CDECL_BEGIN typedef UBool (U_CALLCONV *_C99_Property_Function)(UChar32); U_CDECL_END static const struct _C99_Map { const char* name; _C99_Property_Function func; } _C99_DISPATCH[] = { // These three entries omitted; they clash with PropertyAliases // names for Unicode properties, so UnicodeSet already maps them // to those properties. //{ "alpha", u_isalpha }, //{ "lower", u_islower }, //{ "upper", u_isupper }, // MUST be in SORTED order { "blank", u_isblank }, { "cntrl", u_iscntrl }, { "digit", u_isdigit }, { "graph", u_isgraph }, { "print", u_isprint }, { "punct", u_ispunct }, { "space", u_isspace }, { "title", u_istitle }, { "xdigit", u_isxdigit } }; #define _C99_COUNT (9) // TEMPORARY: Remove when deprecated category code constructor is removed. static const UChar CATEGORY_NAMES[] = { // Must be kept in sync with uchar.h/UCharCategory 0x43, 0x6E, /* "Cn" */ 0x4C, 0x75, /* "Lu" */ 0x4C, 0x6C, /* "Ll" */ 0x4C, 0x74, /* "Lt" */ 0x4C, 0x6D, /* "Lm" */ 0x4C, 0x6F, /* "Lo" */ 0x4D, 0x6E, /* "Mn" */ 0x4D, 0x65, /* "Me" */ 0x4D, 0x63, /* "Mc" */ 0x4E, 0x64, /* "Nd" */ 0x4E, 0x6C, /* "Nl" */ 0x4E, 0x6F, /* "No" */ 0x5A, 0x73, /* "Zs" */ 0x5A, 0x6C, /* "Zl" */ 0x5A, 0x70, /* "Zp" */ 0x43, 0x63, /* "Cc" */ 0x43, 0x66, /* "Cf" */ 0x43, 0x6F, /* "Co" */ 0x43, 0x73, /* "Cs" */ 0x50, 0x64, /* "Pd" */ 0x50, 0x73, /* "Ps" */ 0x50, 0x65, /* "Pe" */ 0x50, 0x63, /* "Pc" */ 0x50, 0x6F, /* "Po" */ 0x53, 0x6D, /* "Sm" */ 0x53, 0x63, /* "Sc" */ 0x53, 0x6B, /* "Sk" */ 0x53, 0x6F, /* "So" */ 0x50, 0x69, /* "Pi" */ 0x50, 0x66, /* "Pf" */ 0x00 }; /** * Delimiter string used in patterns to close a category reference: * ":]". Example: "[:Lu:]". */ static const UChar CATEGORY_CLOSE[] = {COLON, SET_CLOSE, 0x0000}; /* ":]" */ U_NAMESPACE_BEGIN const char ParsePosition::fgClassID=0; /** * Minimum value that can be stored in a UnicodeSet. */ const UChar32 UnicodeSet::MIN_VALUE = UNICODESET_LOW; /** * Maximum value that can be stored in a UnicodeSet. */ const UChar32 UnicodeSet::MAX_VALUE = UNICODESET_HIGH - 1; const char UnicodeSet::fgClassID = 0; static UnicodeSet* INCLUSIONS = NULL; // cached uprv_getInclusions() static Hashtable* CASE_EQUIV_HASH = NULL; // for closeOver(USET_CASE) static CompactByteArray* CASE_EQUIV_CBA = NULL; // for closeOver(USET_CASE) // helper functions for matching of pattern syntax pieces ------------------ *** // these functions are parallel to the PERL_OPEN etc. strings above // using these functions is not only faster than UnicodeString::compare() and // caseCompare(), but they also make UnicodeSet work for simple patterns when // no Unicode properties data is available - when caseCompare() fails static inline UBool isPerlOpen(const UnicodeString &pattern, int32_t pos) { UChar c; return pattern.charAt(pos)==BACKSLASH && ((c=pattern.charAt(pos+1))==LOWER_P || c==UPPER_P); } static inline UBool isPerlClose(const UnicodeString &pattern, int32_t pos) { return pattern.charAt(pos)==CLOSE_BRACE; } static inline UBool isNameOpen(const UnicodeString &pattern, int32_t pos) { return pattern.charAt(pos)==BACKSLASH && pattern.charAt(pos+1)==UPPER_N; } static inline UBool isPOSIXOpen(const UnicodeString &pattern, int32_t pos) { return pattern.charAt(pos)==SET_OPEN && pattern.charAt(pos+1)==COLON; } static inline UBool isPOSIXClose(const UnicodeString &pattern, int32_t pos) { return pattern.charAt(pos)==COLON && pattern.charAt(pos+1)==SET_CLOSE; } /** * Modify the given UChar32 variable so that it is in range, by * pinning values < UNICODESET_LOW to UNICODESET_LOW, and * pinning values > UNICODESET_HIGH-1 to UNICODESET_HIGH-1. * It modifies its argument in-place and also returns it. */ inline UChar32 pinCodePoint(UChar32& c) { if (c < UNICODESET_LOW) { c = UNICODESET_LOW; } else if (c > (UNICODESET_HIGH-1)) { c = (UNICODESET_HIGH-1); } return c; } //---------------------------------------------------------------- // Debugging //---------------------------------------------------------------- // DO NOT DELETE THIS CODE. This code is used to debug memory leaks. // To enable the debugging, define the symbol DEBUG_MEM in the line // below. This will result in text being sent to stdout that looks // like this: // DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85- // DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85- // Each line lists a construction (ct) or destruction (dt) event, the // object address, the number of outstanding objects after the event, // and the pattern of the object in question. // #define DEBUG_MEM #ifdef DEBUG_MEM #include static int32_t _dbgCount = 0; static inline void _dbgct(UnicodeSet* set) { UnicodeString str; set->toPattern(str, TRUE); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf); } static inline void _dbgdt(UnicodeSet* set) { UnicodeString str; set->toPattern(str, TRUE); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf); } #else #define _dbgct(set) #define _dbgdt(set) #endif //---------------------------------------------------------------- // UnicodeString in UVector support //---------------------------------------------------------------- static void U_CALLCONV cloneUnicodeString(UHashTok *dst, UHashTok *src) { dst->pointer = new UnicodeString(*(UnicodeString*)src->pointer); } static int8_t U_CALLCONV compareUnicodeString(UHashTok t1, UHashTok t2) { const UnicodeString &a = *(const UnicodeString*)t1.pointer; const UnicodeString &b = *(const UnicodeString*)t2.pointer; return a.compare(b); } //---------------------------------------------------------------- // Constructors &c //---------------------------------------------------------------- /** * Constructs an empty set. */ UnicodeSet::UnicodeSet() : len(1), capacity(1 + START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ list[0] = UNICODESET_HIGH; } allocateStrings(); _dbgct(this); } /** * Constructs a set containing the given range. If end > * start then an empty set is created. * * @param start first character, inclusive, of range * @param end last character, inclusive, of range */ UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) : len(1), capacity(1 + START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ list[0] = UNICODESET_HIGH; } allocateStrings(); complement(start, end); _dbgct(this); } /** * Constructs a set from the given pattern, optionally ignoring * white space. See the class description for the syntax of the * pattern language. * @param pattern a string specifying what characters are in the set */ UnicodeSet::UnicodeSet(const UnicodeString& pattern, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { if(U_SUCCESS(status)){ list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); /* test for NULL */ if(list == NULL) { status = U_MEMORY_ALLOCATION_ERROR; }else{ allocateStrings(); applyPattern(pattern, USET_IGNORE_SPACE, status); } } _dbgct(this); } /** * Constructs a set from the given pattern, optionally ignoring * white space. See the class description for the syntax of the * pattern language. * @param pattern a string specifying what characters are in the set * @param options bitmask for options to apply to the pattern. * Valid options are USET_IGNORE_SPACE and USET_CASE_INSENSITIVE. */ UnicodeSet::UnicodeSet(const UnicodeString& pattern, uint32_t options, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { if(U_SUCCESS(status)){ list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); /* test for NULL */ if(list == NULL) { status = U_MEMORY_ALLOCATION_ERROR; }else{ allocateStrings(); applyPattern(pattern, options, status); } } _dbgct(this); } // For internal use by RuleBasedTransliterator UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos, const SymbolTable& symbols, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { if(U_SUCCESS(status)){ list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); /* test for NULL */ if(list == NULL) { status = U_MEMORY_ALLOCATION_ERROR; }else{ allocateStrings(); applyPattern(pattern, pos, USET_IGNORE_SPACE, &symbols, status); } } _dbgct(this); } // For internal use by TransliteratorIDParser UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos, uint32_t options, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { if(U_SUCCESS(status)){ list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); /* test for NULL */ if(list == NULL) { status = U_MEMORY_ALLOCATION_ERROR; }else{ allocateStrings(); applyPattern(pattern, pos, options, NULL, status); } } _dbgct(this); } #ifdef U_USE_UNICODESET_DEPRECATES /** * DEPRECATED Constructs a set from the given Unicode character category. * @param category an integer indicating the character category as * defined in uchar.h. * @deprecated To be removed after 2002-DEC-31 */ UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) : len(0), capacity(START_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { static const UChar OPEN[] = { 91, 58, 0 }; // "[:" static const UChar CLOSE[]= { 58, 93, 0 }; // ":]" if (U_SUCCESS(status)) { if (category < 0 || category >= U_CHAR_CATEGORY_COUNT) { status = U_ILLEGAL_ARGUMENT_ERROR; } else { UnicodeString pattern(FALSE, CATEGORY_NAMES + category*2, 2); pattern.insert(0, OPEN); pattern.append(CLOSE); list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); /* test for NULL */ if(list == NULL) { status = U_MEMORY_ALLOCATION_ERROR; }else{ allocateStrings(); applyPattern(pattern, status); } } } _dbgct(this); } #endif /** * Constructs a set that is identical to the given UnicodeSet. */ UnicodeSet::UnicodeSet(const UnicodeSet& o) : UnicodeFilter(o), len(0), capacity(o.len + GROW_EXTRA), bufferCapacity(0), list(0), buffer(0), strings(0) { list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ allocateStrings(); *this = o; } _dbgct(this); } /** * Destructs the set. */ UnicodeSet::~UnicodeSet() { _dbgdt(this); // first! uprv_free(list); if (buffer) { uprv_free(buffer); } delete strings; } /** * Assigns this object to be a copy of another. */ UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) { ensureCapacity(o.len); len = o.len; uprv_memcpy(list, o.list, len*sizeof(UChar32)); UErrorCode ec = U_ZERO_ERROR; strings->assign(*o.strings, cloneUnicodeString, ec); pat = o.pat; return *this; } /** * Compares the specified object with this set for equality. Returns * true if the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). * * @param o set to be compared for equality with this set. * @return true if the specified set is equal to this set. */ UBool UnicodeSet::operator==(const UnicodeSet& o) const { if (len != o.len) return FALSE; for (int32_t i = 0; i < len; ++i) { if (list[i] != o.list[i]) return FALSE; } if (*strings != *o.strings) return FALSE; return TRUE; } /** * Returns a copy of this object. All UnicodeMatcher objects have * to support cloning in order to allow classes using * UnicodeMatchers, such as Transliterator, to implement cloning. */ UnicodeFunctor* UnicodeSet::clone() const { return new UnicodeSet(*this); } /** * Returns the hash code value for this set. * * @return the hash code value for this set. * @see Object#hashCode() */ int32_t UnicodeSet::hashCode(void) const { int32_t result = len; for (int32_t i = 0; i < len; ++i) { result *= 1000003; result += list[i]; } return result; } //---------------------------------------------------------------- // Public API //---------------------------------------------------------------- /** * Make this object represent the range start - end. * If end > start then this object is set to an * an empty range. * * @param start first character in the set, inclusive * @rparam end last character in the set, inclusive */ UnicodeSet& UnicodeSet::set(UChar32 start, UChar32 end) { clear(); complement(start, end); return *this; } /** * Modifies this set to represent the set specified by the given * pattern, optionally ignoring white space. See the class * description for the syntax of the pattern language. * @param pattern a string specifying what characters are in the set * @param ignoreSpaces if true, all spaces in the * pattern are ignored. Spaces are those characters for which * uprv_isRuleWhiteSpace() is true. * Characters preceded by '\\' are escaped, losing any special * meaning they otherwise have. Spaces may be included by * escaping them. * @exception IllegalArgumentException if the pattern * contains a syntax error. */ UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern, UErrorCode& status) { return applyPattern(pattern, USET_IGNORE_SPACE, status); } /** * Modifies this set to represent the set specified by the given * pattern, optionally ignoring white space. See the class * description for the syntax of the pattern language. * @param pattern a string specifying what characters are in the set * @param options bitmask for options to apply to the pattern. * Valid options are USET_IGNORE_SPACE and USET_CASE_INSENSITIVE. */ UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern, uint32_t options, UErrorCode& status) { if (U_FAILURE(status)) { return *this; } ParsePosition pos(0); applyPattern(pattern, pos, options, NULL, status); if (U_FAILURE(status)) return *this; int32_t i = pos.getIndex(); int32_t n = pattern.length(); if (options & USET_IGNORE_SPACE) { // Skip over trailing whitespace while (itoPattern() representation of a * string to the given StringBuffer. */ void UnicodeSet::_appendToPat(UnicodeString& buf, const UnicodeString& s, UBool escapeUnprintable) { UChar32 cp; for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) { _appendToPat(buf, cp = s.char32At(i), escapeUnprintable); } } /** * Append the toPattern() representation of a * character to the given StringBuffer. */ void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool escapeUnprintable) { if (escapeUnprintable && ICU_Utility::isUnprintable(c)) { // Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything // unprintable if (ICU_Utility::escapeUnprintable(buf, c)) { return; } } // Okay to let ':' pass through switch (c) { case SET_OPEN: case SET_CLOSE: case HYPHEN: case COMPLEMENT: case INTERSECTION: case BACKSLASH: case 123/*{*/: case 125/*}*/: case SymbolTable::SYMBOL_REF: case COLON: buf.append(BACKSLASH); break; default: // Escape whitespace if (uprv_isRuleWhiteSpace(c)) { buf.append(BACKSLASH); } break; } buf.append(c); } /** * Returns a string representation of this set. If the result of * calling this function is passed to a UnicodeSet constructor, it * will produce another set that is equal to this one. */ UnicodeString& UnicodeSet::toPattern(UnicodeString& result, UBool escapeUnprintable) const { result.truncate(0); return _toPattern(result, escapeUnprintable); } /** * Append a string representation of this set to result. This will be * a cleaned version of the string passed to applyPattern(), if there * is one. Otherwise it will be generated. */ UnicodeString& UnicodeSet::_toPattern(UnicodeString& result, UBool escapeUnprintable) const { if (pat.length() > 0) { int32_t i; int32_t backslashCount = 0; for (i=0; i 1 && getRangeStart(0) == MIN_VALUE && getRangeEnd(count-1) == MAX_VALUE) { // Emit the inverse result.append(COMPLEMENT); for (int32_t i = 1; i < count; ++i) { UChar32 start = getRangeEnd(i-1)+1; UChar32 end = getRangeStart(i)-1; _appendToPat(result, start, escapeUnprintable); if (start != end) { result.append(HYPHEN); _appendToPat(result, end, escapeUnprintable); } } } // Default; emit the ranges as pairs else { for (int32_t i = 0; i < count; ++i) { UChar32 start = getRangeStart(i); UChar32 end = getRangeEnd(i); _appendToPat(result, start, escapeUnprintable); if (start != end) { result.append(HYPHEN); _appendToPat(result, end, escapeUnprintable); } } } for (int32_t i = 0; isize(); ++i) { result.append(OPEN_BRACE); _appendToPat(result, *(const UnicodeString*) strings->elementAt(i), escapeUnprintable); result.append(CLOSE_BRACE); } return result.append(SET_CLOSE); } /** * Returns the number of elements in this set (its cardinality), * n, where 0 <= n <= 65536. * * @return the number of elements in this set (its cardinality). */ int32_t UnicodeSet::size(void) const { int32_t n = 0; int32_t count = getRangeCount(); for (int32_t i = 0; i < count; ++i) { n += getRangeEnd(i) - getRangeStart(i) + 1; } return n + strings->size(); } /** * Returns true if this set contains no elements. * * @return true if this set contains no elements. */ UBool UnicodeSet::isEmpty(void) const { return len == 1 && strings->size() == 0; } /** * Returns true if this set contains the given character. * @param c character to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::contains(UChar32 c) const { // Set i to the index of the start item greater than ch // We know we will terminate without length test! // LATER: for large sets, add binary search //int32_t i = -1; //for (;;) { // if (c < list[++i]) break; //} if (c >= UNICODESET_HIGH) { // Don't need to check LOW bound return FALSE; } int32_t i = findCodePoint(c); return ((i & 1) != 0); // return true if odd } /** * Returns the smallest value i such that c < list[i]. Caller * must ensure that c is a legal value or this method will enter * an infinite loop. This method performs a binary search. * @param c a character in the range MIN_VALUE..MAX_VALUE * inclusive * @return the smallest integer i in the range 0..len-1, * inclusive, such that c < list[i] */ int32_t UnicodeSet::findCodePoint(UChar32 c) const { /* Examples: findCodePoint(c) set list[] c=0 1 3 4 7 8 === ============== =========== [] [110000] 0 0 0 0 0 0 [\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2 [\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2 [:Any:] [0, 110000] 1 1 1 1 1 1 */ // Return the smallest i such that c < list[i]. Assume // list[len - 1] == HIGH and that c is legal (0..HIGH-1). if (c < list[0]) return 0; // High runner test. c is often after the last range, so an // initial check for this condition pays off. if (len >= 2 && c >= list[len-2]) return len-1; int32_t lo = 0; int32_t hi = len - 1; // invariant: c >= list[lo] // invariant: c < list[hi] for (;;) { int32_t i = (lo + hi) >> 1; if (i == lo) return hi; if (c < list[i]) { hi = i; } else { lo = i; } } return 0; // To make compiler happy; never reached } /** * Returns true if this set contains every character * of the given range. * @param start first character, inclusive, of the range * @param end last character, inclusive, of the range * @return true if the test condition is met */ UBool UnicodeSet::contains(UChar32 start, UChar32 end) const { //int32_t i = -1; //for (;;) { // if (start < list[++i]) break; //} int32_t i = findCodePoint(start); return ((i & 1) != 0 && end < list[i]); } /** * Returns true if this set contains the given * multicharacter string. * @param s string to be checked for containment * @return true if this set contains the specified string */ UBool UnicodeSet::contains(const UnicodeString& s) const { if (s.length() == 0) return FALSE; int32_t cp = getSingleCP(s); if (cp < 0) { return strings->contains((void*) &s); } else { return contains((UChar32) cp); } } /** * Returns true if this set contains all the characters and strings * of the given set. * @param c set to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsAll(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int i=0; icontainsAll(*c.strings)) return FALSE; return TRUE; } /** * Returns true if this set contains all the characters * of the given string. * @param s string containing characters to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsAll(const UnicodeString& s) const { UChar32 cp; for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) { cp = s.char32At(i); if (!contains(cp)) return FALSE; } return TRUE; } /** * Returns true if this set contains none of the characters * of the given range. * @param start first character, inclusive, of the range * @param end last character, inclusive, of the range * @return true if the test condition is met */ UBool UnicodeSet::containsNone(UChar32 start, UChar32 end) const { int32_t i = -1; for (;;) { if (start < list[++i]) break; } return ((i & 1) == 0 && end < list[i]); } /** * Returns true if this set contains none of the characters and strings * of the given set. * @param c set to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsNone(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int32_t i=0; icontainsNone(*c.strings)) return FALSE; return TRUE; } /** * Returns true if this set contains none of the characters * of the given string. * @param s string containing characters to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsNone(const UnicodeString& s) const { UChar32 cp; for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) { cp = s.char32At(i); if (contains(cp)) return FALSE; } return TRUE; } /** * Returns true if this set contains any character whose low byte * is the given value. This is used by RuleBasedTransliterator for * indexing. */ UBool UnicodeSet::matchesIndexValue(uint8_t v) const { /* The index value v, in the range [0,255], is contained in this set if * it is contained in any pair of this set. Pairs either have the high * bytes equal, or unequal. If the high bytes are equal, then we have * aaxx..aayy, where aa is the high byte. Then v is contained if xx <= * v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa. * Then v is contained if xx <= v || v <= yy. (This is identical to the * time zone month containment logic.) */ int32_t i; for (i=0; isize() != 0) { for (i=0; isize(); ++i) { const UnicodeString& s = *(const UnicodeString*)strings->elementAt(i); //if (s.length() == 0) { // // Empty strings match everything // return TRUE; //} // assert(s.length() != 0); // We enforce this elsewhere UChar32 c = s.char32At(0); if ((c & 0xFF) == v) { return TRUE; } } } return FALSE; } /** * Implementation of UnicodeMatcher::matches(). Always matches the * longest possible multichar string. */ UMatchDegree UnicodeSet::matches(const Replaceable& text, int32_t& offset, int32_t limit, UBool incremental) { if (offset == limit) { // Strings, if any, have length != 0, so we don't worry // about them here. If we ever allow zero-length strings // we much check for them here. if (contains(U_ETHER)) { return incremental ? U_PARTIAL_MATCH : U_MATCH; } else { return U_MISMATCH; } } else { if (strings->size() != 0) { // try strings first // might separate forward and backward loops later // for now they are combined // TODO Improve efficiency of this, at least in the forward // direction, if not in both. In the forward direction we // can assume the strings are sorted. int32_t i; UBool forward = offset < limit; // firstChar is the leftmost char to match in the // forward direction or the rightmost char to match in // the reverse direction. UChar firstChar = text.charAt(offset); // If there are multiple strings that can match we // return the longest match. int32_t highWaterLength = 0; for (i=0; isize(); ++i) { const UnicodeString& trial = *(const UnicodeString*)strings->elementAt(i); //if (trial.length() == 0) { // return U_MATCH; // null-string always matches //} // assert(trial.length() != 0); // We ensure this elsewhere UChar c = trial.charAt(forward ? 0 : trial.length() - 1); // Strings are sorted, so we can optimize in the // forward direction. if (forward && c > firstChar) break; if (c != firstChar) continue; int32_t matchLen = matchRest(text, offset, limit, trial); if (incremental) { int32_t maxLen = forward ? limit-offset : offset-limit; if (matchLen == maxLen) { // We have successfully matched but only up to limit. return U_PARTIAL_MATCH; } } if (matchLen == trial.length()) { // We have successfully matched the whole string. if (matchLen > highWaterLength) { highWaterLength = matchLen; } // In the forward direction we know strings // are sorted so we can bail early. if (forward && matchLen < highWaterLength) { break; } continue; } } // We've checked all strings without a partial match. // If we have full matches, return the longest one. if (highWaterLength != 0) { offset += forward ? highWaterLength : -highWaterLength; return U_MATCH; } } return UnicodeFilter::matches(text, offset, limit, incremental); } } /** * Returns the longest match for s in text at the given position. * If limit > start then match forward from start+1 to limit * matching all characters except s.charAt(0). If limit < start, * go backward starting from start-1 matching all characters * except s.charAt(s.length()-1). This method assumes that the * first character, text.charAt(start), matches s, so it does not * check it. * @param text the text to match * @param start the first character to match. In the forward * direction, text.charAt(start) is matched against s.charAt(0). * In the reverse direction, it is matched against * s.charAt(s.length()-1). * @param limit the limit offset for matching, either last+1 in * the forward direction, or last-1 in the reverse direction, * where last is the index of the last character to match. * @return If part of s matches up to the limit, return |limit - * start|. If all of s matches before reaching the limit, return * s.length(). If there is a mismatch between s and text, return * 0 */ int32_t UnicodeSet::matchRest(const Replaceable& text, int32_t start, int32_t limit, const UnicodeString& s) { int32_t i; int32_t maxLen; int32_t slen = s.length(); if (start < limit) { maxLen = limit - start; if (maxLen > slen) maxLen = slen; for (i = 1; i < maxLen; ++i) { if (text.charAt(start + i) != s.charAt(i)) return 0; } } else { maxLen = start - limit; if (maxLen > slen) maxLen = slen; --slen; // <=> slen = s.length() - 1; for (i = 1; i < maxLen; ++i) { if (text.charAt(start - i) != s.charAt(slen - i)) return 0; } } return maxLen; } /** * Implement of UnicodeMatcher */ void UnicodeSet::addMatchSetTo(UnicodeSet& toUnionTo) const { toUnionTo.addAll(*this); } /** * Returns the index of the given character within this set, where * the set is ordered by ascending code point. If the character * is not in this set, return -1. The inverse of this method is * charAt(). * @return an index from 0..size()-1, or -1 */ int32_t UnicodeSet::indexOf(UChar32 c) const { if (c < MIN_VALUE || c > MAX_VALUE) { return -1; } int32_t i = 0; int32_t n = 0; for (;;) { UChar32 start = list[i++]; if (c < start) { return -1; } UChar32 limit = list[i++]; if (c < limit) { return n + c - start; } n += limit - start; } } /** * Returns the character at the given index within this set, where * the set is ordered by ascending code point. If the index is * out of range, return (UChar32)-1. The inverse of this method is * indexOf(). * @param index an index from 0..size()-1 * @return the character at the given index, or (UChar32)-1. */ UChar32 UnicodeSet::charAt(int32_t index) const { if (index >= 0) { // len2 is the largest even integer <= len, that is, it is len // for even values and len-1 for odd values. With odd values // the last entry is UNICODESET_HIGH. int32_t len2 = len & ~1; for (int32_t i=0; i < len2;) { UChar32 start = list[i++]; int32_t count = list[i++] - start; if (index < count) { return (UChar32)(start + index); } index -= count; } } return (UChar32)-1; } /** * Adds the specified range to this set if it is not already * present. If this set already contains the specified range, * the call leaves this set unchanged. If end > start * then an empty range is added, leaving the set unchanged. * * @param start first character, inclusive, of range to be added * to this set. * @param end last character, inclusive, of range to be added * to this set. */ UnicodeSet& UnicodeSet::add(UChar32 start, UChar32 end) { if (pinCodePoint(start) < pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; add(range, 2, 0); } else if (start == end) { add(start); } return *this; } // #define DEBUG_US_ADD #ifdef DEBUG_US_ADD #include void dump(UChar32 c) { if (c <= 0xFF) { printf("%c", (char)c); } else { printf("U+%04X", c); } } void dump(const UChar32* list, int32_t len) { printf("["); for (int32_t i=0; i "); #endif if (c == list[i]-1) { // c is before start of next range list[i] = c; // if we touched the HIGH mark, then add a new one if (c == (UNICODESET_HIGH - 1)) { ensureCapacity(len+1); list[len++] = UNICODESET_HIGH; } if (i > 0 && c == list[i-1]) { // collapse adjacent ranges // [..., start_k-1, c, c, limit_k, ..., HIGH] // ^ // list[i] //for (int32_t k=i-1; k 0 && c == list[i-1]) { // c is after end of prior range list[i-1]++; // no need to check for collapse here } else { // At this point we know the new char is not adjacent to // any existing ranges, and it is not 10FFFF. // [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH] // ^ // list[i] // [..., start_k-1, limit_k-1, c, c+1, start_k, limit_k, ..., HIGH] // ^ // list[i] ensureCapacity(len+2); //for (int32_t k=len-1; k>=i; --k) { // list[k+2] = list[k]; //} UChar32* src = list + len; UChar32* dst = src + 2; UChar32* srclimit = list + i; while (src > srclimit) *(--dst) = *(--src); list[i] = c; list[i+1] = c+1; len += 2; } #ifdef DEBUG_US_ADD dump(list, len); printf("\n"); for (i=1; i {"ch"} *
Warning: you cannot add an empty string ("") to a UnicodeSet. * @param s the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::add(const UnicodeString& s) { if (s.length() == 0) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (!strings->contains((void*) &s)) { _add(s); pat.truncate(0); } } else { add((UChar32)cp, (UChar32)cp); } return *this; } /** * Adds the given string, in order, to 'strings'. The given string * must have been checked by the caller to not be empty and to not * already be in 'strings'. */ void UnicodeSet::_add(const UnicodeString& s) { UnicodeString* t = new UnicodeString(s); UErrorCode ec = U_ZERO_ERROR; strings->sortedInsert(t, compareUnicodeString, ec); } /** * @return a code point IF the string consists of a single one. * otherwise returns -1. * @param string to test */ int32_t UnicodeSet::getSingleCP(const UnicodeString& s) { //if (s.length() < 1) { // throw new IllegalArgumentException("Can't use zero-length strings in UnicodeSet"); //} if (s.length() > 2) return -1; if (s.length() == 1) return s.charAt(0); // at this point, len = 2 UChar32 cp = s.char32At(0); if (cp > 0xFFFF) { // is surrogate pair return cp; } return -1; } /** * Adds each of the characters in this string to the set. Thus "ch" => {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::addAll(const UnicodeString& s) { UChar32 cp; for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) { cp = s.char32At(i); add(cp, cp); } return *this; } /** * Retains EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::retainAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); retainAll(set); return *this; } /** * Complement EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::complementAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); complementAll(set); return *this; } /** * Remove EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::removeAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); removeAll(set); return *this; } /** * Makes a set from a multicharacter string. Thus "ch" => {"ch"} *
Warning: you cannot add an empty string ("") to a UnicodeSet. * @param the source string * @return a newly created set containing the given string */ UnicodeSet* UnicodeSet::createFrom(const UnicodeString& s) { UnicodeSet *set = new UnicodeSet(); set->add(s); return set; } /** * Makes a set from each of the characters in the string. Thus "ch" => {"c", "h"} * @param the source string * @return a newly created set containing the given characters */ UnicodeSet* UnicodeSet::createFromAll(const UnicodeString& s) { UnicodeSet *set = new UnicodeSet(); set->addAll(s); return set; } /** * Retain only the elements in this set that are contained in the * specified range. If end > start then an empty range is * retained, leaving the set empty. * * @param start first character, inclusive, of range to be retained * to this set. * @param end last character, inclusive, of range to be retained * to this set. */ UnicodeSet& UnicodeSet::retain(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 0); } else { clear(); } return *this; } UnicodeSet& UnicodeSet::retain(UChar32 c) { return retain(c, c); } /** * Removes the specified range from this set if it is present. * The set will not contain the specified range once the call * returns. If end > start then an empty range is * removed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ UnicodeSet& UnicodeSet::remove(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 2); } return *this; } /** * Removes the specified character from this set if it is present. * The set will not contain the specified range once the call * returns. */ UnicodeSet& UnicodeSet::remove(UChar32 c) { return remove(c, c); } /** * Removes the specified string from this set if it is present. * The set will not contain the specified character once the call * returns. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::remove(const UnicodeString& s) { if (s.length() == 0) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { strings->removeElement((void*) &s); pat.truncate(0); } else { remove((UChar32)cp, (UChar32)cp); } return *this; } /** * Complements the specified range in this set. Any character in * the range will be removed if it is in this set, or will be * added if it is not in this set. If end > start * then an empty range is xor'ed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ UnicodeSet& UnicodeSet::complement(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; exclusiveOr(range, 2, 0); } pat.truncate(0); return *this; } UnicodeSet& UnicodeSet::complement(UChar32 c) { return complement(c, c); } /** * This is equivalent to * complement(MIN_VALUE, MAX_VALUE). */ UnicodeSet& UnicodeSet::complement(void) { if (list[0] == UNICODESET_LOW) { ensureBufferCapacity(len-1); uprv_memcpy(buffer, list + 1, (len-1)*sizeof(UChar32)); --len; } else { ensureBufferCapacity(len+1); uprv_memcpy(buffer + 1, list, len*sizeof(UChar32)); buffer[0] = UNICODESET_LOW; ++len; } swapBuffers(); pat.truncate(0); return *this; } /** * Complement the specified string in this set. * The set will not contain the specified string once the call * returns. *
Warning: you cannot add an empty string ("") to a UnicodeSet. * @param s the string to complement * @return this object, for chaining */ UnicodeSet& UnicodeSet::complement(const UnicodeString& s) { if (s.length() == 0) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (strings->contains((void*) &s)) { strings->removeElement((void*) &s); } else { _add(s); } pat.truncate(0); } else { complement((UChar32)cp, (UChar32)cp); } return *this; } /** * Adds all of the elements in the specified set to this set if * they're not already present. This operation effectively * modifies this set so that its value is the union of the two * sets. The behavior of this operation is unspecified if the specified * collection is modified while the operation is in progress. * * @param c set whose elements are to be added to this set. * @see #add(char, char) */ UnicodeSet& UnicodeSet::addAll(const UnicodeSet& c) { add(c.list, c.len, 0); // Add strings in order for (int32_t i=0; isize(); ++i) { const UnicodeString* s = (const UnicodeString*)c.strings->elementAt(i); if (!strings->contains((void*) s)) { _add(*s); } } return *this; } /** * Retains only the elements in this set that are contained in the * specified set. In other words, removes from this set all of * its elements that are not contained in the specified set. This * operation effectively modifies this set so that its value is * the intersection of the two sets. * * @param c set that defines which elements this set will retain. */ UnicodeSet& UnicodeSet::retainAll(const UnicodeSet& c) { retain(c.list, c.len, 0); strings->retainAll(*c.strings); return *this; } /** * Removes from this set all of its elements that are contained in the * specified set. This operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * * @param c set that defines which elements will be removed from * this set. */ UnicodeSet& UnicodeSet::removeAll(const UnicodeSet& c) { retain(c.list, c.len, 2); strings->removeAll(*c.strings); return *this; } /** * Complements in this set all elements contained in the specified * set. Any character in the other set will be removed if it is * in this set, or will be added if it is not in this set. * * @param c set that defines which elements will be xor'ed from * this set. */ UnicodeSet& UnicodeSet::complementAll(const UnicodeSet& c) { exclusiveOr(c.list, c.len, 0); for (int32_t i=0; isize(); ++i) { void* e = c.strings->elementAt(i); if (!strings->removeElement(e)) { _add(*(const UnicodeString*)e); } } return *this; } /** * Removes all of the elements from this set. This set will be * empty after this call returns. */ UnicodeSet& UnicodeSet::clear(void) { list[0] = UNICODESET_HIGH; len = 1; pat.truncate(0); strings->removeAllElements(); return *this; } /** * Iteration method that returns the number of ranges contained in * this set. * @see #getRangeStart * @see #getRangeEnd */ int32_t UnicodeSet::getRangeCount() const { return len/2; } /** * Iteration method that returns the first character in the * specified range of this set. * @see #getRangeCount * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeStart(int32_t index) const { return list[index*2]; } /** * Iteration method that returns the last character in the * specified range of this set. * @see #getRangeStart * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeEnd(int32_t index) const { return list[index*2 + 1] - 1; } int32_t UnicodeSet::getStringCount() const { return strings->size(); } const UnicodeString* UnicodeSet::getString(int32_t index) const { return (const UnicodeString*) strings->elementAt(index); } /** * Reallocate this objects internal structures to take up the least * possible space, without changing this object's value. */ UnicodeSet& UnicodeSet::compact() { if (len != capacity) { capacity = len; UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); uprv_memcpy(temp, list, len*sizeof(UChar32)); uprv_free(list); list = temp; } uprv_free(buffer); buffer = NULL; return *this; } int32_t UnicodeSet::serialize(uint16_t *dest, int32_t destCapacity, UErrorCode& ec) const { int32_t bmpLength, length, destLength; if (U_FAILURE(ec)) { return 0; } if (destCapacity<0 || (destCapacity>0 && dest==NULL)) { ec=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* count necessary 16-bit units */ length=this->len-1; // Subtract 1 to ignore final UNICODESET_HIGH // assert(length>=0); if (length==0) { /* empty set */ if (destCapacity>0) { *dest=0; } else { ec=U_BUFFER_OVERFLOW_ERROR; } return 1; } /* now length>0 */ if (this->list[length-1]<=0xffff) { /* all BMP */ bmpLength=length; } else if (this->list[0]>=0x10000) { /* all supplementary */ bmpLength=0; length*=2; } else { /* some BMP, some supplementary */ for (bmpLength=0; bmpLengthlist[bmpLength]<=0xffff; ++bmpLength) {} length=bmpLength+2*(length-bmpLength); } /* length: number of 16-bit array units */ if (length>0x7fff) { /* there are only 15 bits for the length in the first serialized word */ ec=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } /* * total serialized length: * number of 16-bit array units (length) + * 1 length unit (always) + * 1 bmpLength unit (if there are supplementary values) */ destLength=length+((length>bmpLength)?2:1); if (destLength<=destCapacity) { const UChar32 *p; int32_t i; *dest=(uint16_t)length; if (length>bmpLength) { *dest|=0x8000; *++dest=(uint16_t)bmpLength; } ++dest; /* write the BMP part of the array */ p=this->list; for (i=0; i>16); *dest++=(uint16_t)*p++; } } else { ec=U_BUFFER_OVERFLOW_ERROR; } return destLength; } //---------------------------------------------------------------- // Implementation: Pattern parsing //---------------------------------------------------------------- /** * Parses the given pattern, starting at the given position. The * character at pattern.charAt(pos.getIndex()) must be '[', or the * parse fails. Parsing continues until the corresponding closing * ']'. If a syntax error is encountered between the opening and * closing brace, the parse fails. Upon return from a successful * parse, the ParsePosition is updated to point to the character * following the closing ']', and a StringBuffer containing a * pairs list for the parsed pattern is returned. This method calls * itself recursively to parse embedded subpatterns. * * @param pattern the string containing the pattern to be parsed. * The portion of the string from pos.getIndex(), which must be a * '[', to the corresponding closing ']', is parsed. * @param pos upon entry, the position at which to being parsing. * The character at pattern.charAt(pos.getIndex()) must be a '['. * Upon return from a U_SUCCESSful parse, pos.getIndex() is either * the character after the closing ']' of the parsed pattern, or * pattern.length() if the closing ']' is the last character of * the pattern string. * @return a StringBuffer containing a pairs list for the parsed * substring of pattern * @exception IllegalArgumentException if the parse fails. */ void UnicodeSet::applyPattern(const UnicodeString& pattern, ParsePosition& pos, uint32_t options, const SymbolTable* symbols, UErrorCode& status) { if (U_FAILURE(status)) { return; } // Need to build the pattern in a temporary string because // _applyPattern calls add() etc., which set pat to empty. UnicodeString rebuiltPat; _applyPattern(pattern, pos, options, symbols, rebuiltPat, status); pat = rebuiltPat; } void UnicodeSet::_applyPattern(const UnicodeString& pattern, ParsePosition& pos, uint32_t options, const SymbolTable* symbols, UnicodeString& rebuiltPat, UErrorCode& status) { if (U_FAILURE(status)) { return; } // If the pattern contains any of the following, we save a // rebuilt (variable-substituted) copy of the source pattern: // - a category // - an intersection or subtraction operator // - an anchor (trailing '$', indicating RBT ether) UBool rebuildPattern = FALSE; UnicodeString newPat(SET_OPEN); int32_t nestedPatStart = - 1; // see below for usage UBool nestedPatDone = FALSE; // see below for usage UnicodeString multiCharBuffer; UBool invert = FALSE; clear(); const UChar32 NONE = (UChar32) -1; UChar32 lastChar = NONE; // This is either a char (0..10FFFF) or NONE UBool isLastLiteral = FALSE; // TRUE if lastChar was a literal UChar lastOp = 0; /* This loop iterates over the characters in the pattern. We start at * the position specified by pos. We exit the loop when either a * matching closing ']' is seen, or we read all characters of the * pattern. In the latter case an error will be thrown. */ /* Pattern syntax: * pat := '[' '^'? elem* ']' * elem := a | a '-' a | set | set op set * set := pat | (a set variable) * op := '&' | '-' * a := (a character, possibly defined by a var) */ // mode 0: No chars parsed yet; next must be '[' // mode 1: '[' seen; if next is '^' or ':' then special // mode 15: "[^" seen; if next is '-' then literal // mode 2: '[' '^'? '-'? seen; parse pattern and close with ']' // mode 3: '[:' seen; parse category and close with ':]' // mode 4: ']' seen; parse complete // mode 5: Top-level property pattern seen int8_t mode = 0; int32_t i = pos.getIndex(); int32_t limit = pattern.length(); UnicodeSet nestedAux; const UnicodeSet* nestedSet; // never owned UnicodeString scratch; /* In the case of an embedded SymbolTable variable, we look it up and * then take characters from the resultant char[] array. These chars * are subjected to an extra level of lookup in the SymbolTable in case * they are stand-ins for a nested UnicodeSet. */ const UnicodeString* varValueBuffer = NULL; int32_t ivarValueBuffer = 0; int32_t anchor = 0; UChar32 c; while (ilength()) { c = varValueBuffer->char32At(ivarValueBuffer); ivarValueBuffer += UTF_CHAR_LENGTH(c); const UnicodeFunctor *m = symbols->lookupMatcher(c); // may be NULL if (m != NULL && m->getDynamicClassID() != UnicodeSet::getStaticClassID()) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } nestedSet = (UnicodeSet*) m; nestedPatDone = FALSE; } else { varValueBuffer = NULL; c = pattern.char32At(i); i += UTF_CHAR_LENGTH(c); } } else { c = pattern.char32At(i); i += UTF_CHAR_LENGTH(c); } if ((options & USET_IGNORE_SPACE) && uprv_isRuleWhiteSpace(c)) { continue; } // Keep track of the count of characters after an alleged anchor if (anchor > 0) { ++anchor; } // Parse the opening '[' and optional following '^' switch (mode) { case 0: if (resemblesPropertyPattern(pattern, i-1)) { mode = 3; break; // Fall through } else if (c == SET_OPEN) { mode = 1; // Next look for '^' or ':' continue; } else { // throw new IllegalArgumentException("Missing opening '['"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } case 1: mode = 2; switch (c) { case COMPLEMENT: invert = TRUE; newPat.append(c); mode = 15; continue; // Back to top to fetch next character case HYPHEN: isLiteral = TRUE; // Treat leading '-' as a literal break; // Fall through } break; case 15: mode = 2; if (c == HYPHEN) { isLiteral = TRUE; // [^-...] starts with literal '-' } break; // else fall through and parse this character normally } // After opening matter is parsed ("[", "[^", or "[:"), the mode // will be 2 if we want a closing ']', or 3 if we should parse a // category and close with ":]". // Only process escapes, variable references, and nested sets // if we are _not_ retrieving characters from the variable // buffer. Characters in the variable buffer have already // benn through escape and variable reference processing. if (varValueBuffer == NULL) { /** * Handle property set patterns. */ if (resemblesPropertyPattern(pattern, i-1)) { ParsePosition pp(i-1); nestedAux.applyPropertyPattern(pattern, pp, status); if (U_FAILURE(status)) { U_ASSERT(pp.getIndex() == i-1); //throw new IllegalArgumentException("Invalid property pattern " + // pattern.substring(i-1)); return; } nestedSet = &nestedAux; nestedPatStart = newPat.length(); nestedPatDone = TRUE; // we're going to do it just below switch (lastOp) { case HYPHEN: case INTERSECTION: newPat.append(lastOp); break; } // If we have a top-level property pattern, then trim // off the opening '[' and use the property pattern // as the entire pattern. if (mode == 3) { newPat.truncate(0); } UnicodeString str; pattern.extractBetween(i-1, pp.getIndex(), str); newPat.append(str); rebuildPattern = TRUE; i = pp.getIndex(); // advance past property pattern if (mode == 3) { // Entire pattern is a category; leave parse // loop. This is one of 2 ways we leave this // loop if the pattern is well-formed. *this = nestedAux; mode = 5; break; } } /* Handle escapes. If a character is escaped, then it assumes its * literal value. This is true for all characters, both special * characters and characters with no special meaning. We also * interpret '\\uxxxx' Unicode escapes here (as literals). */ else if (c == BACKSLASH) { UChar32 escaped = pattern.unescapeAt(i); if (escaped == (UChar32) -1) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } isLiteral = TRUE; c = escaped; } /* Parse variable references. These are treated as literals. If a * variable refers to a UnicodeSet, its stand in character is * returned in the UChar[] buffer. * Variable names are only parsed if varNameToChar is not null. * Set variables are only looked up if varCharToSet is not null. */ else if (symbols != NULL && !isLiteral && c == SymbolTable::SYMBOL_REF) { pos.setIndex(i); UnicodeString name = symbols->parseReference(pattern, pos, limit); if (name.length() != 0) { varValueBuffer = symbols->lookup(name); if (varValueBuffer == NULL) { //throw new IllegalArgumentException("Undefined variable: " // + name); status = U_ILLEGAL_ARGUMENT_ERROR; return; } ivarValueBuffer = 0; i = pos.getIndex(); // Make i point PAST last char of var name } else { // Got a null; this means we have an isolated $. // Tentatively assume this is an anchor. anchor = 1; } continue; // Back to the top to get varValueBuffer[0] } /* An opening bracket indicates the first bracket of a nested * subpattern. */ else if (!isLiteral && c == SET_OPEN) { // Record position before nested pattern nestedPatStart = newPat.length(); // Recurse to get the pairs for this nested set. // Backup i to '['. pos.setIndex(--i); switch (lastOp) { case HYPHEN: case INTERSECTION: newPat.append(lastOp); break; } nestedAux._applyPattern(pattern, pos, options, symbols, newPat, status); nestedSet = &nestedAux; nestedPatDone = TRUE; if (U_FAILURE(status)) { return; } i = pos.getIndex(); } else if (!isLiteral && c == OPEN_BRACE) { // start of a string. find the rest. int32_t length = 0; int32_t st = i; multiCharBuffer.truncate(0); while (i < pattern.length()) { UChar32 ch = pattern.char32At(i); i += UTF_CHAR_LENGTH(ch); if (ch == CLOSE_BRACE) { length = -length; // signal that we saw '}' break; } else if (ch == BACKSLASH) { ch = pattern.unescapeAt(i); if (ch == (UChar32) -1) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } } --length; // sic; see above multiCharBuffer.append(ch); } if (length < 1) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } // We have new string. Add it to set and continue; // we don't need to drop through to the further // processing add(multiCharBuffer); pattern.extractBetween(st, i, multiCharBuffer); newPat.append(OPEN_BRACE).append(multiCharBuffer); rebuildPattern = TRUE; continue; } } /* At this point we have either a character c, or a nested set. If * we have encountered a nested set, either embedded in the pattern, * or as a variable, we have a non-null nestedSet, and c should be * ignored. Otherwise c is the current character, and isLiteral * indicates whether it is an escaped literal (or variable) or a * normal unescaped character. Unescaped characters '-', '&', and * ']' have special meanings. */ if (nestedSet != NULL) { if (lastChar != NONE) { if (lastOp != 0) { // throw new IllegalArgumentException("Illegal rhs for " + lastChar + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return; } add(lastChar, lastChar); if (nestedPatDone) { // If there was a character before the nested set, // then we need to insert it in newPat before the // pattern for the nested set. This position was // recorded in nestedPatStart. UnicodeString s; _appendToPat(s, lastChar, FALSE); newPat.insert(nestedPatStart, s); } else { _appendToPat(newPat, lastChar, FALSE); } lastChar = NONE; } switch (lastOp) { case HYPHEN: removeAll(*nestedSet); break; case INTERSECTION: retainAll(*nestedSet); break; case 0: addAll(*nestedSet); break; } // Get the pattern for the nested set, if we haven't done so // already. if (!nestedPatDone) { if (lastOp != 0) { newPat.append(lastOp); } nestedSet->_toPattern(newPat, FALSE); } rebuildPattern = TRUE; lastOp = 0; } else if (!isLiteral && c == SET_CLOSE) { // Final closing delimiter. This is one of 2 ways we // leave this loop if the pattern is well-formed. if (anchor > 2 || anchor == 1) { //throw new IllegalArgumentException("Syntax error near $" + pattern); status = U_ILLEGAL_ARGUMENT_ERROR; return; } if (anchor == 2) { rebuildPattern = TRUE; newPat.append((UChar)SymbolTable::SYMBOL_REF); add(U_ETHER); } mode = 4; break; } else if (lastOp == 0 && !isLiteral && (c == HYPHEN || c == INTERSECTION)) { // assert(c <= 0xFFFF); lastOp = (UChar) c; } else if (lastOp == HYPHEN) { if (lastChar >= c || lastChar == NONE) { // Don't allow redundant (a-a) or empty (b-a) ranges; // these are most likely typos. //throw new IllegalArgumentException("Invalid range " + lastChar + // '-' + c); status = U_ILLEGAL_ARGUMENT_ERROR; return; } add(lastChar, c); _appendToPat(newPat, lastChar, FALSE); newPat.append(HYPHEN); _appendToPat(newPat, c, FALSE); lastOp = 0; lastChar = NONE; } else if (lastOp != 0) { // We have & or & // throw new IllegalArgumentException("Unquoted " + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return; } else { if (lastChar != NONE) { // We have add(lastChar, lastChar); _appendToPat(newPat, lastChar, FALSE); } lastChar = c; isLastLiteral = isLiteral; } } if (mode < 4) { // throw new IllegalArgumentException("Missing ']'"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } // Treat a trailing '$' as indicating U_ETHER. This code is only // executed if symbols == NULL; otherwise other code parses the // anchor. if (lastChar == (UChar)SymbolTable::SYMBOL_REF && !isLastLiteral) { rebuildPattern = TRUE; newPat.append(lastChar); add(U_ETHER); } else if (lastChar != NONE) { add(lastChar, lastChar); _appendToPat(newPat, lastChar, FALSE); } // Handle unprocessed stuff preceding the closing ']' if (lastOp == HYPHEN) { // Trailing '-' is treated as literal add(lastOp, lastOp); newPat.append(HYPHEN); } else if (lastOp == INTERSECTION) { // throw new IllegalArgumentException("Unquoted trailing " + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return; } if (mode == 4) { newPat.append(SET_CLOSE); } /** * If this pattern should be compiled case-insensitive, then * we need to close over case BEFORE complementing. This * makes patterns like /[^abc]/i work. */ if ((options & USET_CASE_INSENSITIVE) != 0) { closeOver(USET_CASE); } /** * If we saw a '^' after the initial '[' of this pattern, then perform * the complement. (Inversion after '[:' is handled elsewhere.) */ if (invert) { complement(); } pos.setIndex(i); // Use the rebuilt pattern (newPat) only if necessary. Prefer the // generated pattern. if (rebuildPattern) { rebuiltPat.append(newPat); } else { _generatePattern(rebuiltPat, FALSE); } } //---------------------------------------------------------------- // Implementation: Utility methods //---------------------------------------------------------------- /** * Allocate our strings vector and return TRUE if successful. */ UBool UnicodeSet::allocateStrings() { UErrorCode ec = U_ZERO_ERROR; strings = new UVector(uhash_deleteUnicodeString, uhash_compareUnicodeString, ec); if (U_FAILURE(ec)) { delete strings; strings = NULL; return FALSE; } return TRUE; } void UnicodeSet::ensureCapacity(int32_t newLen) { if (newLen <= capacity) return; capacity = newLen + GROW_EXTRA; UChar32* temp = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); uprv_memcpy(temp, list, len*sizeof(UChar32)); uprv_free(list); list = temp; } void UnicodeSet::ensureBufferCapacity(int32_t newLen) { if (buffer != NULL && newLen <= bufferCapacity) return; if (buffer) { uprv_free(buffer); } bufferCapacity = newLen + GROW_EXTRA; buffer = (UChar32*) uprv_malloc(sizeof(UChar32) * bufferCapacity); } /** * Swap list and buffer. */ void UnicodeSet::swapBuffers(void) { // swap list and buffer UChar32* temp = list; list = buffer; buffer = temp; int32_t c = capacity; capacity = bufferCapacity; bufferCapacity = c; } //---------------------------------------------------------------- // Implementation: Fundamental operators //---------------------------------------------------------------- static inline UChar32 max(UChar32 a, UChar32 b) { return (a > b) ? a : b; } // polarity = 0, 3 is normal: x xor y // polarity = 1, 2: x xor ~y == x === y void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) { ensureBufferCapacity(len + otherLen); int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b; if (polarity == 1 || polarity == 2) { b = UNICODESET_LOW; if (other[j] == UNICODESET_LOW) { // skip base if already LOW ++j; b = other[j]; } } else { b = other[j++]; } // simplest of all the routines // sort the values, discarding identicals! for (;;) { if (a < b) { buffer[k++] = a; a = list[i++]; } else if (b < a) { buffer[k++] = b; b = other[j++]; } else if (a != UNICODESET_HIGH) { // at this point, a == b // discard both values! a = list[i++]; b = other[j++]; } else { // DONE! buffer[k++] = UNICODESET_HIGH; len = k; break; } } swapBuffers(); pat.truncate(0); } // polarity = 0 is normal: x union y // polarity = 2: x union ~y // polarity = 1: ~x union y // polarity = 3: ~x union ~y void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) { ensureBufferCapacity(len + otherLen); int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; take lower if unequal if (a < b) { // take a // Back up over overlapping ranges in buffer[] if (k > 0 && a <= buffer[k-1]) { // Pick latter end value in buffer[] vs. list[] a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; // Common if/else code factored out polarity ^= 1; } else if (b < a) { // take b if (k > 0 && b <= buffer[k-1]) { b = max(other[j], buffer[--k]); } else { buffer[k++] = b; b = other[j]; } j++; polarity ^= 2; } else { // a == b, take a, drop b if (a == UNICODESET_HIGH) goto loop_end; // This is symmetrical; it doesn't matter if // we backtrack with a or b. - liu if (k > 0 && a <= buffer[k-1]) { a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take higher if unequal, and drop other if (b <= a) { // take a if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; } else { // take b if (b == UNICODESET_HIGH) goto loop_end; buffer[k++] = b; } a = list[i++]; polarity ^= 1; // factored common code b = other[j++]; polarity ^= 2; break; case 1: // a second, b first; if b < a, overlap if (a < b) { // no overlap, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, drop b b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, drop a a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); pat.truncate(0); } // polarity = 0 is normal: x intersect y // polarity = 2: x intersect ~y == set-minus // polarity = 1: ~x intersect y // polarity = 3: ~x intersect ~y void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) { ensureBufferCapacity(len + otherLen); int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; drop the smaller if (a < b) { // drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // drop b b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take lower if unequal if (a < b) { // take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 1: // a second, b first; if (a < b) { // NO OVERLAP, drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, drop b b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); pat.truncate(0); } //---------------------------------------------------------------- // Property set implementation //---------------------------------------------------------------- static UBool numericValueFilter(UChar32 ch, void* context) { return u_getNumericValue(ch) == *(double*)context; } static UBool generalCategoryMaskFilter(UChar32 ch, void* context) { int32_t value = *(int32_t*)context; return (U_GET_GC_MASK((UChar32) ch) & value) != 0; } static UBool versionFilter(UChar32 ch, void* context) { UVersionInfo v, none = { 0, 0, 0, 0}; UVersionInfo* version = (UVersionInfo*)context; u_charAge(ch, v); return uprv_memcmp(&v, &none, sizeof(v)) > 0 && uprv_memcmp(&v, version, sizeof(v)) <= 0; } typedef struct { UProperty prop; int32_t value; } IntPropertyContext; static UBool intPropertyFilter(UChar32 ch, void* context) { IntPropertyContext* c = (IntPropertyContext*)context; return u_getIntPropertyValue((UChar32) ch, c->prop) == c->value; } /** * Generic filter-based scanning code for UCD property UnicodeSets. */ void UnicodeSet::applyFilter(UnicodeSet::Filter filter, void* context, UErrorCode &status) { // Walk through all Unicode characters, noting the start // and end of each range for which filter.contain(c) is // true. Add each range to a set. // // To improve performance, use the INCLUSIONS set, which // encodes information about character ranges that are known // to have identical properties. INCLUSIONS contains // only the first characters of such ranges. // // TODO Where possible, instead of scanning over code points, // use internal property data to initialize UnicodeSets for // those properties. Scanning code points is slow. if (U_FAILURE(status)) return; const UnicodeSet* inclusions = getInclusions(status); if (U_FAILURE(status)) { return; } clear(); UChar32 startHasProperty = -1; int limitRange = inclusions->getRangeCount(); for (int j=0; jgetRangeStart(j); UChar32 end = inclusions->getRangeEnd(j); // for all the code points in the range, process for (UChar32 ch = start; ch <= end; ++ch) { // only add to this UnicodeSet on inflection points -- // where the hasProperty value changes to false if ((*filter)(ch, context)) { if (startHasProperty < 0) { startHasProperty = ch; } } else if (startHasProperty >= 0) { add(startHasProperty, ch-1); startHasProperty = -1; } } } if (startHasProperty >= 0) { add((UChar32)startHasProperty, (UChar32)0x10FFFF); } } static UBool mungeCharName(char* dst, const char* src, int32_t dstCapacity) { /* Note: we use ' ' in compiler code page */ int32_t j = 0; char ch; --dstCapacity; /* make room for term. zero */ while ((ch = *src++) != 0) { if (ch == ' ' && (j==0 || (j>0 && dst[j-1]==' '))) { continue; } if (j >= dstCapacity) return FALSE; dst[j++] = ch; } if (j > 0 && dst[j-1] == ' ') --j; dst[j] = 0; return TRUE; } //---------------------------------------------------------------- // Property set API //---------------------------------------------------------------- #define FAIL(ec) {ec=U_ILLEGAL_ARGUMENT_ERROR; return *this;} // TODO: Remove the following special-case code when // these four C99-compatibility properties are implemented // as enums/names. static UBool c99Filter(UChar32 ch, void* context) { struct _C99_Map* m = (struct _C99_Map*) context; return m->func(ch); } UnicodeSet& UnicodeSet::applyIntPropertyValue(UProperty prop, int32_t value, UErrorCode& ec) { if (U_FAILURE(ec)) return *this; if (prop == UCHAR_GENERAL_CATEGORY_MASK) { applyFilter(generalCategoryMaskFilter, &value, ec); #if UCONFIG_NO_NORMALIZATION } else if(prop == UCHAR_HANGUL_SYLLABLE_TYPE) { /* * Special code for when normalization is off. * HST is still available because it is hardcoded in uprops.c, but * the inclusions set does not have the necessary code points * for normalization properties. * I am hardcoding HST in this case because it is the only property * that prevents genbrk from compiling char.txt when normalization is off. * This saves me from turning off break iteration or making more * complicated changes in genbrk. * * This code is not efficient. For efficiency turn on normalization. * * markus 20030505 */ UChar32 c; clear(); for(c=0x1100; c<=0xd7a3; ++c) { if(c==0x1200) { c=0xac00; } if(value == u_getIntPropertyValue(c, UCHAR_HANGUL_SYLLABLE_TYPE)) { add(c); } } #endif } else { IntPropertyContext c = {prop, value}; applyFilter(intPropertyFilter, &c, ec); } return *this; } UnicodeSet& UnicodeSet::applyPropertyAlias(const UnicodeString& prop, const UnicodeString& value, UErrorCode& ec) { if (U_FAILURE(ec)) return *this; UProperty p; int32_t v; CharString pname(prop); CharString vname(value); UBool mustNotBeEmpty = FALSE; if (value.length() > 0) { p = u_getPropertyEnum(pname); if (p == UCHAR_INVALID_CODE) FAIL(ec); // Treat gc as gcm if (p == UCHAR_GENERAL_CATEGORY) { p = UCHAR_GENERAL_CATEGORY_MASK; } if ((p >= UCHAR_BINARY_START && p < UCHAR_BINARY_LIMIT) || (p >= UCHAR_INT_START && p < UCHAR_INT_LIMIT) || (p >= UCHAR_MASK_START && p < UCHAR_MASK_LIMIT)) { v = u_getPropertyValueEnum(p, vname); if (v == UCHAR_INVALID_CODE) { // Handle numeric CCC if (p == UCHAR_CANONICAL_COMBINING_CLASS) { char* end; double value = uprv_strtod(vname, &end); v = (int32_t) value; if (v != value || v < 0 || *end != 0) { // non-integral or negative value, or trailing junk FAIL(ec); } // If the resultant set is empty then the numeric value // was invalid. mustNotBeEmpty = TRUE; } else { FAIL(ec); } } } else { switch (p) { case UCHAR_NUMERIC_VALUE: { char* end; double value = uprv_strtod(vname, &end); if (*end != 0) { FAIL(ec); } applyFilter(numericValueFilter, &value, ec); return *this; } break; case UCHAR_NAME: case UCHAR_UNICODE_1_NAME: { // Must munge name, since u_charFromName() does not do // 'loose' matching. char buf[128]; // it suffices that this be > uprv_getMaxCharNameLength if (!mungeCharName(buf, vname, sizeof(buf))) FAIL(ec); UCharNameChoice choice = (p == UCHAR_NAME) ? U_EXTENDED_CHAR_NAME : U_UNICODE_10_CHAR_NAME; UChar32 ch = u_charFromName(choice, buf, &ec); if (U_SUCCESS(ec)) { clear(); add(ch); return *this; } else { FAIL(ec); } } break; case UCHAR_AGE: { // Must munge name, since u_versionFromString() does not do // 'loose' matching. char buf[128]; if (!mungeCharName(buf, vname, sizeof(buf))) FAIL(ec); UVersionInfo version; u_versionFromString(version, buf); applyFilter(versionFilter, &version, ec); return *this; } break; default: // p is a non-binary, non-enumerated property that we // don't support (yet). FAIL(ec); } } } else { // value is empty. Interpret as General Category, Script, or // Binary property. p = UCHAR_GENERAL_CATEGORY_MASK; v = u_getPropertyValueEnum(p, pname); if (v == UCHAR_INVALID_CODE) { p = UCHAR_SCRIPT; v = u_getPropertyValueEnum(p, pname); if (v == UCHAR_INVALID_CODE) { p = u_getPropertyEnum(pname); if (p >= UCHAR_BINARY_START && p < UCHAR_BINARY_LIMIT) { v = 1; } else if (0 == uprv_comparePropertyNames(ANY, pname)) { set(MIN_VALUE, MAX_VALUE); return *this; } else if (0 == uprv_comparePropertyNames(ASCII, pname)) { set(0, 0x7F); return *this; } else { // TODO: Remove the following special-case code when // these four C99-compatibility properties are implemented // as enums/names. for (int32_t i=0; i<_C99_COUNT; ++i) { int32_t c = uprv_comparePropertyNames(pname, _C99_DISPATCH[i].name); if (c == 0) { applyFilter(c99Filter, (void*) &_C99_DISPATCH[i], ec); return *this; } else if (c < 0) { // Further entries will not match; bail out break; } } FAIL(ec); } } } } applyIntPropertyValue(p, v, ec); if (U_SUCCESS(ec) && (mustNotBeEmpty && isEmpty())) { // mustNotBeEmpty is set to true if an empty set indicates // invalid input. ec = U_ILLEGAL_ARGUMENT_ERROR; } return *this; } //---------------------------------------------------------------- // Property set patterns //---------------------------------------------------------------- /** * Return true if the given position, in the given pattern, appears * to be the start of a property set pattern. */ UBool UnicodeSet::resemblesPropertyPattern(const UnicodeString& pattern, int32_t pos) { // Patterns are at least 5 characters long if ((pos+5) > pattern.length()) { return FALSE; } // Look for an opening [:, [:^, \p, or \P return isPOSIXOpen(pattern, pos) || isPerlOpen(pattern, pos) || isNameOpen(pattern, pos); } /** * Parse the given property pattern at the given parse position. */ UnicodeSet& UnicodeSet::applyPropertyPattern(const UnicodeString& pattern, ParsePosition& ppos, UErrorCode &ec) { int32_t pos = ppos.getIndex(); UBool posix = FALSE; // true for [:pat:], false for \p{pat} \P{pat} \N{pat} UBool isName = FALSE; // true for \N{pat}, o/w false UBool invert = FALSE; if (U_FAILURE(ec)) return *this; // Minimum length is 5 characters, e.g. \p{L} if ((pos+5) > pattern.length()) { FAIL(ec); } // On entry, ppos should point to one of the following locations: // Look for an opening [:, [:^, \p, or \P if (isPOSIXOpen(pattern, pos)) { posix = TRUE; pos += 2; pos = ICU_Utility::skipWhitespace(pattern, pos); if (pos < pattern.length() && pattern.charAt(pos) == COMPLEMENT) { ++pos; invert = TRUE; } } else if (isPerlOpen(pattern, pos) || isNameOpen(pattern, pos)) { UChar c = pattern.charAt(pos+1); invert = (c == UPPER_P); isName = (c == UPPER_N); pos += 2; pos = ICU_Utility::skipWhitespace(pattern, pos); if (pos == pattern.length() || pattern.charAt(pos++) != OPEN_BRACE) { // Syntax error; "\p" or "\P" not followed by "{" FAIL(ec); } } else { // Open delimiter not seen FAIL(ec); } // Look for the matching close delimiter, either :] or } int32_t close = pattern.indexOf(posix ? POSIX_CLOSE : PERL_CLOSE, pos); if (close < 0) { // Syntax error; close delimiter missing FAIL(ec); } // Look for an '=' sign. If this is present, we will parse a // medium \p{gc=Cf} or long \p{GeneralCategory=Format} // pattern. int32_t equals = pattern.indexOf(EQUALS, pos); UnicodeString propName, valueName; if (equals >= 0 && equals < close && !isName) { // Equals seen; parse medium/long pattern pattern.extractBetween(pos, equals, propName); pattern.extractBetween(equals+1, close, valueName); } else { // Handle case where no '=' is seen, and \N{} pattern.extractBetween(pos, close, propName); // Handle \N{name} if (isName) { // This is a little inefficient since it means we have to // parse NAME_PROP back to UCHAR_NAME even though we already // know it's UCHAR_NAME. If we refactor the API to // support args of (UProperty, char*) then we can remove // NAME_PROP and make this a little more efficient. valueName = propName; propName = NAME_PROP; } } applyPropertyAlias(propName, valueName, ec); if (U_SUCCESS(ec)) { if (invert) { complement(); } // Move to the limit position after the close delimiter if the // parse succeeded. ppos.setIndex(close + (posix ? 2 : 1)); } return *this; } //---------------------------------------------------------------- // Inclusions list //---------------------------------------------------------------- const UnicodeSet* UnicodeSet::getInclusions(UErrorCode &status) { umtx_lock(NULL); UBool f = (INCLUSIONS == NULL); umtx_unlock(NULL); if (f) { UnicodeSet* incl = new UnicodeSet(); if (incl != NULL) { uprv_getInclusions((USet*)incl, &status); if (U_SUCCESS(status)) { umtx_lock(NULL); if (INCLUSIONS == NULL) { INCLUSIONS = incl; incl = NULL; } umtx_unlock(NULL); } delete incl; } else { status = U_MEMORY_ALLOCATION_ERROR; } } return INCLUSIONS; } /** * Cleanup function for UnicodeSet */ U_CFUNC UBool uset_cleanup(void) { if (INCLUSIONS != NULL) { delete INCLUSIONS; INCLUSIONS = NULL; } if (CASE_EQUIV_HASH != NULL) { delete CASE_EQUIV_HASH; CASE_EQUIV_HASH = NULL; } if (CASE_EQUIV_CBA != NULL) { ucmp8_close(CASE_EQUIV_CBA); CASE_EQUIV_CBA = NULL; } return TRUE; } //---------------------------------------------------------------- // Case folding API //---------------------------------------------------------------- UnicodeSet& UnicodeSet::closeOver(int32_t attribute) { if ((attribute & USET_CASE) != 0) { UnicodeSet foldSet; UnicodeString str; int32_t n = getRangeCount(); for (int32_t i=0; isize() > 0) { for (int32_t j=0; jsize(); ++j) { str = * (const UnicodeString*) strings->elementAt(j); foldSet.caseCloseOne(str.foldCase()); } } *this = foldSet; } return *this; } //---------------------------------------------------------------- // Case folding implementation //---------------------------------------------------------------- /** * Data structure representing a case-fold equivalency class. It is a * SET containing 0 or more code units, and 0 or more strings of * length 2 code units or longer. * * This class is implemented as a 8-UChar buffer with a few * convenience methods on it. The format of the buffer: * - All single code units in this set, followed by a terminating * zero. If none, then just a terminating zero. * - Zero or more 0-terminated strings, each of length >= 2 * code units. * - A single terminating (UChar)0. * * Usage: * * const CaseEquivClass& c = ...; * const UChar* p; * for (c.getStrings(p); *p; c.nextString(p)) { * foo(p); * } */ class CaseEquivClass { public: UChar data[8]; /** * Return the string of single code units. May be "". Will never * be NULL. */ const UChar* getSingles() const { return data; } /** * Return the first multi-code-unit string. May be "" if there * are none. Will never be NULL. * @param p pointer to be set to point to the first string. */ void getStrings(const UChar*& p) const { p = data; nextString(p); } /** * Advance a pointer from one multi-code-unit string to the next. * May advance 'p' to point to "" if there are no more. * Do NOT call if *p == 0. * @param p pointer to be advanced to point to the next string. */ static void nextString(const UChar*& p) { while (*p++) {} } }; /** * IMPORTANT: The following two static data arrays represent the * information used to do case closure. The first array is an array * of pairs. That is, for each even index e, entries [e] and [e+1] * form a pair of case equivalent code units. The entry at [e] is the * folded one, that is, the one for which u_foldCase(x)==x. * * The second static array is an array of CaseEquivClass objects. * Since these objects are just adorned UChar[] arrays, they can be * initialized in place in the array, and all of them can live in a * single piece of static memory, with no heap allocation. */ // MACHINE-GENERATED: Do not edit (see com.ibm.icu.dev.tools.translit.UnicodeSetCloseOver) static const UChar CASE_PAIRS[] = { 0x0061,0x0041,0x0062,0x0042,0x0063,0x0043,0x0064,0x0044,0x0065,0x0045, 0x0066,0x0046,0x0067,0x0047,0x0068,0x0048,0x0069,0x0049,0x006A,0x004A, 0x006C,0x004C,0x006D,0x004D,0x006E,0x004E,0x006F,0x004F,0x0070,0x0050, 0x0071,0x0051,0x0072,0x0052,0x0074,0x0054,0x0075,0x0055,0x0076,0x0056, 0x0077,0x0057,0x0078,0x0058,0x0079,0x0059,0x007A,0x005A,0x00E0,0x00C0, 0x00E1,0x00C1,0x00E2,0x00C2,0x00E3,0x00C3,0x00E4,0x00C4,0x00E6,0x00C6, 0x00E7,0x00C7,0x00E8,0x00C8,0x00E9,0x00C9,0x00EA,0x00CA,0x00EB,0x00CB, 0x00EC,0x00CC,0x00ED,0x00CD,0x00EE,0x00CE,0x00EF,0x00CF,0x00F0,0x00D0, 0x00F1,0x00D1,0x00F2,0x00D2,0x00F3,0x00D3,0x00F4,0x00D4,0x00F5,0x00D5, 0x00F6,0x00D6,0x00F8,0x00D8,0x00F9,0x00D9,0x00FA,0x00DA,0x00FB,0x00DB, 0x00FC,0x00DC,0x00FD,0x00DD,0x00FE,0x00DE,0x00FF,0x0178,0x0101,0x0100, 0x0103,0x0102,0x0105,0x0104,0x0107,0x0106,0x0109,0x0108,0x010B,0x010A, 0x010D,0x010C,0x010F,0x010E,0x0111,0x0110,0x0113,0x0112,0x0115,0x0114, 0x0117,0x0116,0x0119,0x0118,0x011B,0x011A,0x011D,0x011C,0x011F,0x011E, 0x0121,0x0120,0x0123,0x0122,0x0125,0x0124,0x0127,0x0126,0x0129,0x0128, 0x012B,0x012A,0x012D,0x012C,0x012F,0x012E,0x0133,0x0132,0x0135,0x0134, 0x0137,0x0136,0x013A,0x0139,0x013C,0x013B,0x013E,0x013D,0x0140,0x013F, 0x0142,0x0141,0x0144,0x0143,0x0146,0x0145,0x0148,0x0147,0x014B,0x014A, 0x014D,0x014C,0x014F,0x014E,0x0151,0x0150,0x0153,0x0152,0x0155,0x0154, 0x0157,0x0156,0x0159,0x0158,0x015B,0x015A,0x015D,0x015C,0x015F,0x015E, 0x0161,0x0160,0x0163,0x0162,0x0165,0x0164,0x0167,0x0166,0x0169,0x0168, 0x016B,0x016A,0x016D,0x016C,0x016F,0x016E,0x0171,0x0170,0x0173,0x0172, 0x0175,0x0174,0x0177,0x0176,0x017A,0x0179,0x017C,0x017B,0x017E,0x017D, 0x0183,0x0182,0x0185,0x0184,0x0188,0x0187,0x018C,0x018B,0x0192,0x0191, 0x0195,0x01F6,0x0199,0x0198,0x019E,0x0220,0x01A1,0x01A0,0x01A3,0x01A2, 0x01A5,0x01A4,0x01A8,0x01A7,0x01AD,0x01AC,0x01B0,0x01AF,0x01B4,0x01B3, 0x01B6,0x01B5,0x01B9,0x01B8,0x01BD,0x01BC,0x01BF,0x01F7,0x01CE,0x01CD, 0x01D0,0x01CF,0x01D2,0x01D1,0x01D4,0x01D3,0x01D6,0x01D5,0x01D8,0x01D7, 0x01DA,0x01D9,0x01DC,0x01DB,0x01DD,0x018E,0x01DF,0x01DE,0x01E1,0x01E0, 0x01E3,0x01E2,0x01E5,0x01E4,0x01E7,0x01E6,0x01E9,0x01E8,0x01EB,0x01EA, 0x01ED,0x01EC,0x01EF,0x01EE,0x01F5,0x01F4,0x01F9,0x01F8,0x01FB,0x01FA, 0x01FD,0x01FC,0x01FF,0x01FE,0x0201,0x0200,0x0203,0x0202,0x0205,0x0204, 0x0207,0x0206,0x0209,0x0208,0x020B,0x020A,0x020D,0x020C,0x020F,0x020E, 0x0211,0x0210,0x0213,0x0212,0x0215,0x0214,0x0217,0x0216,0x0219,0x0218, 0x021B,0x021A,0x021D,0x021C,0x021F,0x021E,0x0223,0x0222,0x0225,0x0224, 0x0227,0x0226,0x0229,0x0228,0x022B,0x022A,0x022D,0x022C,0x022F,0x022E, 0x0231,0x0230,0x0233,0x0232,0x0253,0x0181,0x0254,0x0186,0x0256,0x0189, 0x0257,0x018A,0x0259,0x018F,0x025B,0x0190,0x0260,0x0193,0x0263,0x0194, 0x0268,0x0197,0x0269,0x0196,0x026F,0x019C,0x0272,0x019D,0x0275,0x019F, 0x0280,0x01A6,0x0283,0x01A9,0x0288,0x01AE,0x028A,0x01B1,0x028B,0x01B2, 0x0292,0x01B7,0x03AC,0x0386,0x03AD,0x0388,0x03AE,0x0389,0x03AF,0x038A, 0x03B1,0x0391,0x03B3,0x0393,0x03B4,0x0394,0x03B6,0x0396,0x03B7,0x0397, 0x03BB,0x039B,0x03BD,0x039D,0x03BE,0x039E,0x03BF,0x039F,0x03C4,0x03A4, 0x03C5,0x03A5,0x03C7,0x03A7,0x03C8,0x03A8,0x03CA,0x03AA,0x03CB,0x03AB, 0x03CC,0x038C,0x03CD,0x038E,0x03CE,0x038F,0x03D9,0x03D8,0x03DB,0x03DA, 0x03DD,0x03DC,0x03DF,0x03DE,0x03E1,0x03E0,0x03E3,0x03E2,0x03E5,0x03E4, 0x03E7,0x03E6,0x03E9,0x03E8,0x03EB,0x03EA,0x03ED,0x03EC,0x03EF,0x03EE, 0x0430,0x0410,0x0431,0x0411,0x0432,0x0412,0x0433,0x0413,0x0434,0x0414, 0x0435,0x0415,0x0436,0x0416,0x0437,0x0417,0x0438,0x0418,0x0439,0x0419, 0x043A,0x041A,0x043B,0x041B,0x043C,0x041C,0x043D,0x041D,0x043E,0x041E, 0x043F,0x041F,0x0440,0x0420,0x0441,0x0421,0x0442,0x0422,0x0443,0x0423, 0x0444,0x0424,0x0445,0x0425,0x0446,0x0426,0x0447,0x0427,0x0448,0x0428, 0x0449,0x0429,0x044A,0x042A,0x044B,0x042B,0x044C,0x042C,0x044D,0x042D, 0x044E,0x042E,0x044F,0x042F,0x0450,0x0400,0x0451,0x0401,0x0452,0x0402, 0x0453,0x0403,0x0454,0x0404,0x0455,0x0405,0x0456,0x0406,0x0457,0x0407, 0x0458,0x0408,0x0459,0x0409,0x045A,0x040A,0x045B,0x040B,0x045C,0x040C, 0x045D,0x040D,0x045E,0x040E,0x045F,0x040F,0x0461,0x0460,0x0463,0x0462, 0x0465,0x0464,0x0467,0x0466,0x0469,0x0468,0x046B,0x046A,0x046D,0x046C, 0x046F,0x046E,0x0471,0x0470,0x0473,0x0472,0x0475,0x0474,0x0477,0x0476, 0x0479,0x0478,0x047B,0x047A,0x047D,0x047C,0x047F,0x047E,0x0481,0x0480, 0x048B,0x048A,0x048D,0x048C,0x048F,0x048E,0x0491,0x0490,0x0493,0x0492, 0x0495,0x0494,0x0497,0x0496,0x0499,0x0498,0x049B,0x049A,0x049D,0x049C, 0x049F,0x049E,0x04A1,0x04A0,0x04A3,0x04A2,0x04A5,0x04A4,0x04A7,0x04A6, 0x04A9,0x04A8,0x04AB,0x04AA,0x04AD,0x04AC,0x04AF,0x04AE,0x04B1,0x04B0, 0x04B3,0x04B2,0x04B5,0x04B4,0x04B7,0x04B6,0x04B9,0x04B8,0x04BB,0x04BA, 0x04BD,0x04BC,0x04BF,0x04BE,0x04C2,0x04C1,0x04C4,0x04C3,0x04C6,0x04C5, 0x04C8,0x04C7,0x04CA,0x04C9,0x04CC,0x04CB,0x04CE,0x04CD,0x04D1,0x04D0, 0x04D3,0x04D2,0x04D5,0x04D4,0x04D7,0x04D6,0x04D9,0x04D8,0x04DB,0x04DA, 0x04DD,0x04DC,0x04DF,0x04DE,0x04E1,0x04E0,0x04E3,0x04E2,0x04E5,0x04E4, 0x04E7,0x04E6,0x04E9,0x04E8,0x04EB,0x04EA,0x04ED,0x04EC,0x04EF,0x04EE, 0x04F1,0x04F0,0x04F3,0x04F2,0x04F5,0x04F4,0x04F9,0x04F8,0x0501,0x0500, 0x0503,0x0502,0x0505,0x0504,0x0507,0x0506,0x0509,0x0508,0x050B,0x050A, 0x050D,0x050C,0x050F,0x050E,0x0561,0x0531,0x0562,0x0532,0x0563,0x0533, 0x0564,0x0534,0x0565,0x0535,0x0566,0x0536,0x0567,0x0537,0x0568,0x0538, 0x0569,0x0539,0x056A,0x053A,0x056B,0x053B,0x056C,0x053C,0x056D,0x053D, 0x056E,0x053E,0x056F,0x053F,0x0570,0x0540,0x0571,0x0541,0x0572,0x0542, 0x0573,0x0543,0x0574,0x0544,0x0575,0x0545,0x0576,0x0546,0x0577,0x0547, 0x0578,0x0548,0x0579,0x0549,0x057A,0x054A,0x057B,0x054B,0x057C,0x054C, 0x057D,0x054D,0x057E,0x054E,0x057F,0x054F,0x0580,0x0550,0x0581,0x0551, 0x0582,0x0552,0x0583,0x0553,0x0584,0x0554,0x0585,0x0555,0x0586,0x0556, 0x1E01,0x1E00,0x1E03,0x1E02,0x1E05,0x1E04,0x1E07,0x1E06,0x1E09,0x1E08, 0x1E0B,0x1E0A,0x1E0D,0x1E0C,0x1E0F,0x1E0E,0x1E11,0x1E10,0x1E13,0x1E12, 0x1E15,0x1E14,0x1E17,0x1E16,0x1E19,0x1E18,0x1E1B,0x1E1A,0x1E1D,0x1E1C, 0x1E1F,0x1E1E,0x1E21,0x1E20,0x1E23,0x1E22,0x1E25,0x1E24,0x1E27,0x1E26, 0x1E29,0x1E28,0x1E2B,0x1E2A,0x1E2D,0x1E2C,0x1E2F,0x1E2E,0x1E31,0x1E30, 0x1E33,0x1E32,0x1E35,0x1E34,0x1E37,0x1E36,0x1E39,0x1E38,0x1E3B,0x1E3A, 0x1E3D,0x1E3C,0x1E3F,0x1E3E,0x1E41,0x1E40,0x1E43,0x1E42,0x1E45,0x1E44, 0x1E47,0x1E46,0x1E49,0x1E48,0x1E4B,0x1E4A,0x1E4D,0x1E4C,0x1E4F,0x1E4E, 0x1E51,0x1E50,0x1E53,0x1E52,0x1E55,0x1E54,0x1E57,0x1E56,0x1E59,0x1E58, 0x1E5B,0x1E5A,0x1E5D,0x1E5C,0x1E5F,0x1E5E,0x1E63,0x1E62,0x1E65,0x1E64, 0x1E67,0x1E66,0x1E69,0x1E68,0x1E6B,0x1E6A,0x1E6D,0x1E6C,0x1E6F,0x1E6E, 0x1E71,0x1E70,0x1E73,0x1E72,0x1E75,0x1E74,0x1E77,0x1E76,0x1E79,0x1E78, 0x1E7B,0x1E7A,0x1E7D,0x1E7C,0x1E7F,0x1E7E,0x1E81,0x1E80,0x1E83,0x1E82, 0x1E85,0x1E84,0x1E87,0x1E86,0x1E89,0x1E88,0x1E8B,0x1E8A,0x1E8D,0x1E8C, 0x1E8F,0x1E8E,0x1E91,0x1E90,0x1E93,0x1E92,0x1E95,0x1E94,0x1EA1,0x1EA0, 0x1EA3,0x1EA2,0x1EA5,0x1EA4,0x1EA7,0x1EA6,0x1EA9,0x1EA8,0x1EAB,0x1EAA, 0x1EAD,0x1EAC,0x1EAF,0x1EAE,0x1EB1,0x1EB0,0x1EB3,0x1EB2,0x1EB5,0x1EB4, 0x1EB7,0x1EB6,0x1EB9,0x1EB8,0x1EBB,0x1EBA,0x1EBD,0x1EBC,0x1EBF,0x1EBE, 0x1EC1,0x1EC0,0x1EC3,0x1EC2,0x1EC5,0x1EC4,0x1EC7,0x1EC6,0x1EC9,0x1EC8, 0x1ECB,0x1ECA,0x1ECD,0x1ECC,0x1ECF,0x1ECE,0x1ED1,0x1ED0,0x1ED3,0x1ED2, 0x1ED5,0x1ED4,0x1ED7,0x1ED6,0x1ED9,0x1ED8,0x1EDB,0x1EDA,0x1EDD,0x1EDC, 0x1EDF,0x1EDE,0x1EE1,0x1EE0,0x1EE3,0x1EE2,0x1EE5,0x1EE4,0x1EE7,0x1EE6, 0x1EE9,0x1EE8,0x1EEB,0x1EEA,0x1EED,0x1EEC,0x1EEF,0x1EEE,0x1EF1,0x1EF0, 0x1EF3,0x1EF2,0x1EF5,0x1EF4,0x1EF7,0x1EF6,0x1EF9,0x1EF8,0x1F00,0x1F08, 0x1F01,0x1F09,0x1F02,0x1F0A,0x1F03,0x1F0B,0x1F04,0x1F0C,0x1F05,0x1F0D, 0x1F06,0x1F0E,0x1F07,0x1F0F,0x1F10,0x1F18,0x1F11,0x1F19,0x1F12,0x1F1A, 0x1F13,0x1F1B,0x1F14,0x1F1C,0x1F15,0x1F1D,0x1F20,0x1F28,0x1F21,0x1F29, 0x1F22,0x1F2A,0x1F23,0x1F2B,0x1F24,0x1F2C,0x1F25,0x1F2D,0x1F26,0x1F2E, 0x1F27,0x1F2F,0x1F30,0x1F38,0x1F31,0x1F39,0x1F32,0x1F3A,0x1F33,0x1F3B, 0x1F34,0x1F3C,0x1F35,0x1F3D,0x1F36,0x1F3E,0x1F37,0x1F3F,0x1F40,0x1F48, 0x1F41,0x1F49,0x1F42,0x1F4A,0x1F43,0x1F4B,0x1F44,0x1F4C,0x1F45,0x1F4D, 0x1F51,0x1F59,0x1F53,0x1F5B,0x1F55,0x1F5D,0x1F57,0x1F5F,0x1F60,0x1F68, 0x1F61,0x1F69,0x1F62,0x1F6A,0x1F63,0x1F6B,0x1F64,0x1F6C,0x1F65,0x1F6D, 0x1F66,0x1F6E,0x1F67,0x1F6F,0x1F70,0x1FBA,0x1F71,0x1FBB,0x1F72,0x1FC8, 0x1F73,0x1FC9,0x1F74,0x1FCA,0x1F75,0x1FCB,0x1F76,0x1FDA,0x1F77,0x1FDB, 0x1F78,0x1FF8,0x1F79,0x1FF9,0x1F7A,0x1FEA,0x1F7B,0x1FEB,0x1F7C,0x1FFA, 0x1F7D,0x1FFB,0x1FB0,0x1FB8,0x1FB1,0x1FB9,0x1FD0,0x1FD8,0x1FD1,0x1FD9, 0x1FE0,0x1FE8,0x1FE1,0x1FE9,0x1FE5,0x1FEC,0x2170,0x2160,0x2171,0x2161, 0x2172,0x2162,0x2173,0x2163,0x2174,0x2164,0x2175,0x2165,0x2176,0x2166, 0x2177,0x2167,0x2178,0x2168,0x2179,0x2169,0x217A,0x216A,0x217B,0x216B, 0x217C,0x216C,0x217D,0x216D,0x217E,0x216E,0x217F,0x216F,0x24D0,0x24B6, 0x24D1,0x24B7,0x24D2,0x24B8,0x24D3,0x24B9,0x24D4,0x24BA,0x24D5,0x24BB, 0x24D6,0x24BC,0x24D7,0x24BD,0x24D8,0x24BE,0x24D9,0x24BF,0x24DA,0x24C0, 0x24DB,0x24C1,0x24DC,0x24C2,0x24DD,0x24C3,0x24DE,0x24C4,0x24DF,0x24C5, 0x24E0,0x24C6,0x24E1,0x24C7,0x24E2,0x24C8,0x24E3,0x24C9,0x24E4,0x24CA, 0x24E5,0x24CB,0x24E6,0x24CC,0x24E7,0x24CD,0x24E8,0x24CE,0x24E9,0x24CF, 0xFF41,0xFF21,0xFF42,0xFF22,0xFF43,0xFF23,0xFF44,0xFF24,0xFF45,0xFF25, 0xFF46,0xFF26,0xFF47,0xFF27,0xFF48,0xFF28,0xFF49,0xFF29,0xFF4A,0xFF2A, 0xFF4B,0xFF2B,0xFF4C,0xFF2C,0xFF4D,0xFF2D,0xFF4E,0xFF2E,0xFF4F,0xFF2F, 0xFF50,0xFF30,0xFF51,0xFF31,0xFF52,0xFF32,0xFF53,0xFF33,0xFF54,0xFF34, 0xFF55,0xFF35,0xFF56,0xFF36,0xFF57,0xFF37,0xFF58,0xFF38,0xFF59,0xFF39, 0xFF5A,0xFF3A, }; // MACHINE-GENERATED: Do not edit (see com.ibm.icu.dev.tools.translit.UnicodeSetCloseOver) static const CaseEquivClass CASE_NONPAIRS[] = { {{0x1E9A,0, 0x0061,0x02BE,0, 0}}, {{0xFB00,0, 0x0066,0x0066,0, 0}}, {{0xFB03,0, 0x0066,0x0066,0x0069,0, 0}}, {{0xFB04,0, 0x0066,0x0066,0x006C,0, 0}}, {{0xFB01,0, 0x0066,0x0069,0, 0}}, {{0xFB02,0, 0x0066,0x006C,0, 0}}, {{0x1E96,0, 0x0068,0x0331,0, 0}}, {{0x0130,0, 0x0069,0x0307,0, 0}}, {{0x01F0,0, 0x006A,0x030C,0, 0}}, {{0x004B,0x006B,0x212A,0, 0}}, {{0x0053,0x0073,0x017F,0, 0}}, {{0x00DF,0, 0x0073,0x0073,0, 0}}, {{0xFB05,0xFB06,0, 0x0073,0x0074,0, 0}}, {{0x1E97,0, 0x0074,0x0308,0, 0}}, {{0x1E98,0, 0x0077,0x030A,0, 0}}, {{0x1E99,0, 0x0079,0x030A,0, 0}}, {{0x00C5,0x00E5,0x212B,0, 0}}, {{0x01C4,0x01C5,0x01C6,0, 0}}, {{0x01C7,0x01C8,0x01C9,0, 0}}, {{0x01CA,0x01CB,0x01CC,0, 0}}, {{0x01F1,0x01F2,0x01F3,0, 0}}, {{0x0149,0, 0x02BC,0x006E,0, 0}}, {{0x1FB4,0, 0x03AC,0x03B9,0, 0}}, {{0x1FC4,0, 0x03AE,0x03B9,0, 0}}, {{0x1FB6,0, 0x03B1,0x0342,0, 0}}, {{0x1FB7,0, 0x03B1,0x0342,0x03B9,0, 0}}, {{0x1FB3,0x1FBC,0, 0x03B1,0x03B9,0, 0}}, {{0x0392,0x03B2,0x03D0,0, 0}}, {{0x0395,0x03B5,0x03F5,0, 0}}, {{0x1FC6,0, 0x03B7,0x0342,0, 0}}, {{0x1FC7,0, 0x03B7,0x0342,0x03B9,0, 0}}, {{0x1FC3,0x1FCC,0, 0x03B7,0x03B9,0, 0}}, {{0x0398,0x03B8,0x03D1,0x03F4,0, 0}}, {{0x0345,0x0399,0x03B9,0x1FBE,0, 0}}, {{0x1FD2,0, 0x03B9,0x0308,0x0300,0, 0}}, {{0x0390,0x1FD3,0, 0x03B9,0x0308,0x0301,0, 0}}, {{0x1FD7,0, 0x03B9,0x0308,0x0342,0, 0}}, {{0x1FD6,0, 0x03B9,0x0342,0, 0}}, {{0x039A,0x03BA,0x03F0,0, 0}}, {{0x00B5,0x039C,0x03BC,0, 0}}, {{0x03A0,0x03C0,0x03D6,0, 0}}, {{0x03A1,0x03C1,0x03F1,0, 0}}, {{0x1FE4,0, 0x03C1,0x0313,0, 0}}, {{0x03A3,0x03C2,0x03C3,0x03F2,0, 0}}, {{0x1FE2,0, 0x03C5,0x0308,0x0300,0, 0}}, {{0x03B0,0x1FE3,0, 0x03C5,0x0308,0x0301,0, 0}}, {{0x1FE7,0, 0x03C5,0x0308,0x0342,0, 0}}, {{0x1F50,0, 0x03C5,0x0313,0, 0}}, {{0x1F52,0, 0x03C5,0x0313,0x0300,0, 0}}, {{0x1F54,0, 0x03C5,0x0313,0x0301,0, 0}}, {{0x1F56,0, 0x03C5,0x0313,0x0342,0, 0}}, {{0x1FE6,0, 0x03C5,0x0342,0, 0}}, {{0x03A6,0x03C6,0x03D5,0, 0}}, {{0x03A9,0x03C9,0x2126,0, 0}}, {{0x1FF6,0, 0x03C9,0x0342,0, 0}}, {{0x1FF7,0, 0x03C9,0x0342,0x03B9,0, 0}}, {{0x1FF3,0x1FFC,0, 0x03C9,0x03B9,0, 0}}, {{0x1FF4,0, 0x03CE,0x03B9,0, 0}}, {{0x0587,0, 0x0565,0x0582,0, 0}}, {{0xFB14,0, 0x0574,0x0565,0, 0}}, {{0xFB15,0, 0x0574,0x056B,0, 0}}, {{0xFB17,0, 0x0574,0x056D,0, 0}}, {{0xFB13,0, 0x0574,0x0576,0, 0}}, {{0xFB16,0, 0x057E,0x0576,0, 0}}, {{0x1E60,0x1E61,0x1E9B,0, 0}}, {{0x1F80,0x1F88,0, 0x1F00,0x03B9,0, 0}}, {{0x1F81,0x1F89,0, 0x1F01,0x03B9,0, 0}}, {{0x1F82,0x1F8A,0, 0x1F02,0x03B9,0, 0}}, {{0x1F83,0x1F8B,0, 0x1F03,0x03B9,0, 0}}, {{0x1F84,0x1F8C,0, 0x1F04,0x03B9,0, 0}}, {{0x1F85,0x1F8D,0, 0x1F05,0x03B9,0, 0}}, {{0x1F86,0x1F8E,0, 0x1F06,0x03B9,0, 0}}, {{0x1F87,0x1F8F,0, 0x1F07,0x03B9,0, 0}}, {{0x1F90,0x1F98,0, 0x1F20,0x03B9,0, 0}}, {{0x1F91,0x1F99,0, 0x1F21,0x03B9,0, 0}}, {{0x1F92,0x1F9A,0, 0x1F22,0x03B9,0, 0}}, {{0x1F93,0x1F9B,0, 0x1F23,0x03B9,0, 0}}, {{0x1F94,0x1F9C,0, 0x1F24,0x03B9,0, 0}}, {{0x1F95,0x1F9D,0, 0x1F25,0x03B9,0, 0}}, {{0x1F96,0x1F9E,0, 0x1F26,0x03B9,0, 0}}, {{0x1F97,0x1F9F,0, 0x1F27,0x03B9,0, 0}}, {{0x1FA0,0x1FA8,0, 0x1F60,0x03B9,0, 0}}, {{0x1FA1,0x1FA9,0, 0x1F61,0x03B9,0, 0}}, {{0x1FA2,0x1FAA,0, 0x1F62,0x03B9,0, 0}}, {{0x1FA3,0x1FAB,0, 0x1F63,0x03B9,0, 0}}, {{0x1FA4,0x1FAC,0, 0x1F64,0x03B9,0, 0}}, {{0x1FA5,0x1FAD,0, 0x1F65,0x03B9,0, 0}}, {{0x1FA6,0x1FAE,0, 0x1F66,0x03B9,0, 0}}, {{0x1FA7,0x1FAF,0, 0x1F67,0x03B9,0, 0}}, {{0x1FB2,0, 0x1F70,0x03B9,0, 0}}, {{0x1FC2,0, 0x1F74,0x03B9,0, 0}}, {{0x1FF2,0, 0x1F7C,0x03B9,0, 0}}, {{0, 0xD801,0xDC00,0, 0xD801,0xDC28,0, 0}}, {{0, 0xD801,0xDC01,0, 0xD801,0xDC29,0, 0}}, {{0, 0xD801,0xDC02,0, 0xD801,0xDC2A,0, 0}}, {{0, 0xD801,0xDC03,0, 0xD801,0xDC2B,0, 0}}, {{0, 0xD801,0xDC04,0, 0xD801,0xDC2C,0, 0}}, {{0, 0xD801,0xDC05,0, 0xD801,0xDC2D,0, 0}}, {{0, 0xD801,0xDC06,0, 0xD801,0xDC2E,0, 0}}, {{0, 0xD801,0xDC07,0, 0xD801,0xDC2F,0, 0}}, {{0, 0xD801,0xDC08,0, 0xD801,0xDC30,0, 0}}, {{0, 0xD801,0xDC09,0, 0xD801,0xDC31,0, 0}}, {{0, 0xD801,0xDC0A,0, 0xD801,0xDC32,0, 0}}, {{0, 0xD801,0xDC0B,0, 0xD801,0xDC33,0, 0}}, {{0, 0xD801,0xDC0C,0, 0xD801,0xDC34,0, 0}}, {{0, 0xD801,0xDC0D,0, 0xD801,0xDC35,0, 0}}, {{0, 0xD801,0xDC0E,0, 0xD801,0xDC36,0, 0}}, {{0, 0xD801,0xDC0F,0, 0xD801,0xDC37,0, 0}}, {{0, 0xD801,0xDC10,0, 0xD801,0xDC38,0, 0}}, {{0, 0xD801,0xDC11,0, 0xD801,0xDC39,0, 0}}, {{0, 0xD801,0xDC12,0, 0xD801,0xDC3A,0, 0}}, {{0, 0xD801,0xDC13,0, 0xD801,0xDC3B,0, 0}}, {{0, 0xD801,0xDC14,0, 0xD801,0xDC3C,0, 0}}, {{0, 0xD801,0xDC15,0, 0xD801,0xDC3D,0, 0}}, {{0, 0xD801,0xDC16,0, 0xD801,0xDC3E,0, 0}}, {{0, 0xD801,0xDC17,0, 0xD801,0xDC3F,0, 0}}, {{0, 0xD801,0xDC18,0, 0xD801,0xDC40,0, 0}}, {{0, 0xD801,0xDC19,0, 0xD801,0xDC41,0, 0}}, {{0, 0xD801,0xDC1A,0, 0xD801,0xDC42,0, 0}}, {{0, 0xD801,0xDC1B,0, 0xD801,0xDC43,0, 0}}, {{0, 0xD801,0xDC1C,0, 0xD801,0xDC44,0, 0}}, {{0, 0xD801,0xDC1D,0, 0xD801,0xDC45,0, 0}}, {{0, 0xD801,0xDC1E,0, 0xD801,0xDC46,0, 0}}, {{0, 0xD801,0xDC1F,0, 0xD801,0xDC47,0, 0}}, {{0, 0xD801,0xDC20,0, 0xD801,0xDC48,0, 0}}, {{0, 0xD801,0xDC21,0, 0xD801,0xDC49,0, 0}}, {{0, 0xD801,0xDC22,0, 0xD801,0xDC4A,0, 0}}, {{0, 0xD801,0xDC23,0, 0xD801,0xDC4B,0, 0}}, {{0, 0xD801,0xDC24,0, 0xD801,0xDC4C,0, 0}}, {{0, 0xD801,0xDC25,0, 0xD801,0xDC4D,0, 0}} }; #define CASE_PAIRS_LENGTH (sizeof(CASE_PAIRS)/sizeof(CASE_PAIRS[0])) #define CASE_NONPAIRS_LENGTH (sizeof(CASE_NONPAIRS)/sizeof(CASE_NONPAIRS[0])) /** * Add to this set all members of the case fold equivalency class * that contains 'folded'. * @param folded a string within a case fold equivalency class. * It must have the property that UCharacter.foldCase(folded, * DEFAULT_CASE_MAP).equals(folded). */ void UnicodeSet::caseCloseOne(const UnicodeString& folded) { if (folded.length() == 1) { caseCloseOne(folded.charAt(0)); return; } const CaseEquivClass* c = getCaseMapOf(folded); if (c != NULL) { caseCloseOne(*c); return; } // Add 'folded' itself; it belongs to no equivalency class. add(folded); } /** * Add to this set all members of the case fold equivalency class * that contains 'folded'. * @param folded a code UNIT within a case fold equivalency class. * It must have the property that uchar_foldCase(folded, * DEFAULT_CASE_MAP) == folded. */ void UnicodeSet::caseCloseOne(UChar folded) { // We must do a DOUBLE LOOKUP, first in the CompactByteArray that // indexes into CASE_NONPAIRS[] and then into the CASE_PAIRS[] // sorted array. A character will occur in one or the other, or // neither, but not both. // Look in the CompactByteArray. const CaseEquivClass* c = getCaseMapOf(folded); if (c != NULL) { caseCloseOne(*c); return; } // Binary search in pairs array, looking at only even entries. // The indices low, high, and x will be halved with respect to // CASE_PAIRS[]; that is, they must be doubled before indexing. // CASE_PAIRS has 1312 elements, of 656 pairs, so the search // takes no more than 10 passes. int32_t low = 0; int32_t high = (CASE_PAIRS_LENGTH >> 1) - 1; int32_t x; do { x = (low + high) >> 1; UChar ch = CASE_PAIRS[x << 1]; if (folded < ch) { high = x - 1; } else if (folded > ch) { low = x + 1; } else { break; } } while (low < high); x = (low + high) & ~1; // ((low + high) >> 1) << 1 if (folded == CASE_PAIRS[x]) { add(CASE_PAIRS[x]); add(CASE_PAIRS[x+1]); } else { // If the search fails, then add folded itself; it is a // case-unique code unit. add(folded); } } /** * Add to this set all members of the given CaseEquivClass object. */ void UnicodeSet::caseCloseOne(const CaseEquivClass& c) { const UChar* p = c.getSingles(); while (*p) { add(*p++); // add all single code units } for (c.getStrings(p); *p; c.nextString(p)) { add(p); // add all strings } } /** * Given a folded string of length >= 2 code units, return the * CaseEquivClass containing this string, or NULL if none. */ const CaseEquivClass* UnicodeSet::getCaseMapOf(const UnicodeString& folded) { umtx_lock(NULL); UBool f = (CASE_EQUIV_HASH == NULL); umtx_unlock(NULL); if (f) { // Create the Hashtable, which maps UnicodeStrings to index // values into CASE_NONPAIRS. UErrorCode ec = U_ZERO_ERROR; Hashtable* hash = new Hashtable(); if (hash != NULL) { int32_t i; for (i=0; i<(int32_t)CASE_NONPAIRS_LENGTH; ++i) { const CaseEquivClass* c = &CASE_NONPAIRS[i]; const UChar* p; for (c->getStrings(p); *p; c->nextString(p)) { hash->put(UnicodeString(p), (void*) c, ec); } } if (U_SUCCESS(ec)) { umtx_lock(NULL); if (CASE_EQUIV_HASH == NULL) { CASE_EQUIV_HASH = hash; hash = NULL; } umtx_unlock(NULL); } delete hash; } } return (CASE_EQUIV_HASH != NULL) ? (const CaseEquivClass*) CASE_EQUIV_HASH->get(folded) : NULL; } /** * Given a folded code unit, return the CaseEquivClass containing it, * or NULL if none. */ const CaseEquivClass* UnicodeSet::getCaseMapOf(UChar folded) { umtx_lock(NULL); UBool f = (CASE_EQUIV_CBA == NULL); umtx_unlock(NULL); if (f) { // Create the CompactByteArray, which maps single code units // to index values into CASE_NONPAIRS. CompactByteArray* cba = ucmp8_open(-1); if (ucmp8_isBogus(cba)) { ucmp8_close(cba); cba = NULL; } else { int32_t i; for (i=0; i<(int32_t)CASE_NONPAIRS_LENGTH; ++i) { const UChar* p = CASE_NONPAIRS[i].getSingles(); UChar ch; while ((ch = *p++) != 0) { ucmp8_set(cba, ch, (int8_t) i); } } ucmp8_compact(cba, 256); } umtx_lock(NULL); if (CASE_EQUIV_CBA == NULL) { CASE_EQUIV_CBA = cba; cba = NULL; } umtx_unlock(NULL); if (cba != NULL) { ucmp8_close(cba); } } if (CASE_EQUIV_CBA != NULL) { int32_t index = ucmp8_getu(CASE_EQUIV_CBA, folded); if (index != 255) { return &CASE_NONPAIRS[index]; } } return NULL; } U_NAMESPACE_END