/* ******************************************************************************* * * Copyright (C) 2005, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: utext.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2005apr12 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #include "unicode/ustring.h" #include "unicode/unistr.h" #include "unicode/utext.h" #include "ustr_imp.h" #include "cmemory.h" #include "cstring.h" #include "uassert.h" #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) static UBool utext_access(UText *ut, int32_t index, UBool forward) { return ut->access(ut, index, forward, &ut->chunk); } U_DRAFT UBool U_EXPORT2 utext_moveIndex32(UText *ut, int32_t delta) { UBool retval = TRUE; if(delta>0) { do { if(ut->chunk.offset>=ut->chunk.length && !utext_access(ut, ut->chunk.nativeLimit, TRUE)) { retval = FALSE; break; } U16_FWD_1(ut->chunk.contents, ut->chunk.offset, ut->chunk.length); } while(--delta>0); } else if (delta<0) { do { if(ut->chunk.offset<=0 && !utext_access(ut, ut->chunk.nativeStart, FALSE)) { retval = FALSE; break; } U16_BACK_1(ut->chunk.contents, 0, ut->chunk.offset); } while(++delta<0); } return retval; } U_DRAFT int32_t U_EXPORT2 utext_nativeLength(UText *ut) { return ut->nativeLength(ut); } U_DRAFT UBool U_EXPORT2 utext_isLengthExpensive(const UText *ut) { UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; return r; } U_DRAFT int32_t U_EXPORT2 utext_getNativeIndex(UText *ut) { if(!ut->chunk.nonUTF16Indexes || ut->chunk.offset==0) { return ut->chunk.nativeStart+ut->chunk.offset; } else { return ut->mapOffsetToNative(ut, ut->chunk.offset); } } U_DRAFT void U_EXPORT2 utext_setNativeIndex(UText *ut, int32_t index) { if(indexchunk.nativeStart || ut->chunk.nativeLimitaccess(ut, index, TRUE, &ut->chunk); } else if(ut->chunk.nonUTF16Indexes) { ut->chunk.offset=ut->mapNativeIndexToUTF16(ut, index); } else { ut->chunk.offset=index-ut->chunk.nativeStart; // Our convention is that the index must always be on a code point boundary. // If we are somewhere in the middle of a utf-16 buffer, check that new index // is not in the middle of a surrogate pair. if (index>ut->chunk.nativeStart && index < ut->chunk.nativeLimit) { UChar c = ut->chunk.contents[ut->chunk.offset]; if (U16_TRAIL(c)) { utext_current32(ut); // force index to the start of the curent code point. } } } } U_DRAFT UChar32 U_EXPORT2 utext_current32(UText *ut) { UChar32 c = U_SENTINEL; if (ut->chunk.offset==ut->chunk.length) { // Current position is just off the end of the chunk. // Can also happen at startup, with a zero length chunk at zero offset. ut->access(ut, ut->chunk.nativeLimit, TRUE, &ut->chunk); } if (ut->chunk.offset < ut->chunk.length) { c = ut->chunk.contents[ut->chunk.offset]; if (U16_IS_SURROGATE(c)) { // looking at a surrogate. Could be unpaired, need to be careful. // Speed doesn't matter, will be very rare. UChar32 char16AtIndex = c; U16_GET(ut->chunk.contents, 0, ut->chunk.offset, ut->chunk.length, c); if (U16_IS_TRAIL(char16AtIndex) && U_IS_SUPPLEMENTARY(c)) { // Incoming position pointed to the trailing part of a supplementary pair. // Move offset to point to the lead surrogate. This is needed because utext_current() // is used internally to force code point alignment. When called from // the outside we should always be pre-aligned, but this check doesn't hurt. ut->chunk.offset--; } } } return c; } U_DRAFT UChar32 U_EXPORT2 utext_char32At(UText *ut, int32_t nativeIndex) { UChar32 c = U_SENTINEL; utext_setNativeIndex(ut, nativeIndex); if (ut->chunk.offset < ut->chunk.length) { c = ut->chunk.contents[ut->chunk.offset]; if (c >= 0xd800) { c = utext_current32(ut); } } return c; } U_DRAFT UChar32 U_EXPORT2 utext_next32(UText *ut) { UTextChunk *chunk = &ut->chunk; UChar32 c = U_SENTINEL; if (chunk->offset >= chunk->length) { if (ut->access(ut, chunk->nativeLimit, TRUE, chunk) == FALSE) { goto next32_return; } } c = chunk->contents[chunk->offset++]; if (U16_IS_SURROGATE(c)) { // looking at a surrogate. Could be unpaired, need to be careful. // Speed doesn't matter, will be very rare. chunk->offset--; c = utext_current32(ut); chunk->offset++; if (U_IS_SUPPLEMENTARY(c)) { chunk->offset++; } } next32_return: return c; } U_DRAFT UChar32 U_EXPORT2 utext_previous32(UText *ut) { UTextChunk *chunk = &ut->chunk; int32_t offset = chunk->offset; UChar32 c = U_SENTINEL; if (offset <= 0) { if (ut->access(ut, chunk->nativeStart, FALSE, chunk) == FALSE) { goto prev32_return; } offset = chunk->offset; } c = chunk->contents[--offset]; chunk->offset = offset; if (U16_IS_SURROGATE(c)) { // Note that utext_current() will move the chunk offset to the lead surrogate // if we come in referring to trail half of a surrogate pair. c = utext_current32(ut); } prev32_return: return c; } U_DRAFT UChar32 U_EXPORT2 utext_next32From(UText *ut, int32_t index) { UTextChunk *chunk = &ut->chunk; UChar32 c = U_SENTINEL; if(indexnativeStart || index>=chunk->nativeLimit) { if(!ut->access(ut, index, TRUE, chunk)) { // no chunk available here goto next32return; } } else if(chunk->nonUTF16Indexes) { chunk->offset = ut->mapNativeIndexToUTF16(ut, index); } else { chunk->offset = index - chunk->nativeStart; } c = chunk->contents[chunk->offset++]; if (U16_IS_SURROGATE(c)) { // Surrogate code unit. Speed doesn't matter, let plain next32() do the work. chunk->offset--; // undo the ++, above. c = utext_next32(ut); } next32return: return c; } U_DRAFT UChar32 U_EXPORT2 utext_previous32From(UText *ut, int32_t index) { UTextChunk *chunk = &ut->chunk; UChar32 c = U_SENTINEL; if(index<=chunk->nativeStart || index>chunk->nativeLimit) { // Requested native index is outside of the current chunk. if(!ut->access(ut, index, FALSE, chunk)) { // no chunk available here goto prev32return; } } else if(chunk->nonUTF16Indexes) { chunk->offset=ut->mapNativeIndexToUTF16(ut, index); } else { // This chunk uses UTF-16 indexing. Index into it. chunk->offset = index - chunk->nativeStart; // put offset onto a code point boundary if it isn't there already. if (index>ut->chunk.nativeStart && index < ut->chunk.nativeLimit) { c = chunk->contents[chunk->offset]; if (U16_TRAIL(c)) { utext_current32(ut); // force index to the start of the curent code point. } } } if (chunk->offset<=0) { // already at the start of text. Return U_SENTINEL. goto prev32return; } // Do the operation assuming that there are no surrogates involved. Fast, common case. chunk->offset--; c = chunk->contents[chunk->offset]; // Check for the char being a surrogate, get the whole char if it is. if (U16_IS_SURROGATE(c)) { c = utext_current32(ut); } prev32return: return c; } U_DRAFT int32_t U_EXPORT2 utext_extract(UText *ut, int32_t start, int32_t limit, UChar *dest, int32_t destCapacity, UErrorCode *status) { return ut->extract(ut, start, limit, dest, destCapacity, status); } U_DRAFT UBool U_EXPORT2 utext_isWritable(const UText *ut) { UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; return b; } U_DRAFT UBool U_EXPORT2 utext_hasMetaData(const UText *ut) { UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; return b; } U_DRAFT int32_t U_EXPORT2 utext_replace(UText *ut, int32_t nativeStart, int32_t nativeLimit, const UChar *replacementText, int32_t replacementLength, UErrorCode *status) { if (U_FAILURE(*status)) { return 0; } if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { *status = U_NO_WRITE_PERMISSION; return 0; } int32_t i = ut->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); return i; } U_DRAFT void U_EXPORT2 utext_copy(UText *ut, int32_t nativeStart, int32_t nativeLimit, int32_t destIndex, UBool move, UErrorCode *status) { if (U_FAILURE(*status)) { return; } if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { *status = U_NO_WRITE_PERMISSION; return; } ut->copy(ut, nativeStart, nativeLimit, destIndex, move, status); } U_DRAFT UText * U_EXPORT2 utext_clone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { return src->clone(dest, src, deep, status); } //------------------------------------------------------------------------------ // // UText common functions implementation // //------------------------------------------------------------------------------ // // UText.flags bit definitions // enum { UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. // 0 if caller provided storage for the UText. UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate // heap block. // 0 if there is no separate allocation. Either no extra // storage was requested, or it is appended to the end // of the main UText storage. UTEXT_OPEN = 4 // 1 if this UText is currently open // 0 if this UText is not open. }; // // Extended form of a UText. The purpose is to aid in computing the total size required // when a provider asks for a UText to be allocated with extra storage. struct ExtendedUText { UText ut; UAlignedMemory extension; }; static const UText emptyText = UTEXT_INITIALIZER; U_DRAFT UText * U_EXPORT2 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { if (U_FAILURE(*status)) { return ut; } if (ut == NULL) { // We need to heap-allocate storage for the new UText int32_t spaceRequired = sizeof(UText); if (extraSpace > 0) { spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory); } ut = (UText *)uprv_malloc(spaceRequired); if (ut == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { *ut = emptyText; ut->flags |= UTEXT_HEAP_ALLOCATED; if (spaceRequired>0) { ut->extraSize = extraSpace; ut->pExtra = &((ExtendedUText *)ut)->extension; uprv_memset(ut->pExtra, 0, extraSpace); // Purify whines about copying untouched extra [buffer] // space when cloning, so init it now. } } } else { // We have been supplied with an already existing UText. // Verify that it really appears to be a UText. if (ut->magic != UTEXT_MAGIC) { *status = U_ILLEGAL_ARGUMENT_ERROR; return ut; } // If the ut is already open and there's a provider supplied close // function, call it. if ((ut->flags & UTEXT_OPEN) && ut->close != NULL) { ut->close(ut); } ut->flags &= ~UTEXT_OPEN; // If extra space was requested by our caller, check whether // sufficient already exists, and allocate new if needed. if (extraSpace > ut->extraSize) { // Need more space. If there is existing separately allocated space, // delete it first, then allocate new space. if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { uprv_free(ut->pExtra); ut->extraSize = 0; } ut->pExtra = uprv_malloc(extraSpace); if (ut->pExtra == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { ut->extraSize = extraSpace; ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; uprv_memset(ut->pExtra, 0, extraSpace); } } } if (U_SUCCESS(*status)) { ut->flags |= UTEXT_OPEN; } return ut; } U_DRAFT UText * U_EXPORT2 utext_close(UText *ut) { if (ut==NULL || ut->magic != UTEXT_MAGIC || (ut->flags & UTEXT_OPEN) == 0) { // The supplied ut is not an open UText. // Do nothing. return ut; } // If the provider gave us a close function, call it now. // This will clean up anything allocated specifically by the provider. if (ut->close != NULL) { ut->close(ut); } ut->flags &= ~UTEXT_OPEN; // If we (the framework) allocated the UText or subsidiary storage, // delete it. if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { uprv_free(ut->pExtra); ut->pExtra = NULL; } if (ut->flags & UTEXT_HEAP_ALLOCATED) { // This UText was allocated by UText setup. We need to free it. // Clear magic, so we can detect if the user messes up and immediately // tries to reopen another UText using the deleted storage. ut->magic = 0; uprv_free(ut); ut = NULL; } return ut; } // // resetChunk When an access fails for attempting to get text that is out-of-range // this function puts the chunk into a benign state with the index at the // at the requested position. // // If there is a pre-existing chunk that is adjacent to the index // preserve the chunk, otherwise set up a dummy zero length chunk. // static void resetChunk(UTextChunk *chunk, int32_t index) { if (index==chunk->nativeLimit) { chunk->offset = chunk->length; } else if (index==chunk->nativeStart) { chunk->offset = 0; } else { chunk->length = 0; chunk->nativeStart = index; chunk->nativeLimit = index; chunk->offset = 0; } } // // invalidateChunk Reset a chunk to have no contents, so that the next call // to access will new data to load. // This is needed when copy/move/replace operate directly on the // backing text, potentially putting it out of sync with the // contents in the chunk. // static void invalidateChunk(UTextChunk *chunk) { chunk->length = 0; chunk->nativeLimit = 0; chunk->nativeStart = 0; chunk->offset = 0; } U_CDECL_BEGIN // // Clone. This is a generic copy-the-utext-by-value clone function that can be // used as-is with some utext types, and as helper by other clones. // static UText * U_CALLCONV shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { if (U_FAILURE(*status)) { return NULL; } int32_t srcExtraSize = src->extraSize; // // Use the generic text_setup to allocate storage if required. // dest = utext_setup(dest, srcExtraSize, status); if (U_FAILURE(*status)) { return dest; } // // flags (how the UText was allocated) and the pointer to the // extra storage must retain the values in the cloned utext that // were set up by utext_setup. Save them separately before // copying the whole struct. // void *destExtra = dest->pExtra; int32_t flags = dest->flags; // // Copy the whole UText struct by value. // Any "Extra" storage is copied also. // int sizeToCopy = src->sizeOfStruct; if (sizeToCopy > dest->sizeOfStruct) { sizeToCopy = dest->sizeOfStruct; } uprv_memcpy(dest, src, sizeToCopy); dest->pExtra = destExtra; dest->flags = flags; if (srcExtraSize > 0) { uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); } return dest; } U_CDECL_END //------------------------------------------------------------------------------ // // UText implementation for UTF-8 strings (read-only) // // Use of UText data members: // context pointer to UTF-8 string // utext.b is the input string length (bytes). // utext.p pointer to allocated utf-8 string if owned by this utext (after a clone) // utext.q pointer to the filled part of the Map array. // // TODO: make creation of the index mapping array lazy. // Create it for a chunk the first time the user asks for an index. // //------------------------------------------------------------------------------ enum { UTF8_TEXT_CHUNK_SIZE=10 }; struct UTF8Extra { /* * Chunk UChars. * +1 to simplify filling with surrogate pair at the end. */ UChar s[UTF8_TEXT_CHUNK_SIZE+1]; /* * Index map, from UTF-16 indexes into s back to native indexes. * +2: length of s[] + one more for chunk limit index. * * When accessing preceding text, chunk.contents may point into the middle * of s[]. */ int32_t map[UTF8_TEXT_CHUNK_SIZE+2]; }; // because backwards iteration fills the buffers starting at the end and // working towards the front, the filled part of the buffers may not begin // at the start of the available storage for the buffers. U_CDECL_BEGIN static int32_t U_CALLCONV utf8TextLength(UText *ut) { return ut->b; } static UBool U_CALLCONV utf8TextAccess(UText *ut, int32_t index, UBool forward, UTextChunk *chunk) { const uint8_t *s8=(const uint8_t *)ut->context; UChar32 c; int32_t i; int32_t length = ut->b; // Length of original utf-8 UTF8Extra *ut8e = (UTF8Extra *)ut->pExtra; UChar *u16buf = ut8e->s; int32_t *map = ut8e->map; if (index<0) { index = 0; } else if (index>length) { index = length; } if(forward) { if(index >= length) { resetChunk(chunk, length); return FALSE; } c=s8[index]; if(c<=0x7f) { // get a run of ASCII characters. // Even if we don't fill the buffer, we will stop with the first // non-ascii char, so that the buffer can use utf-16 indexing. chunk->nativeStart=index; u16buf[0]=(UChar)c; for(i=1, ++index; inonUTF16Indexes=FALSE; } else { // get a chunk of characters starting with a non-ASCII one U8_SET_CP_START(s8, 0, index); // put utf-8 index at first byte of char, if not there already. chunk->nativeStart=index; for(i=0; inonUTF16Indexes=TRUE; } chunk->contents = u16buf; chunk->length = i; chunk->nativeLimit = index; ut->q = map; chunk->offset = 0; // chunkOffset corresponding to index return TRUE; } else { // Reverse Access. The chunk buffer must be filled so as to contain the // character preceding the specified index. if(index<=0) { resetChunk(chunk, 0); return FALSE; } c=s8[index-1]; if(c<=0x7f) { // get a chunk of ASCII characters. Don't build the index map chunk->nativeLimit=index; i=UTF8_TEXT_CHUNK_SIZE; do { u16buf[--i]=(UChar)c; --index; } while(i>0 && index>0 && (c=s8[index-1])<=0x7f); chunk->nonUTF16Indexes=FALSE; } else { // get a chunk of characters starting with a non-ASCII one if(indexnativeLimit=index; i=UTF8_TEXT_CHUNK_SIZE; map[i]=index; // map position for char following the last one in the buffer. do { // i is utf-16 index into chunk buffer. // index is utf-8 index into original string U8_PREV(s8, 0, index, c); if(c<0) { c=0xfffd; // use SUB for illegal sequences } if(c<=0xffff) { u16buf[--i]=(UChar)c; map[i]=index; } else { // We've got a supplementary char if (i<2) { // Both halves of the surrogate pair wont fit in the chunk buffer. // Stop without putting either half in. U8_NEXT(s8, index, length, c); // restore index. break; } u16buf[--i]=U16_TRAIL(c); map[i]=index; u16buf[--i]=U16_LEAD(c); map[i]=index; } } while(i>0 && index>0); // Because we have filled the map & chunk buffers from back to front, // the start position for accesses may not be at the start of the // available storage. ut->q = map+i; chunk->nonUTF16Indexes=TRUE; } // Common reverse iteration, for both UTF16 and non-UTIF16 indexes. chunk->contents = u16buf+i; chunk->length = (UTF8_TEXT_CHUNK_SIZE)-i; chunk->nativeStart = index; chunk->offset = chunk->length; // chunkOffset corresponding to index return TRUE; } } // // This is a slightly modified copy of u_strFromUTF8, // Inserts a Replacement Char rather than failing on invalid UTF-8 // Removes unnecessary features. // static UChar* utext_strFromUTF8(UChar *dest, int32_t destCapacity, int32_t *pDestLength, const char* src, int32_t srcLength, // required. NUL terminated not supported. UErrorCode *pErrorCode ) { UChar *pDest = dest; UChar *pDestLimit = dest+destCapacity; UChar32 ch=0; int32_t index = 0; int32_t reqLength = 0; uint8_t* pSrc = (uint8_t*) src; while((index < srcLength)&&(pDest0)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(start<0 || start>limit) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } if (limit>ut->b) { limit = ut->b; } if (start>ut->b) { start = ut->b; } // adjust the incoming indexes to land on code point boundaries if needed. // adjust by no more than three, because that is the largest number of trail bytes // in a well formed UTF8 character. const uint8_t *buf = (const uint8_t *)ut->context; int i; if (start < ut->chunk.nativeLimit) { for (i=0; i<3; i++) { if (U8_IS_LEAD(buf[start]) || start==0) { break; } start--; } } if (limit < ut->chunk.nativeLimit) { for (i=0; i<3; i++) { if (U8_IS_LEAD(buf[limit]) || limit==0) { break; } limit--; } } // Do the actual extract. int32_t destLength=0; utext_strFromUTF8(dest, destCapacity, &destLength, (const char *)ut->context+start, limit-start, pErrorCode); return destLength; } // Assume nonUTF16Indexes and 0<=offset<=chunk->length static int32_t U_CALLCONV utf8TextMapOffsetToNative(UText *ut, int32_t offset) { // UText.q points to the index mapping array that is allocated in the extra storage area. U_ASSERT(offset>=0 && offset<=ut->chunk.length); int32_t *map=(int32_t *)(ut->q); return map[offset]; } // Assume nonUTF16Indexes and chunk->start<=index<=chunk->limit static int32_t U_CALLCONV utf8TextMapIndexToUTF16(UText *ut, int32_t index) { int32_t *map=(int32_t *)(ut->q); int32_t offset=0; U_ASSERT(index>=ut->chunk.nativeStart && index<=ut->chunk.nativeLimit); while(index>map[offset]) { ++offset; } if (index0 && map[offset] == map[offset-1]) { // index was to a utf-8 trail byte of a supplemenary char. // Offset now points to the trail surrogate (one in back of the following char) // Back offset up one more time to get to the utf-16 lead surrogate. offset--; } } return offset; } static UText * U_CALLCONV utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { // First do a generic shallow clone. Does everything needed for the UText struct itself. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the string. // The copied storage is owned by the newly created clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // it. // if (deep && U_SUCCESS(*status)) { int32_t len = src->b; char *copyStr = (char *)uprv_malloc(len+1); if (copyStr == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { uprv_memcpy(copyStr, src->context, len+1); dest->context = copyStr; dest->p = copyStr; } } return dest; } static void U_CALLCONV utf8TextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is to delete the UTF8 string if the UText // owns it. This occurs if the UText was created by cloning. char *s = (char *)ut->p; uprv_free(s); ut->p = NULL; } U_DRAFT UText * U_EXPORT2 utext_openUTF8(UText *ut, const char *s, int32_t length, UErrorCode *status) { if(U_FAILURE(*status)) { return NULL; } if(s==NULL || length<-1) { *status=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } ut = utext_setup(ut, sizeof(UTF8Extra), status); if (U_FAILURE(*status)) { return ut; } ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_NON_UTF16_INDEXES); ut->clone = utf8TextClone; ut->nativeLength = utf8TextLength; ut->access = utf8TextAccess; ut->extract = utf8TextExtract; ut->mapOffsetToNative = utf8TextMapOffsetToNative; ut->mapNativeIndexToUTF16 = utf8TextMapIndexToUTF16; ut->close = utf8TextClose; ut->context=s; if(length>=0) { ut->b=length; } else { // TODO: really undesirable to do this scan upfront. ut->b=(int32_t)uprv_strlen(s); } return ut; } U_CDECL_END //------------------------------------------------------------------------------ // // UText implementation wrapper for Replaceable (read/write) // // Use of UText data members: // context pointer to Replaceable. // p pointer to Replaceable if it is owned by the UText. // //------------------------------------------------------------------------------ // minimum chunk size for this implementation: 3 // to allow for possible trimming for code point boundaries enum { REP_TEXT_CHUNK_SIZE=10 }; struct ReplExtra { /* * Chunk UChars. * +1 to simplify filling with surrogate pair at the end. */ UChar s[REP_TEXT_CHUNK_SIZE+1]; }; U_CDECL_BEGIN static UText * U_CALLCONV repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { // First do a generic shallow clone. Does everything needed for the UText struct itself. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the Replaceable. // The copied Replaceable storage is owned by the newly created UText clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // it. // if (deep && U_SUCCESS(*status)) { const Replaceable *replSrc = (const Replaceable *)src->context; dest->context = replSrc->clone(); dest->p = dest->context; } return dest; } static void U_CALLCONV repTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the Replaceable if the UText // owns it. This occurs if the UText was created by cloning. Replaceable *rep = (Replaceable *)ut->p; delete rep; ut->p = NULL; } static int32_t U_CALLCONV repTextLength(UText *ut) { const Replaceable *replSrc = (const Replaceable *)ut->context; int32_t len = replSrc->length(); return len; } static UBool U_CALLCONV repTextAccess(UText *ut, int32_t index, UBool forward, UTextChunk* /* chunk*/ ) { const Replaceable *rep=(const Replaceable *)ut->context; int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) // clip the requested index to the limits of the text. if (index<0) { index = 0; } if (index>length) { index = length; } /* * Compute start/limit boundaries around index, for a segment of text * to be extracted. * To allow for the possibility that our user gave an index to the trailing * half of a surrogate pair, we must request one extra preceding UChar when * going in the forward direction. This will ensure that the buffer has the * entire code point at the specified index. */ if(forward) { if (index>=ut->chunk.nativeStart && indexchunk.nativeLimit) { // Buffer already contains the requested position. ut->chunk.offset = index - ut->chunk.nativeStart; return TRUE; } if (index>=length && ut->chunk.nativeLimit==length) { // Request for end of string, and buffer already extends up to it. // Can't get the data, but don't change the buffer. ut->chunk.offset = length - ut->chunk.nativeStart; return FALSE; } ut->chunk.nativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; // Going forward, so we want to have the buffer with stuff at and beyond // the requested index. The -1 gets us one code point before the // requested index also, to handle the case of the index being on // a trail surrogate of a surrogate pair. if(ut->chunk.nativeLimit > length) { ut->chunk.nativeLimit = length; } // unless buffer ran off end, start is index-1. ut->chunk.nativeStart = ut->chunk.nativeLimit - REP_TEXT_CHUNK_SIZE; if(ut->chunk.nativeStart < 0) { ut->chunk.nativeStart = 0; } } else { // Reverse iteration. Fill buffer with data preceding the requested index. if (index>ut->chunk.nativeStart && index<=ut->chunk.nativeLimit) { // Requested position already in buffer. ut->chunk.offset = index - ut->chunk.nativeStart; return TRUE; } if (index==0 && ut->chunk.nativeStart==0) { // Request for start, buffer already begins at start. // No data, but keep the buffer as is. ut->chunk.offset = 0; return FALSE; } // Figure out the bounds of the chunk to extract for reverse iteration. // Need to worry about chunk not splitting surrogate pairs, and while still // containing the data we need. // Fix by requesting a chunk that includes an extra UChar at the end. // If this turns out to be a lead surrogate, we can lop it off and still have // the data we wanted. ut->chunk.nativeStart = index + 1 - REP_TEXT_CHUNK_SIZE; if (ut->chunk.nativeStart < 0) { ut->chunk.nativeStart = 0; } ut->chunk.nativeLimit = index + 1; if (ut->chunk.nativeLimit > length) { ut->chunk.nativeLimit = length; } } // Extract the new chunk of text from the Replaceable source. ReplExtra *ex = (ReplExtra *)ut->pExtra; // UnicodeString with its buffer a writable alias to the chunk buffer UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); rep->extractBetween(ut->chunk.nativeStart, ut->chunk.nativeLimit, buffer); ut->chunk.contents = ex->s; ut->chunk.length = ut->chunk.nativeLimit - ut->chunk.nativeStart; ut->chunk.offset = index - ut->chunk.nativeStart; // Surrogate pairs from the input text must not span chunk boundaries. // If end of chunk could be the start of a surrogate, trim it off. if (ut->chunk.nativeLimit < length && U16_IS_LEAD(ex->s[ut->chunk.length-1])) { ut->chunk.length--; ut->chunk.nativeLimit--; if (ut->chunk.offset > ut->chunk.length) { ut->chunk.offset = ut->chunk.length; } } // if the first UChar in the chunk could be the trailing half of a surrogate pair, // trim it off. if(ut->chunk.nativeStart>0 && U16_IS_TRAIL(ex->s[0])) { ++(ut->chunk.contents); ++(ut->chunk.nativeStart); --(ut->chunk.length); --(ut->chunk.offset); } // adjust the index/chunkOffset to a code point boundary U16_SET_CP_START(ut->chunk.contents, 0, ut->chunk.offset); return TRUE; } static int32_t U_CALLCONV repTextExtract(UText *ut, int32_t start, int32_t limit, UChar *dest, int32_t destCapacity, UErrorCode *status) { const Replaceable *rep=(const Replaceable *)ut->context; int32_t length=rep->length(); if(U_FAILURE(*status)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0)) { *status=U_ILLEGAL_ARGUMENT_ERROR; } if(start<0 || start>limit) { *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } if (start>length) { start=length; } if (limit>length) { limit=length; } // adjust start, limit if they point to trail half of surrogates if (startcharAt(start)) && U_IS_SUPPLEMENTARY(rep->char32At(start))){ start--; } if (limitcharAt(limit)) && U_IS_SUPPLEMENTARY(rep->char32At(limit))){ limit--; } length=limit-start; if(length>destCapacity) { limit = start + destCapacity; } UnicodeString buffer(dest, 0, destCapacity); // writable alias rep->extractBetween(start, limit, buffer); return u_terminateUChars(dest, destCapacity, length, status); } static int32_t U_CALLCONV repTextReplace(UText *ut, int32_t start, int32_t limit, const UChar *src, int32_t length, UErrorCode *status) { Replaceable *rep=(Replaceable *)ut->context; int32_t oldLength; if(U_FAILURE(*status)) { return 0; } if(src==NULL && length!=0) { *status=U_ILLEGAL_ARGUMENT_ERROR; return 0; } oldLength=rep->length(); // will subtract from new length if(start<0 || start>limit ) { *status=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } if (start > oldLength) { start = oldLength; } if (limit > oldLength) { limit = oldLength; } // Do the actual replace operation using methods of the Replaceable class UnicodeString replStr((UBool)(length<0), src, length); // read-only alias rep->handleReplaceBetween(start, limit, replStr); int32_t newLength = rep->length(); int32_t lengthDelta = newLength - oldLength; // Is the UText chunk buffer OK? if (ut->chunk.nativeLimit > start) { // this replace operation may have impacted the current chunk. // invalidate it, which will force a reload on the next access. invalidateChunk(&ut->chunk); } // set the iteration position to the end of the newly inserted replacement text. int32_t newIndexPos = limit + lengthDelta; repTextAccess(ut, newIndexPos, TRUE, &ut->chunk); return lengthDelta; } static void U_CALLCONV repTextCopy(UText *ut, int32_t start, int32_t limit, int32_t destIndex, UBool move, UErrorCode *status) { Replaceable *rep=(Replaceable *)ut->context; int32_t length=rep->length(); if(U_FAILURE(*status)) { return; } if( start<0 || start>limit || destIndex<0 || (start length) { destIndex = length; } if (limit > length) { limit = length; } if (start > length) { start = length; } if(move) { // move: copy to destIndex, then replace original with nothing int32_t segLength=limit-start; rep->copy(start, limit, destIndex); if(destIndexhandleReplaceBetween(start, limit, UnicodeString()); } else { // copy rep->copy(start, limit, destIndex); } // If the change to the text touched the region in the chunk buffer, // invalidate the buffer. int32_t firstAffectedIndex = destIndex; if (move && startchunk.nativeLimit) { // changes may have affected range covered by the chunk invalidateChunk(&ut->chunk); } // Put iteration position at the newly inserted (moved) block, int32_t nativeIterIndex = destIndex + limit - start; if (move && destIndex>start) { // moved a block of text towards the end of the string. nativeIterIndex = destIndex; } // Set position, reload chunk if needed. repTextAccess(ut, nativeIterIndex, TRUE, &ut->chunk); } U_DRAFT UText * U_EXPORT2 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) { if(U_FAILURE(*status)) { return NULL; } if(rep==NULL) { *status=U_ILLEGAL_ARGUMENT_ERROR; return NULL; } ut = utext_setup(ut, sizeof(ReplExtra), status); ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); if(rep->hasMetaData()) { ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); } ut->clone = repTextClone; ut->nativeLength = repTextLength; ut->access = repTextAccess; ut->extract = repTextExtract; ut->replace = repTextReplace; ut->copy = repTextCopy; ut->close = repTextClose; ut->context=rep; return ut; } U_CDECL_END //------------------------------------------------------------------------------ // // UText implementation for UnicodeString (read/write) and // for const UnicodeString (read only) // (same implementation, only the flags are different) // // Use of UText data members: // context pointer to UnicodeString // p pointer to UnicodeString IF this UText owns the string // and it must be deleted on close(). NULL otherwise. // //------------------------------------------------------------------------------ U_CDECL_BEGIN static UText * U_CALLCONV unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { // First do a generic shallow clone. Does everything needed for the UText struct itself. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the UnicodeSring. // The copied UnicodeString storage is owned by the newly created UText clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // the UText. // if (deep && U_SUCCESS(*status)) { const UnicodeString *srcString = (const UnicodeString *)src->context; dest->context = new UnicodeString(*srcString); dest->p = dest->context; } return dest; } static void U_CALLCONV unistrTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the UnicodeString if the UText // owns it. This occurs if the UText was created by cloning. UnicodeString *str = (UnicodeString *)ut->p; delete str; ut->p = NULL; } static int32_t U_CALLCONV unistrTextLength(UText *t) { return ((const UnicodeString *)t->context)->length(); } static UBool U_CALLCONV unistrTextAccess(UText *ut, int32_t index, UBool forward, UTextChunk *chunk) { const UnicodeString *us = (const UnicodeString *)ut->context; int32_t length = us->length(); if (chunk->nativeLimit != length) { // This chunk is not yet set up. Do it now. // TODO: probably simplify things to move this into the open operation. chunk->contents = us->getBuffer(); chunk->length = length; chunk->nativeStart = 0; chunk->nativeLimit = length; chunk->nonUTF16Indexes = FALSE; } // pin the requested index to the bounds of the string, // and set current iteration position. if (index<0) { index = 0; } else if (index>length) { index = length; } chunk->offset = index; // Check whether request is at the start or end UBool retVal = (forward && index0); return retVal; } static int32_t U_CALLCONV unistrTextExtract(UText *t, int32_t start, int32_t limit, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) { const UnicodeString *us=(const UnicodeString *)t->context; int32_t length=us->length(); if(U_FAILURE(*pErrorCode)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } if(start<0 || start>limit) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } start = startgetChar32Start(start) : length; limit = limitgetChar32Start(limit) : length; length=limit-start; if (destCapacity>0 && dest!=NULL) { int32_t trimmedLength = length; if(trimmedLength>destCapacity) { trimmedLength=destCapacity; } us->extract(start, trimmedLength, dest); } u_terminateUChars(dest, destCapacity, length, pErrorCode); return length; } static int32_t U_CALLCONV unistrTextReplace(UText *ut, int32_t start, int32_t limit, const UChar *src, int32_t length, UErrorCode *pErrorCode) { UnicodeString *us=(UnicodeString *)ut->context; int32_t oldLength; if(U_FAILURE(*pErrorCode)) { return 0; } if(src==NULL && length!=0) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; } oldLength=us->length(); // will subtract from new length if(start<0 || start>limit) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } start = startgetChar32Start(start) : oldLength; limit = limitgetChar32Start(limit) : oldLength; // replace us->replace(start, limit-start, src, length); int32_t newLength = us->length(); // Update the chunk description. ut->chunk.contents = us->getBuffer(); ut->chunk.length = newLength; ut->chunk.nativeLimit = newLength; // Set iteration position to the point just following the newly inserted text. int32_t lengthDelta = newLength - oldLength; ut->chunk.offset = limit + lengthDelta; return lengthDelta; } static void U_CALLCONV unistrTextCopy(UText *ut, int32_t start, int32_t limit, int32_t destIndex, UBool move, UErrorCode *pErrorCode) { UnicodeString *us=(UnicodeString *)ut->context; int32_t length=us->length(); if(U_FAILURE(*pErrorCode)) { return; } if( start<0 || start>limit || destIndex<0 || (startlength) { limit = length; } if (destIndex>length) { destIndex = length; } if(move) { // move: copy to destIndex, then replace original with nothing int32_t segLength=limit-start; us->copy(start, limit, destIndex); if(destIndexreplace(start, segLength, NULL, 0); } else { // copy us->copy(start, limit, destIndex); } // update chunk description, set iteration position. ut->chunk.contents = us->getBuffer(); if (move==FALSE) { // copy operation, string length grows ut->chunk.length += limit-start; ut->chunk.nativeLimit = ut->chunk.length; } // Iteration position to end of the newly inserted text. ut->chunk.offset = destIndex+limit-start; if (move && destIndex>start) { //TODO: backwards? check. ut->chunk.offset = destIndex; } } U_CDECL_END U_DRAFT UText * U_EXPORT2 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { ut = utext_setup(ut, 0, status); if (U_SUCCESS(*status)) { ut->clone = unistrTextClone; ut->nativeLength = unistrTextLength; ut->access = unistrTextAccess; ut->extract = unistrTextExtract; ut->replace = unistrTextReplace; ut->copy = unistrTextCopy; ut->close = unistrTextClose; ut->context = s; ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS)| I32_FLAG(UTEXT_PROVIDER_WRITABLE); } return ut; } U_DRAFT UText * U_EXPORT2 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { ut = utext_setup(ut, 0, status); if (U_SUCCESS(*status)) { ut->clone = unistrTextClone; ut->nativeLength = unistrTextLength; ut->access = unistrTextAccess; ut->extract = unistrTextExtract; ut->close = unistrTextClose; ut->context = s; ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); } return ut; } //------------------------------------------------------------------------------ // // UText implementation for const UChar * strings // // Use of UText data members: // context pointer to UnicodeString // a length. -1 if not yet known. // //------------------------------------------------------------------------------ U_CDECL_BEGIN static UText * U_CALLCONV ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { // First do a generic shallow clone. dest = shallowTextClone(dest, src, status); // For deep clones, make a copy of the string. // The copied storage is owned by the newly created clone. // A non-NULL pointer in UText.p is the signal to the close() function to delete // it. // if (deep && U_SUCCESS(*status)) { int32_t len = utext_nativeLength(dest); // The cloned string IS going to be NUL terminated, whether or not the orginal was. const UChar *srcStr = (const UChar *)src->context; UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); if (copyStr == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } else { int i; for (i=0; icontext = copyStr; dest->p = copyStr; } } return dest; } static void U_CALLCONV ucstrTextClose(UText *ut) { // Most of the work of close is done by the generic UText framework close. // All that needs to be done here is delete the Replaceable if the UText // owns it. This occurs if the UText was created by cloning. UChar *s = (UChar *)ut->p; uprv_free(s); ut->p = NULL; } static int32_t U_CALLCONV ucstrTextLength(UText *ut) { if (ut->a < 0) { // null terminated, we don't yet know the length. Scan for it. // Access is not convenient for doing this // because the current interation postion can't be changed. const UChar *str = (const UChar *)ut->context; for (;;) { if (str[ut->chunk.nativeLimit] == 0) { break; } ut->chunk.nativeLimit++; } ut->a = ut->chunk.nativeLimit; ut->chunk.length = ut->chunk.nativeLimit; ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } return ut->a; } static UBool U_CALLCONV ucstrTextAccess(UText *ut, int32_t index, UBool forward, UTextChunk *chunk) { const UChar *str = (const UChar *)ut->context; // pin the requested index to the bounds of the string, // and set current iteration position. if (index<0) { index = 0; } else if (index < ut->chunk.nativeLimit) { // The request data is within the chunk as it is known so far. // There is nothing more that needs to be done within this access function. } else if (ut->a >= 0) { // We know the length of this string, and the user is requesting something // at or beyond the length. Trim the requested index to the length. index = ut->a; } else { // Null terminated string, length not yet known. // Scan down another 32 UChars or to the requested index, whichever is further int scanLimit = ut->chunk.nativeLimit + 32; if (scanLimit <= index) { scanLimit = index+1; // TODO: beware int overflow } for (; ut->chunk.nativeLimitchunk.nativeLimit++) { if (str[ut->chunk.nativeLimit] == 0) { // We found the end of the string. Remember it, trim the index to it, // and bail out of here. ut->a = ut->chunk.nativeLimit; ut->chunk.length = ut->chunk.nativeLimit; if (index > ut->chunk.nativeLimit) { index = ut->chunk.nativeLimit; } ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); goto breakout; } } // We scanned through the next batch of UChars without finding the end. // The endpoint of a chunk must not be left in the middle of a surrogate pair. // If the current end is on a lead surrogate, back the end up by one. // It doesn't matter if the end char happens to be an unpaired surrogate, // and it's simpler not to worry about it. if (U16_IS_LEAD(str[ut->chunk.nativeLimit-1])) { --ut->chunk.nativeLimit; } } breakout: chunk->offset = index; // Check whether request is at the start or end UBool retVal = (forward && indexchunk.nativeLimit) || (!forward && index>0); return retVal; } static int32_t U_CALLCONV ucstrTextExtract(UText *ut, int32_t start, int32_t limit, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) { if(U_FAILURE(*pErrorCode)) { return 0; } if(destCapacity<0 || (dest==NULL && destCapacity>0)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } const UChar *s=(const UChar *)ut->context; int32_t strLength=ut->a; int32_t si, di; // If text is null terminated and we haven't yet scanned down as far as the starting // position of the extract, do it now. if (strLength<0 && limit>=ut->chunk.nativeLimit) { ucstrTextAccess(ut, start, TRUE, &ut->chunk); } // Raise an error if starting position is outside of the string. if(start<0 || start>limit) { *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } if (strLength >= 0 && limit > strLength) { // String length is known. Trim requested limit to be no more than the length limit = strLength; } di = 0; for (si=start; sia = si; // set string length for this UText ut->chunk.nativeLimit = si; ut->chunk.length = si; // break; } if (di=0) { // We have filled the destination buffer, and the string is known. // Cut the loop short. There is no need to scan string termination. di = strLength; break; } } di++; } u_terminateUChars(dest, destCapacity, di, pErrorCode); return di; } U_CDECL_END U_DRAFT UText * U_EXPORT2 utext_openUChars(UText *ut, const UChar *s, int32_t length, UErrorCode *status) { if (U_FAILURE(*status)) { return NULL; } if (length < -1) { *status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } ut = utext_setup(ut, 0, status); if (U_SUCCESS(*status)) { ut->clone = ucstrTextClone; ut->nativeLength = ucstrTextLength; ut->access = ucstrTextAccess; ut->extract = ucstrTextExtract; ut->replace = NULL; ut->copy = NULL; ut->close = ucstrTextClose; ut->context = s; ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); if (length==-1) { ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); } ut->a = length; ut->chunk.contents = s; ut->chunk.nativeStart = 0; ut->chunk.nativeLimit = length>=0? length : 0; ut->chunk.length = ut->chunk.nativeLimit; ut->chunk.nonUTF16Indexes = FALSE; } return ut; }