// © 2017 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "uassert.h" #include "unicode/numberformatter.h" #include "number_decimalquantity.h" #include "number_formatimpl.h" #include "umutex.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; template Derived NumberFormatterSettings::notation(const Notation ¬ation) const { Derived copy(*this); // NOTE: Slicing is OK. copy.fMacros.notation = notation; return copy; } template Derived NumberFormatterSettings::unit(const icu::MeasureUnit &unit) const { Derived copy(*this); // NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit. // TimeUnit may be affected, but TimeUnit is not as relevant to number formatting. copy.fMacros.unit = unit; return copy; } template Derived NumberFormatterSettings::adoptUnit(const icu::MeasureUnit *unit) const { Derived copy(*this); // Just copy the unit into the MacroProps by value, and delete it since we have ownership. // NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit. // TimeUnit may be affected, but TimeUnit is not as relevant to number formatting. if (unit != nullptr) { copy.fMacros.unit = *unit; delete unit; } return copy; } template Derived NumberFormatterSettings::rounding(const Rounder &rounder) const { Derived copy(*this); // NOTE: Slicing is OK. copy.fMacros.rounder = rounder; return copy; } template Derived NumberFormatterSettings::grouping(const Grouper &grouper) const { Derived copy(*this); copy.fMacros.grouper = grouper; return copy; } template Derived NumberFormatterSettings::integerWidth(const IntegerWidth &style) const { Derived copy(*this); copy.fMacros.integerWidth = style; return copy; } template Derived NumberFormatterSettings::symbols(const DecimalFormatSymbols &symbols) const { Derived copy(*this); copy.fMacros.symbols.setTo(symbols); return copy; } template Derived NumberFormatterSettings::adoptSymbols(const NumberingSystem *ns) const { Derived copy(*this); copy.fMacros.symbols.setTo(ns); return copy; } template Derived NumberFormatterSettings::unitWidth(const UNumberUnitWidth &width) const { Derived copy(*this); copy.fMacros.unitWidth = width; return copy; } template Derived NumberFormatterSettings::sign(const UNumberSignDisplay &style) const { Derived copy(*this); copy.fMacros.sign = style; return copy; } template Derived NumberFormatterSettings::decimal(const UNumberDecimalSeparatorDisplay &style) const { Derived copy(*this); copy.fMacros.decimal = style; return copy; } template Derived NumberFormatterSettings::padding(const Padder &padder) const { Derived copy(*this); copy.fMacros.padder = padder; return copy; } template Derived NumberFormatterSettings::threshold(int32_t threshold) const { Derived copy(*this); copy.fMacros.threshold = threshold; return copy; } // Declare all classes that implement NumberFormatterSettings // See https://stackoverflow.com/a/495056/1407170 template class icu::number::NumberFormatterSettings; template class icu::number::NumberFormatterSettings; UnlocalizedNumberFormatter NumberFormatter::with() { UnlocalizedNumberFormatter result; return result; } LocalizedNumberFormatter NumberFormatter::withLocale(const Locale &locale) { return with().locale(locale); } // Make the child class constructor that takes the parent class call the parent class's copy constructor UnlocalizedNumberFormatter::UnlocalizedNumberFormatter( const NumberFormatterSettings &other) : NumberFormatterSettings(other) { } // Make the child class constructor that takes the parent class call the parent class's copy constructor // For LocalizedNumberFormatter, also copy over the extra fields LocalizedNumberFormatter::LocalizedNumberFormatter( const NumberFormatterSettings &other) : NumberFormatterSettings(other) { // No additional copies required } LocalizedNumberFormatter::LocalizedNumberFormatter(const MacroProps ¯os, const Locale &locale) { fMacros = macros; fMacros.locale = locale; } LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale &locale) const { return LocalizedNumberFormatter(fMacros, locale); } SymbolsWrapper::SymbolsWrapper(const SymbolsWrapper &other) { doCopyFrom(other); } SymbolsWrapper &SymbolsWrapper::operator=(const SymbolsWrapper &other) { if (this == &other) { return *this; } doCleanup(); doCopyFrom(other); return *this; } SymbolsWrapper::~SymbolsWrapper() { doCleanup(); } void SymbolsWrapper::setTo(const DecimalFormatSymbols &dfs) { doCleanup(); fType = SYMPTR_DFS; fPtr.dfs = new DecimalFormatSymbols(dfs); } void SymbolsWrapper::setTo(const NumberingSystem *ns) { doCleanup(); fType = SYMPTR_NS; fPtr.ns = ns; } void SymbolsWrapper::doCopyFrom(const SymbolsWrapper &other) { fType = other.fType; switch (fType) { case SYMPTR_NONE: // No action necessary break; case SYMPTR_DFS: // Memory allocation failures are exposed in copyErrorTo() if (other.fPtr.dfs != nullptr) { fPtr.dfs = new DecimalFormatSymbols(*other.fPtr.dfs); } else { fPtr.dfs = nullptr; } break; case SYMPTR_NS: // Memory allocation failures are exposed in copyErrorTo() if (other.fPtr.ns != nullptr) { fPtr.ns = new NumberingSystem(*other.fPtr.ns); } else { fPtr.ns = nullptr; } break; } } void SymbolsWrapper::doCleanup() { switch (fType) { case SYMPTR_NONE: // No action necessary break; case SYMPTR_DFS: delete fPtr.dfs; break; case SYMPTR_NS: delete fPtr.ns; break; } } bool SymbolsWrapper::isDecimalFormatSymbols() const { return fType == SYMPTR_DFS; } bool SymbolsWrapper::isNumberingSystem() const { return fType == SYMPTR_NS; } const DecimalFormatSymbols* SymbolsWrapper::getDecimalFormatSymbols() const { U_ASSERT(fType == SYMPTR_DFS); return fPtr.dfs; } const NumberingSystem* SymbolsWrapper::getNumberingSystem() const { U_ASSERT(fType == SYMPTR_NS); return fPtr.ns; } LocalizedNumberFormatter::~LocalizedNumberFormatter() { delete fCompiled; } FormattedNumber LocalizedNumberFormatter::formatInt(int64_t value, UErrorCode &status) const { if (U_FAILURE(status)) { return FormattedNumber(); } auto results = new NumberFormatterResults(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(); } results->quantity.setToLong(value); return formatImpl(results, status); } FormattedNumber LocalizedNumberFormatter::formatDouble(double value, UErrorCode &status) const { if (U_FAILURE(status)) { return FormattedNumber(); } auto results = new NumberFormatterResults(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(); } results->quantity.setToDouble(value); return formatImpl(results, status); } FormattedNumber LocalizedNumberFormatter::formatDecimal(StringPiece value, UErrorCode &status) const { if (U_FAILURE(status)) { return FormattedNumber(); } auto results = new NumberFormatterResults(); if (results == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; return FormattedNumber(); } results->quantity.setToDecNumber(value); return formatImpl(results, status); } FormattedNumber LocalizedNumberFormatter::formatImpl(impl::NumberFormatterResults *results, UErrorCode &status) const { // fUnsafeCallCount contains memory to be interpreted as an atomic int, most commonly // std::atomic. Since the type of atomic int is platform-dependent, we cast the // bytes in fUnsafeCallCount to u_atomic_int32_t, a typedef for the platform-dependent // atomic int type defined in umutex.h. static_assert(sizeof(u_atomic_int32_t) <= sizeof(fUnsafeCallCount), "Atomic integer size on this platform exceeds the size allocated by fUnsafeCallCount"); u_atomic_int32_t* callCount = reinterpret_cast( const_cast(this)->fUnsafeCallCount); // A positive value in the atomic int indicates that the data structure is not yet ready; // a negative value indicates that it is ready. If, after the increment, the atomic int // is exactly threshold, then it is the current thread's job to build the data structure. // Note: We set the callCount to INT32_MIN so that if another thread proceeds to increment // the atomic int, the value remains below zero. int32_t currentCount = umtx_loadAcquire(*callCount); if (0 <= currentCount && currentCount <= fMacros.threshold && fMacros.threshold > 0) { currentCount = umtx_atomic_inc(callCount); } if (currentCount == fMacros.threshold && fMacros.threshold > 0) { // Build the data structure and then use it (slow to fast path). const NumberFormatterImpl* compiled = NumberFormatterImpl::fromMacros(fMacros, status); U_ASSERT(fCompiled == nullptr); const_cast(this)->fCompiled = compiled; umtx_storeRelease(*callCount, INT32_MIN); compiled->apply(results->quantity, results->string, status); } else if (currentCount < 0) { // The data structure is already built; use it (fast path). U_ASSERT(fCompiled != nullptr); fCompiled->apply(results->quantity, results->string, status); } else { // Format the number without building the data structure (slow path). NumberFormatterImpl::applyStatic(fMacros, results->quantity, results->string, status); } return FormattedNumber(results); } UnicodeString FormattedNumber::toString() const { return fResults->string.toUnicodeString(); } Appendable &FormattedNumber::appendTo(Appendable &appendable) { appendable.appendString(fResults->string.chars(), fResults->string.length()); return appendable; } void FormattedNumber::populateFieldPosition(FieldPosition &fieldPosition, UErrorCode &status) { fResults->string.populateFieldPosition(fieldPosition, 0, status); } void FormattedNumber::populateFieldPositionIterator(FieldPositionIterator &iterator, UErrorCode &status) { fResults->string.populateFieldPositionIterator(iterator, status); } FormattedNumber::~FormattedNumber() { delete fResults; } #endif /* #if !UCONFIG_NO_FORMATTING */